1
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
2
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Shinada M, Suzuki H, Hanyu M, Igarashi C, Matsumoto H, Takahashi M, Hihara F, Tachibana T, Sogawa C, Zhang MR, Higashi T, Sato H, Kurihara H, Yoshii Y, Doi Y. Trace Metal Impurities Effects on the Formation of [ 64Cu]Cu-diacetyl-bis( N4-methylthiosemicarbazone) ([ 64Cu]Cu-ATSM). Pharmaceuticals (Basel) 2023; 17:10. [PMID: 38275997 PMCID: PMC10821298 DOI: 10.3390/ph17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Masayuki Hanyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chizuru Sogawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Hidemitsu Sato
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroaki Kurihara
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
4
|
Fantin J, Toutain J, Pérès EA, Bernay B, Mehani SM, Helaine C, Bourgeois M, Brunaud C, Chazalviel L, Pontin J, Corroyer-Dulmont A, Valable S, Cherel M, Bernaudin M. Assessment of hypoxia and oxidative-related changes in a lung-derived brain metastasis model by [ 64Cu][Cu(ATSM)] PET and proteomic studies. EJNMMI Res 2023; 13:102. [PMID: 38006431 PMCID: PMC10676347 DOI: 10.1186/s13550-023-01052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Brain metastases (BM) are the most frequent malignant brain tumors. The aim of this study was to characterize the tumor microenvironment (TME) of BM and particularly hypoxia and redox state, known to play a role in tumor growth and treatment resistance with multimodal PET and MRI imaging, immunohistochemical and proteomic approaches in a human lung cancer (H2030-BrM3)-derived BM model in rats. RESULTS First, in vitro studies confirmed that H2030-BrM3 cells respond to hypoxia with increasing expression of HIF-1, HIF-2 and their target genes. Proteomic analyses revealed, among expression changes, proteins associated with metabolism, oxidative stress, metal response and hypoxia signaling in particular in cortical BM. [64Cu][Cu(ATSM)] PET revealed a significant uptake by cortical BM (p < 0.01), while no uptake is observed in striatal BM 23 days after tumor implantation. Pimonidazole, HIF-1α, HIF-2α, CA-IX as well as GFAP, CTR1 and DMT1 immunostainings are positive in both BM. CONCLUSION Overall, [64Cu][Cu(ATSM)] imaging and proteomic results showed the presence of hypoxia and protein expression changes linked to hypoxia and oxidative stress in BM, which are more pronounced in cortical BM compared to striatal BM. Moreover, it emphasized the interest of [64Cu][Cu(ATSM)] PET to characterize TME of BM and depict inter-metastasis heterogeneity that could be useful to guide treatments.
Collapse
Affiliation(s)
- Jade Fantin
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Elodie A Pérès
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Benoit Bernay
- Université de Caen Normandie, Normandie Univ., US EMerode, Plateforme Proteogen, F-14000, Caen, France
| | - Sarina Maya Mehani
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Charly Helaine
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Mickael Bourgeois
- CRCI2NA, INSERM UMR1307, CNRS-ERL6075, Université d'Angers, Université de Nantes, F-44000, Nantes, France
- GIP ARRONAX, F-44800, Saint-Herblain, France
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Laurent Chazalviel
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Julien Pontin
- Université de Caen Normandie, Normandie Univ., US EMerode, Plateforme Proteogen, F-14000, Caen, France
| | - Aurélien Corroyer-Dulmont
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
- Medical Physics Department, CLCC François Baclesse, F-14000, Caen, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France
| | - Michel Cherel
- CRCI2NA, INSERM UMR1307, CNRS-ERL6075, Université d'Angers, Université de Nantes, F-44000, Nantes, France
- GIP ARRONAX, F-44800, Saint-Herblain, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Univ., ISTCT UMR6030, GIP CYCERON, F-14000, Caen, France.
| |
Collapse
|
5
|
Martínez-Camarena Á, Sour A, Faller P. Impact of human serum albumin on Cu II and Zn II complexation by ATSM (diacetyl-bis( N4-methylthiosemicarbazone)) and a water soluble analogue. Dalton Trans 2023; 52:13758-13768. [PMID: 37720931 DOI: 10.1039/d3dt02380j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The chelator diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) and its complexes with CuII and ZnII are becoming increasingly investigated for medical applications such as PET imaging for anti-tumour therapy and the treatment of amyotrophic lateral sclerosis. However, the solubility in water of both the ligand and the complexes presents certain limitations for in vitro studies. Moreover, the stability of the CuII and ZnII complexes and their metal exchange reaction against the potential biological competitor human serum albumin (HSA) has not been studied in depth. In this work it was observed that the ATSM with an added carboxylic group into the structure increases its solubility in aqueous solutions without altering the coordination mode and the conjugated system of the ligand. The poorly water-soluble CuII- and ZnII-ATSM complexes were prevented from precipitating due to the binding to HSA. Both HSA and ATSM show a similar thermodynamic affinity for ZnII. Finally, the CuII-competition experiments with EDTA and the water-soluble ATSM ligands yielded an apparent log Kd at pH 7.4 of about -19. When ATSM was added to CuII- and ZnII-loaded HSA, withdrawing of ZnII was kinetically favoured, but this metal is slowly substituted by the CuII afterwards taken from HSA so that this protein could be considered as a source of CuII for ATSM.
Collapse
Affiliation(s)
- Álvaro Martínez-Camarena
- ICMol, Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Angélique Sour
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
6
|
Lin M, Coll RP, Cohen AS, Georgiou DK, Manning HC. PET Oncological Radiopharmaceuticals: Current Status and Perspectives. Molecules 2022; 27:6790. [PMID: 36296381 PMCID: PMC9609795 DOI: 10.3390/molecules27206790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2024] Open
Abstract
Molecular imaging is the visual representation of biological processes that take place at the cellular or molecular level in living organisms. To date, molecular imaging plays an important role in the transition from conventional medical practice to precision medicine. Among all imaging modalities, positron emission tomography (PET) has great advantages in sensitivity and the ability to obtain absolute imaging quantification after corrections for photon attenuation and scattering. Due to the ability to label a host of unique molecules of biological interest, including endogenous, naturally occurring substrates and drug-like compounds, the role of PET has been well established in the field of molecular imaging. In this article, we provide an overview of the recent advances in the development of PET radiopharmaceuticals and their clinical applications in oncology.
Collapse
Affiliation(s)
- Mai Lin
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ryan P. Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Allison S. Cohen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimitra K. Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Henry Charles Manning
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Nachankar A, Oike T, Hanaoka H, Kanai A, Sato H, Yoshida Y, Obinata H, Sakai M, Osu N, Hirota Y, Takahashi A, Shibata A, Ohno T. 64Cu-ATSM Predicts Efficacy of Carbon Ion Radiotherapy Associated with Cellular Antioxidant Capacity. Cancers (Basel) 2021; 13:cancers13246159. [PMID: 34944777 PMCID: PMC8699283 DOI: 10.3390/cancers13246159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Carbon ion radiotherapy is an emerging cancer treatment modality that has a greater therapeutic window than conventional photon radiotherapy. To maximize the efficacy of this extremely scarce medical resource, it is important to identify predictive biomarkers of higher carbon ion relative biological effectiveness (RBE) over photons. Here we show that the carbon ion RBE in human cancer cells correlates with the cellular uptake of 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM), a potential radioligand that reflects an over-reduced intracellular environment. High RBE/64Cu-ATSM cells show greater steady-state levels of antioxidant proteins and increased capacity to scavenge reactive oxygen species in response to X-rays than low RBE/64Cu-ATSM counterparts. These data suggest that the cellular antioxidant activity is a possible determinant of carbon ion RBE predictable by 64Cu-ATSM uptake. Abstract Carbon ion radiotherapy is an emerging cancer treatment modality that has a greater therapeutic window than conventional photon radiotherapy. To maximize the efficacy of this extremely scarce medical resource, it is important to identify predictive biomarkers of higher carbon ion relative biological effectiveness (RBE) over photons. We addressed this issue by focusing on cellular antioxidant capacity and investigated 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM), a potential radioligand that reflects an over-reduced intracellular environment. We found that the carbon ion RBE correlated with 64Cu-ATSM uptake both in vitro and in vivo. High RBE/64Cu-ATSM cells showed greater steady-state levels of antioxidant proteins and increased capacity to scavenge reactive oxygen species in response to X-rays than low RBE/64Cu-ATSM counterparts; this upregulation of antioxidant systems was associated with downregulation of TCA cycle intermediates. Furthermore, inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2) sensitized high RBE/64Cu-ATSM cells to X-rays, thereby reducing RBE values to levels comparable to those in low RBE/64Cu-ATSM cells. These data suggest that the cellular activity of Nrf2-driven antioxidant systems is a possible determinant of carbon ion RBE predictable by 64Cu-ATSM uptake. These new findings highlight the potential clinical utility of 64Cu-ATSM imaging to identify high RBE tumors that will benefit from carbon ion radiotherapy.
Collapse
Affiliation(s)
- Ankita Nachankar
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.N.); (H.S.); (N.O.); (Y.H.); (T.O.)
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.N.); (H.S.); (N.O.); (Y.H.); (T.O.)
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (Y.Y.); (M.S.); (A.T.)
- Correspondence: ; Tel.: +81-27-220-8383
| | - Hirofumi Hanaoka
- Department of Radiotheranostics, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (H.H.); (A.K.)
| | - Ayaka Kanai
- Department of Radiotheranostics, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (H.H.); (A.K.)
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.N.); (H.S.); (N.O.); (Y.H.); (T.O.)
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (Y.Y.); (M.S.); (A.T.)
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (Y.Y.); (M.S.); (A.T.)
| | - Hideru Obinata
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (Y.Y.); (M.S.); (A.T.)
| | - Naoto Osu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.N.); (H.S.); (N.O.); (Y.H.); (T.O.)
| | - Yuka Hirota
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.N.); (H.S.); (N.O.); (Y.H.); (T.O.)
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (Y.Y.); (M.S.); (A.T.)
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan;
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.N.); (H.S.); (N.O.); (Y.H.); (T.O.)
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (Y.Y.); (M.S.); (A.T.)
| |
Collapse
|
8
|
Maitz CA, Tate D, Bechtel S, Lunceford J, Henry C, Flesner B, Collins A, Varterasian M, Tung D, Zhang L, Saha S, Bryan JN. Paired 18F-Fluorodeoxyglucose (18F-FDG), and 64Cu-Copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone) (64Cu-ATSM) PET Scans in Dogs with Spontaneous Tumors and Evaluation for Hypoxia-Directed Therapy. Radiat Res 2021; 197:253-260. [PMID: 34855934 DOI: 10.1667/rade-20-00186.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2021] [Indexed: 11/03/2022]
Abstract
Hypoxia is associated with neoplastic tissue, protecting cancer cells from death by irradiation and chemotherapy. Identification of hypoxic volume of tumors could optimize patient selection for hypoxia-directed medical, immunological, and radiation therapies. Clostridium novyi-NT (CNV-NT) is an oncolytic bacterium derived from attenuated wild-type Clostridium novyi spores, which germinates exclusively in the anaerobic core of tumors with low-oxygen content. The hypothesis was that 64Cu-ATSM would localize to regions of hypoxia, and that greater hypoxic volume would result in greater germination of Clostridium novyi-NT (CNV-NT). Tumor-bearing companion dogs were recruited to a veterinary clinical trial. Dogs received a CT scan, 18F-FDG PET scan (74 MBq) and 64Cu-ATSM PET scan (74 MBq). Scan regions of interest were defined as the highest 20% of counts/voxel for each PET scan, and regions with voxels overlapping between the two scans. Maximum standardized uptake value (MaxSUV) and threshold volume were calculated. Direct oximetry was performed in select tumors. Tumor types evaluated included nerve sheath tumor (10), apocrine carcinoma (1), melanoma (3) and oral sarcoma (6). MaxSUVATSM ranged from 0.3-6.6. Measured oxygen tension ranged from 0.05-89.9 mmHg. Inverse of MaxSUVATSM had a linear relationship with oxygen tension (R2 = 0.53, P = 0.0048). Hypoxia <8 mmHg was associated with an SUVATSM > 1.0. Hypoxic volume ranged from 0 to 100% of gross tumor volume (GTV) and MaxSUVATSM was positively correlated with hypoxic volume (R = 0.674; P = 0.0001), but not GTV (P = 0.182). Tumor hypoxic volume was heterogeneous in location and distribution. 64Cu-ATSM-avid regions were associated with differential CT attenuation. Hypoxic volume did not predict CNV-NT germination. 64Cu-ATSM PET scanning predicts hypoxia patterns within spontaneously occurring tumors of dogs as measured by direct oxymetry. Total tumor volume does not accurately predict degree or proportion of tumor hypoxia.
Collapse
Affiliation(s)
- Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Deborah Tate
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Sandra Bechtel
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Joni Lunceford
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Carolyn Henry
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Brian Flesner
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | | | | | - David Tung
- Biomed Valley Discoveries, Inc., Kansas City, Missouri
| | - Linping Zhang
- Biomed Valley Discoveries, Inc., Kansas City, Missouri
| | - Saurabh Saha
- Biomed Valley Discoveries, Inc., Kansas City, Missouri
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| |
Collapse
|
9
|
Free radical induced activity of an anthracycline analogue and its Mn II complex on biological targets through in situ electrochemical generation of semiquinone. Heliyon 2021; 7:e07746. [PMID: 34458604 PMCID: PMC8379465 DOI: 10.1016/j.heliyon.2021.e07746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Cytotoxicity by anthracycline antibiotics is attributed to several pathways. Important among them are formation of free-radical intermediates. However, their generation makes anthracyclines cardiotoxic which is a concern on their use as anticancer agents. Hence, any change in redox behavior that address cardiotoxicity is welcome. Modulation of redox behavior raises the fear that cytotoxicity could be compromised. Regarding the generation of free radical intermediates on anthracyclines, a lot depends on the surrounding environment (oxic or anoxic), polarity and pH of the medium. In case of anthracyclines, one-electron reduction to semiquinone or two-electron reduction to quinone-dianion are crucial both for cytotoxicity and for cardiotoxic side effects. The disproportion-comproportionation equilibria at play between quinone-dianion, free quinone and semiquinone control biological activity. Whatever is the form of reduction, semiquinones are generated as a consequence of the presence of anthracyclines and these interact with a biological target. Alizarin, a simpler anthracycline analogue and its MnII complex were subjected to electrochemical reduction to realize what happens when anthracyclines are reduced by compounds present in cells as members of the electron transport chain. Glassy carbon electrode maintained at the pre-determined reduction potential of a compound was used for reduction of the compounds. Nucleobases and calf thymus DNA that were maintained in immediate vicinity of such radical generation were used as biological targets. Changes due to the generated species under aerated/de-aerated conditions on nucleobases and on DNA helps one to realize the process by which alizarin and its MnII complex might affect DNA. The study reveals alizarin was more effective on nucleobases than the complex in the free radical pathway. Difference in damage caused by alizarin and the MnII complex on DNA is comparatively less than that observed on nucleobases; the complex makes up for any inefficacy in the free radical pathway by its other attributes.
Collapse
|
10
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|
11
|
Drake LR, Hillmer AT, Cai Z. Approaches to PET Imaging of Glioblastoma. Molecules 2020; 25:E568. [PMID: 32012954 PMCID: PMC7037643 DOI: 10.3390/molecules25030568] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest type of brain tumor, affecting approximately three in 100,000 adults annually. Positron emission tomography (PET) imaging provides an important non-invasive method of measuring biochemically specific targets at GBM lesions. These powerful data can characterize tumors, predict treatment effectiveness, and monitor treatment. This review will discuss the PET imaging agents that have already been evaluated in GBM patients so far, and new imaging targets with promise for future use. Previously used PET imaging agents include the tracers for markers of proliferation ([11C]methionine; [18F]fluoro-ethyl-L-tyrosine, [18F]Fluorodopa,[18F]fluoro-thymidine, and [18F]clofarabine), hypoxia sensing ([18F]FMISO, [18F]FET-NIM, [18F]EF5, [18F]HX4, and [64Cu]ATSM), and ligands for inflammation. As cancer therapeutics evolve toward personalized medicine and therapies centered on tumor biomarkers, the development of complimentary selective PET agents can dramatically enhance these efforts. Newer biomarkers for GBM PET imaging are discussed, with some already in use for PET imaging other cancers and neurological disorders. These targets include Sigma 1, Sigma 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase. For GBM, these imaging agents come with additional considerations such as blood-brain barrier penetration, quantitative modeling approaches, and nonspecific binding.
Collapse
Affiliation(s)
- Lindsey R. Drake
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ansel T. Hillmer
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06511, USA
| | - Zhengxin Cai
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Taschner IS, Walker TL, M. SC, Schrage BR, Ziegler CJ, Gao X, Wheeler SE. Topomeric aza/thia cryptands: synthesis and theoretical aspects of in/out isomerism using n-alkyl bridging. Org Chem Front 2020. [DOI: 10.1039/d0qo00123f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of heterobicyclic aza/thia-lactams and cryptands incorporating changes in n-alkyl bridging length have been synthesized, characterized, chelated to heavy metals and computationally assessed.
Collapse
Affiliation(s)
| | - Tia L. Walker
- Department of Chemistry
- Indiana University Northwest
- Gary
- USA
| | - Sharath Chandra M.
- Center for Computational Quantum Chemistry
- Department of Chemistry
- University of Georgia
- Athens
- USA
| | | | | | - Xinfeng Gao
- Department of Chemistry
- Indiana University Bloomington
- Bloomington
- USA
| | - Steven E. Wheeler
- Center for Computational Quantum Chemistry
- Department of Chemistry
- University of Georgia
- Athens
- USA
| |
Collapse
|