1
|
Ogawa E, Suzuki M, Sakurai A, Doi Y. Molecular analysis of AmpC-producing Escherichia coli isolated from pediatric patients. J Pediatric Infect Dis Soc 2025; 14:piaf008. [PMID: 39902738 PMCID: PMC11949381 DOI: 10.1093/jpids/piaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/02/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND AmpC-mediated cephalosporin resistance occurs in 1.0% to 3.3% of Escherichia coli isolates due to the production of either plasmid-mediated AmpC (p-AmpC) or chromosomal AmpC (c-AmpC). Data on the prevalence and molecular characteristics of AmpC-producing E. coli in pediatric patients are limited. METHODS We analyzed E. coli clinical strains with resistance phenotype consistent with AmpC production isolated from patients at a pediatric hospital in Japan between 2015 and 2022. Sequence types, resistance genes, and relevant mutations were identified through whole genome sequencing. Promoter and attenuator regions of the chromosomal ampC gene were examined, and the presence of plasmid-mediated ampC genes was determined. RESULTS Among 2081 E. coli strains, 80 (3.8%) from 27 patients demonstrated the AmpC phenotype. The median patient age was 55 months, with 92.6% having underlying diseases, mainly renal and urinary tract abnormalities. Of the 27 strains, p-AmpC was found in 9 strains including 6 strains belonging to ST131, while c-AmpC was identified in 18 strains including 9 ST73 strains and 4 ST12 strains.ST131 and ST73 were the major AmpC-E. coli lineages isolated from children with underlying diseases. CONCLUSIONS Most ST131 strains harbored p-ampC, while all ST73 strains acquired cephalosporin resistance by c-AmpC production through promoter and attenuator mutations, suggesting the presence of both AmpC mechanisms in a lineage-specific manner in E. coli identified among hospitalized children.
Collapse
Affiliation(s)
- Eiki Ogawa
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of General Pediatrics, Aichi Children’s Health and Medical Center, Aichi, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Aki Sakurai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Finton MD, Meisal R, Porcellato D, Brandal LT, Lindstedt BA. Comparative genomics of clinical hybrid Escherichia coli strains in Norway. Int J Med Microbiol 2025; 318:151651. [PMID: 40058154 DOI: 10.1016/j.ijmm.2025.151651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025] Open
Abstract
The global rise of hybrid Escherichia coli (E. coli) is a major public health concern, as enhanced virulence from multiple pathotypes complicates the traditional E. coli classification system and challenges clinical diagnostics. Hybrid strains are particularly concerning as they can infect both intestinal and extraintestinal sites, complicating treatment and increasing the risk of severe disease. This study analyzed virulence-associated genes (VAGs) in 13 E. coli isolates from fecal samples of patients with symptoms of gastrointestinal (GI) infection in Norwegian hospitals and clinics. Whole genome sequencing (WGS) was conducted using Oxford Nanopore's MinION and Illumina's MiSeq platforms. Eleven strains harbored molecular diagnostic markers of atypical enteropathogenic E. coli (aEPEC), enteroinvasive E. coli (EIEC), Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), or typical enteropathogenic E. coli (tEPEC). Two of those isolates were identified as triple intestinal hybrids with molecular diagnostic markers for aEPEC, EIEC, and STEC. Notably, two isolates lacked any IPEC-specific molecular diagnostic markers, yet were suspected of causing the patient's GI infection. Furthermore, genes associated with extraintestinal pathogenic E. coli (ExPEC)-including adhesins, toxins, protectins, siderophores, iron acquisition systems, and invasins-were identified in all the isolates. Thus, most of the isolates were classified as hybrid aEPEC/ExPEC, STEC/ExPEC, tEPEC/ExPEC, or aEPEC/EIEC/STEC/ExPEC. These findings emphasize the genomic plasticity of E. coli and highlight the need to revise the classification system for enteric pathogens.
Collapse
Affiliation(s)
- Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roger Meisal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food, and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
3
|
Ebrahimi MT, Halimi S, Yavari-Bafghi M, Beigverdi R, Rahdar HA, Emaneini M, Jabalameli F. Prevalence and characteristics of ST131-O16 and ST131-O25b clones among extended-spectrum β-lactamase-producing Escherichia coli isolates causing bloodstream infection in Iran. Mol Biol Rep 2025; 52:206. [PMID: 39907737 DOI: 10.1007/s11033-025-10310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread worldwide. The current study is one of the first comprehensive investigations to ascertain the prevalence of ST131 and molecularly characterize the ST131-O25b and ST131-O16 subgroups causing bloodstream infections in Iran. METHODS AND RESULTS To this end, 119 consecutive, non-repetitive E. coli clinical strains were isolated from blood samples of patients with septicemia in different hospital wards for one year in Tehran. The isolates were provided by the laboratories of tertiary hospitals affiliated with Tehran University of Medical Sciences. The disk diffusion method was used to investigate the sensitivity of bacteria to antibiotics. All phylogroup B2 isolates were screened for E. coli ST131 status using a triplex PCR assay that combines the identification of ST131-O25b and -O16 clades. The seven putative virulence factor genes (kpmstII, fimH, afa A, iroN, Sat, ibeA, and ompT) and resistance genes (blaCTX-M-15, blaOXA-48, and blaCMY) were detected by PCR in E. coli ST131 isolates. CONCLUSIONS The highest incidence of antibiotic resistance among 74/119 (62.18%) extended-spectrum β-lactamases-producing E. coli isolates was observed, respectively, against Nalidixic acid (82%), and Aztreonam (75%), followed by Ciprofloxacin (70%). Twenty out of 74 ESBL-producing E. coli isolates were found to be ST131 (27%), with 13 (65%) ST131-O25b and 7 (35%) ST131-O16 clades, respectively. The ST131-O16 isolates had a higher prevalence of resistance to Ceftriaxone, Amikacin, Aztreonam, and Cefepime than the -O25b ones. Concerning virulence capacity, our findings demonstrated that kpmstII, fimH, and ompT genes were found in 85%, 65%, and 30% of ST131 isolates, respectively. Our results reinforce the surveillance of E. coli ST131 clone dissemination as a major drug-resistant pathogen and an important new public health threat in Iran. Accumulation of multiple virulence factors, ESBL carriage, and identified antimicrobial resistance patterns of ST131-O25b and ST131-O16 clones indicate a necessity to develop strategies to control the spread of these isolates in both community and hospital settings.
Collapse
Affiliation(s)
- Mohammad Taha Ebrahimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yavari-Bafghi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Chetri S. Escherichia coli: An arduous voyage from commensal to Antibiotic-resistance. Microb Pathog 2025; 198:107173. [PMID: 39608506 DOI: 10.1016/j.micpath.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Escherichia coli (E. coli), a normal intestinal microbiota is one of the most common pathogen known for infecting urinary tract, wound, lungs, bone marrow, blood system and brain. Irrational and overuse of commercially available antibiotics is the most imperative reason behind the emergence of the life threatening infections caused due to antibiotic resistant pathogens. The World Health Organization (WHO) identified antimicrobial resistance (AMR) as one of the 10 biggest public health threats of our time. This harmless commensal can acquire a range of mobile genetic elements harbouring genes coding for virulence factors becoming highly versatile human pathogens causing severe intestinal and extra intestinal diseases. Although, E. coli has been the most widely studied micro-organism, it never ceases to astound us with its ability to open up new research avenues and reveal cutting-edge survival mechanisms in diverse environments that impact human and surrounding environment. This review aims to summarize and highlight persistent research gaps in the field, including: (i) the transfer of resistant genes among bacterial species in diverse environments, such as those associated with humans and animals; (ii) the development of resistance mechanisms against various classes of antibiotics, including quinolones, tetracyclines, etc., in addition to β-lactams; and (iii) the relationship between resistance and virulence factors for understanding how virulence factors and resistance interact to gain a better grasp of how resistance mechanisms impact an organism's capacity to spread illness and interact with the host's defences. Moreover, this review aims to offer a thorough overview, exploring the history and factors contributing to antimicrobial resistance (AMR), the different reported pathotypes, and their links to virulence in both humans and animals. It will also examine their prevalence in various contexts, including food, environmental, and clinical settings. The objective is to deliver a more informative and current analysis, highlighting the evolution from microbiota (historical context) to sophisticated diseases caused by highly successful pathogens. Developing more potent tactics to counteract antibiotic resistance in E. coli requires filling in these gaps. By bridging these gaps, we can strengthen our capacity to manage and prevent resistance, which will eventually enhance public health and patient outcomes.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Tamilnadu, India.
| |
Collapse
|
5
|
Mujahid F, Rasool MH, Shafiq M, Aslam B, Khurshid M. Emergence of Carbapenem-Resistant Uropathogenic Escherichia coli (ST405 and ST167) Strains Carrying blaCTX-M-15, blaNDM-5 and Diverse Virulence Factors in Hospitalized Patients. Pathogens 2024; 13:964. [PMID: 39599517 PMCID: PMC11597634 DOI: 10.3390/pathogens13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are common infectious diseases in hospital settings, and they are frequently caused by uropathogenic Escherichia coli (UPEC). The emergence of carbapenem-resistant (Carb-R) E. coli strains poses a significant threat due to their multidrug resistance and virulence. This study aims to characterize the antimicrobial resistance and virulence profiles of Carb-R UPEC strains isolated from hospitalized patients. METHODS A total of 1100 urine samples were collected from patients in Lahore and Faisalabad, Pakistan, between May 2023 and April 2024. The samples were processed to isolate and identify E. coli using standard microbiological techniques and VITEK®2, followed by amplification of the uidA gene. Antimicrobial susceptibility was evaluated using the Kirby-Bauer disc diffusion method and broth microdilution. Resistance and virulence genes were detected through PCR and DNA sequencing, and sequence typing was performed using MLST. RESULTS Among the 118 Carb-R UPEC isolates, resistance was most frequently observed against sulfamethoxazole-trimethoprim (96.6%) and doxycycline (96.6%). All of the isolates remained sensitive to colistin and tigecycline. Sequence types ST405 (35.6%) and ST167 (21.2%) were predominant and carried the blaCTX-M-15 and blaNDM-5 genes. The distribution of virulence genes and a variety of antimicrobial resistance genes (ARGs), conferring resistance to aminoglycosides, fluoroquinolones, tetracyclines, and sulfonamides, were observed as specifically linked to certain sequence types. CONCLUSIONS This study provides insights into the molecular epidemiology of carbapenem-resistant Uropathogenic E. coli (Carb-R UPEC) strains and highlights the presence of globally high-risk E. coli clones exhibiting extensive drug resistance phenotypes in Pakistani hospitals. The findings underscore the urgent need for enhanced surveillance and stringent antibiotic stewardship to manage the spread of these highly resistant and virulent strains within hospital settings.
Collapse
Affiliation(s)
- Fatima Mujahid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.M.); (M.K.)
| | - Muhammad Hidayat Rasool
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.M.); (M.K.)
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.M.); (M.K.)
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.M.); (M.K.)
| |
Collapse
|
6
|
Hiraoka Furuya Y, Abo H, Matsuda M, Harada S, Kumakawa M, Shirakawa T, Ozawa M, Kawanishi M, Sekiguchi H, Shimazaki Y. Genomic characterization of third-generation cephalosporin-resistant Escherichia coli strains isolated from diseased dogs and cats: Report from Japanese Veterinary Antimicrobial Resistance Monitoring. Vet Microbiol 2024; 298:110220. [PMID: 39208596 DOI: 10.1016/j.vetmic.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
This study investigates the genomic characteristics of canine and feline cefotaxime (CTX, a third-generation cephalosporin)-resistant Escherichia coli using the JVARM, Japanese Veterinary Antimicrobial Resistance Monitoring System, a nationwide monitoring. In this study, whole-genome sequencing (WGS) was performed on 51 canine and 45 feline CTX-resistant E. coli isolates, with certain isolates subjected to pulsed-field gel electrophoresis with S1 nuclease for plasmid-chromosome separation. The most common blaCTX-M genes were blaCTX-M-27 (dogs: 11/51 [21.6 %]; cat: 10/45 [22.2 %]), followed by blaCTX-M-14 (dogs: 10/51 [19.6 %]; cats: 10/45 [22.2 %]), and blaCTX-M-15 (dogs: 9/51 [17.6 %]; cats: 5/45 [11.1 %]). Besides β-lactamase genes, all isolates harbored mdf(A), a multidrug efflux pump, with resistance genes for aminoglycosides, sulfonamides, trimethoprims, macrolides and tetracyclines. None of the isolates had carbapenemase genes, such as blaOXA-48, blaNDM, and blaIMP, whereas most of the isolates showed double mutations in gyrA and parC, which affected quinolone resistance. For the isolates separately analyzed for plasmid and chromosomal DNA via WGS, the majority of CTX-M genes were present on the plasmids. Some plasmids also harbored the same combination of resistance genes and plasmid replicon type, although they differed from isolates derived from different areas of Japan. The predominant plasmids were blaCTX-M-27,aadA5, aph(6)-Id, aph(3")-Ib, sul1, sul2, tet(A), dfrA17, and mph(A) on IncF. The predominant combination of ST131, O25:H4, and B2 isolates comprised the largest cluster in the minimum spanning tree and the ST131 E. coli harboring blaCTX-M-27 from human in Japan was closely related to these isolates. The results indicated that CTX-resistant canine and feline E. coli harbored multiple plasmids carrying the same combination of resistance genes and emphasizes the need to prevent the spread. DATA AVAILABILITY: All raw short-read sequence data have been deposited in the DNA Data Bank of Japan. (DRR Run No, DRR335726-335821).
Collapse
Affiliation(s)
- Yukari Hiraoka Furuya
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | - Hitoshi Abo
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Mari Matsuda
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Saki Harada
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Mio Kumakawa
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Takahiro Shirakawa
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Manao Ozawa
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Michiko Kawanishi
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Hideto Sekiguchi
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Yoko Shimazaki
- National Veterinary Assay Laboratory, Ministry of Agriculture Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| |
Collapse
|
7
|
Frolova D, Lima L, Roberts LW, Bohnenkämper L, Wittler R, Stoye J, Iqbal Z. Applying rearrangement distances to enable plasmid epidemiology with pling. Microb Genom 2024; 10:001300. [PMID: 39401066 PMCID: PMC11472880 DOI: 10.1099/mgen.0.001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Plasmids are a key vector of antibiotic resistance, but the current bioinformatics toolkit is not well suited to tracking them. The rapid structural changes seen in plasmid genomes present considerable challenges to evolutionary and epidemiological analysis. Typical approaches are either low resolution (replicon typing) or use shared k-mer content to define a genetic distance. However, this distance can both overestimate plasmid relatedness by ignoring rearrangements, and underestimate by over-penalizing gene gain/loss. Therefore a model is needed which captures the key components of how plasmid genomes evolve structurally - through gene/block gain or loss, and rearrangement. A secondary requirement is to prevent promiscuous transposable elements (TEs) leading to over-clustering of unrelated plasmids. We choose the 'Double Cut and Join Indel' (DCJ-Indel) model, in which plasmids are studied at a coarse level, as a sequence of signed integers (representing genes or aligned blocks), and the distance between two plasmids is the minimum number of rearrangement events or indels needed to transform one into the other. We show how this gives much more meaningful distances between plasmids. We introduce a software workflow pling (https://github.com/iqbal-lab-org/pling), which uses the DCJ-Indel model, to calculate distances between plasmids and then cluster them. In our approach, we combine containment distances and DCJ-Indel distances to build a TE-aware plasmid network. We demonstrate superior performance and interpretability to other plasmid clustering tools on the 'Russian Doll' dataset and a hospital transmission dataset.
Collapse
Affiliation(s)
- Daria Frolova
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leandro Lima
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leah Wendy Roberts
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Leonard Bohnenkämper
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Graduate School "Digital Infrastructure for the Life Sciences" (DILS), Bielefeld University, Bielefeld, Germany
| | - Roland Wittler
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Zamin Iqbal
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
8
|
Machulin AV, Abramov VM, Kosarev IV, Deryusheva EI, Priputnevich TV, Panin AN, Manoyan AM, Chikileva IO, Abashina TN, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow's Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli. Antibiotics (Basel) 2024; 13:924. [PMID: 39452191 PMCID: PMC11505560 DOI: 10.3390/antibiotics13100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain.
Collapse
Affiliation(s)
- Andrey V. Machulin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia (N.E.S.)
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
9
|
Cho ST, Mills EG, Griffith MP, Nordstrom HR, McElheny CL, Harrison LH, Doi Y, Van Tyne D. Evolution of extended-spectrum β-lactamase-producing ST131 Escherichia coli at a single hospital over 15 years. Sci Rep 2024; 14:19750. [PMID: 39187604 PMCID: PMC11347647 DOI: 10.1038/s41598-024-70540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Escherichia coli multi-locus sequence type ST131 is a globally distributed pandemic lineage that causes multidrug-resistant extra-intestinal infections. ST131 E. coli frequently produce extended-spectrum β-lactamases (ESBLs), which confer resistance to many β-lactam antibiotics and make infections difficult to treat. We sequenced the genomes of 154 ESBL-producing E. coli clinical isolates belonging to the ST131 lineage from patients at the University of Pittsburgh Medical Center (UPMC) between 2004 and 2018. Isolates belonged to the well described ST131 clades A (8%), B (3%), and C (89%). Time-dated phylogenetic analysis estimated that the most recent common ancestor (MRCA) for all clade C isolates emerged around 1989, consistent with previous studies. We identified multiple genes potentially under selection in clade C, including the cell wall assembly gene ftsI, the LPS biosynthesis gene arnC, and the yersiniabactin uptake receptor fyuA. Diverse ESBL-encoding genes belonging to the blaCTX-M, blaSHV, and blaTEM families were identified; these genes were found at varying numbers of loci and in variable numbers of copies across isolates. Analysis of ESBL flanking regions revealed diverse mobile elements that varied by ESBL type. Overall, our findings show that ST131 subclade C dominated among patients and uncover possible signals of ongoing adaptation within this ST131 lineage.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emma G Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marissa P Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomics Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayley R Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee H Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomics Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Alav I, Pordelkhaki P, de Resende PE, Partington H, Gibbons S, Lord RM, Buckner MMC. Cobalt complexes modulate plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Sci Rep 2024; 14:8103. [PMID: 38582880 PMCID: PMC10998897 DOI: 10.1038/s41598-024-58895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Antimicrobial resistance genes (ARG), such as extended-spectrum β-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum β-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Parisa Pordelkhaki
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pedro Ernesto de Resende
- School of Pharmacy, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hannah Partington
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon Gibbons
- Natural & Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman
| | - Rianne M Lord
- School of Chemistry, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Michelle M C Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
12
|
Silva-Sánchez J, Duran-Bedolla J, Lozano L, Reyna-Flores F, Barrios-Camacho H. Molecular characterization of Escherichia coli producing extended-spectrum β-lactamase CTX-M-14 and CTX-M-28 in Mexico. Braz J Microbiol 2024; 55:309-314. [PMID: 37978118 PMCID: PMC10920525 DOI: 10.1007/s42770-023-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
The spread of ESBL-producing Escherichia coli has constantly increased in both clinical and community infections. Actually, the main ESBL reported is the CTX-M family, which is widely disseminated between the Enterobacteriaceae family. The epidemiology of the CTX-M family shows the CTX-M-15 variant dominating worldwide, followed by CTX-M-14 and CTX-M-27. The specific ESBL-producing E. coli clones included mainly the sequence types ST131, ST405, and ST648. In this report, we present the molecular characterization of ESBL-producing E. coli clinical isolates from eight hospitals in Mexico. From a collection of 66 isolates, 39 (59%) were identified as blaCTX-M-14 and blaCTX-M-27 belonging to the group CTX-M-9. We identified 25 (38%) isolates, producing blaCTX-M-28 belonging to the group CTX-M-1. blaCTX-M-2 and blaTEM-55 were identified in one isolate, respectively. Fourteen isolates (21%) were positive for blaCTX-M-14 (13%) and blaCTX-M-28 (7.3%) that were selected for further analyses; the antimicrobial susceptibility showed resistance to ampicillin (> 256 µg/mL), cefotaxime (> 256 µg/mL), cefepime (> 64 µg/mL), and ceftazidime (16 µg/mL). The ResFinder analysis showed the presence of the antimicrobial resistance genes aacA4, aadA5, aac(3)lla, sul1, dfrA17, tet(A), cmlA1, and blaTEM-1B. PlasmidFinder analysis identified in all the isolates the replicons IncFIB, which were confirmed by PCR replicon typing. The MLST analysis identified isolates belonging to ST131, ST167, ST405, and ST648. The ISEcp1B genetic element was found at 250 pb upstream of blaCTX-M-14 and flanked by the IS903 genetic element at 35 pb downstream. The IS1380-like element ISEc9 family transposase was identified at 250 pb upstream of blaCTX-M-14 and flanked downstream by the IS5/IS1182 at 80 pb. Our study highlights the significant prevalence of CTX-M-14 and CTX-M-28 enzymes as the second-most common ESBL-producing E. coli among isolates in Mexican hospitals. The identification of specific sequence types in different regions provides valuable insights into the correlation between ESBL and E. coli strains. This contribution to understanding their epidemiology and potential transmission routes is crucial for developing effective strategies to mitigate the spread of ESBL-producing E. coli in healthcare settings.
Collapse
Affiliation(s)
- Jesús Silva-Sánchez
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Josefina Duran-Bedolla
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Fernando Reyna-Flores
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
13
|
Lipworth S, Matlock W, Shaw L, Vihta KD, Rodger G, Chau K, Barker L, George S, Kavanagh J, Davies T, Vaughan A, Andersson M, Jeffery K, Oakley S, Morgan M, Hopkins S, Peto T, Crook D, Walker AS, Stoesser N. The plasmidome associated with Gram-negative bloodstream infections: A large-scale observational study using complete plasmid assemblies. Nat Commun 2024; 15:1612. [PMID: 38383544 PMCID: PMC10881496 DOI: 10.1038/s41467-024-45761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.
Collapse
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam Shaw
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | | | - Gillian Rodger
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy Davies
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Alison Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Oakley
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marcus Morgan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Susan Hopkins
- National Infection Service, United Kingdom Health Security Agency, Colindale, London, UK
| | - Timothy Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
14
|
White RT, Bull MJ, Barker CR, Arnott JM, Wootton M, Jones LS, Howe RA, Morgan M, Ashcroft MM, Forde BM, Connor TR, Beatson SA. Genomic epidemiology reveals geographical clustering of multidrug-resistant Escherichia coli ST131 associated with bacteraemia in Wales. Nat Commun 2024; 15:1371. [PMID: 38355632 PMCID: PMC10866875 DOI: 10.1038/s41467-024-45608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Antibiotic resistance is a significant global public health concern. Uropathogenic Escherichia coli sequence type (ST)131, a widely prevalent multidrug-resistant clone, is frequently associated with bacteraemia. This study investigates third-generation cephalosporin resistance in bloodstream infections caused by E. coli ST131. From 2013-2014 blood culture surveillance in Wales, 142 E. coli ST131 genomes were studied alongside global data. All three major ST131 clades were represented across Wales, with clade C/H30 predominant (n = 102/142, 71.8%). Consistent with global findings, Welsh strains of clade C/H30 contain β-lactamase genes from the blaCTX-M-1 group (n = 65/102, 63.7%), which confer resistance to third-generation cephalosporins. Most Welsh clade C/H30 genomes belonged to sub-clade C2/H30Rx (58.3%). A Wales-specific sub-lineage, named GB-WLS.C2, diverged around 1996-2000. An introduction to North Wales around 2002 led to a localised cluster by 2009, depicting limited genomic diversity within North Wales. This investigation emphasises the value of genomic epidemiology, allowing the detection of genetically similar strains in local areas, enabling targeted and timely public health interventions.
Collapse
Affiliation(s)
- Rhys T White
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Health Group, Institute of Environmental Science and Research, 5022, Porirua, New Zealand
| | - Matthew J Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Clare R Barker
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Julie M Arnott
- Healthcare Associated Infection, Antimicrobial Resistance & Prescribing Programme (HARP), Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom
| | - Mandy Wootton
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Lim S Jones
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Robin A Howe
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Mari Morgan
- Healthcare Associated Infection, Antimicrobial Resistance & Prescribing Programme (HARP), Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom
| | - Melinda M Ashcroft
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brian M Forde
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Royal Brisbane & Women's Hospital Campus, Brisbane, QLD, 4029, Australia
| | - Thomas R Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom.
- Public Health Genomics Programme, Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom.
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Pitout JDD, Peirano G, Matsumura Y, DeVinney R, Chen L. Escherichia coli sequence type 410 with carbapenemases: a paradigm shift within E. coli toward multidrug resistance. Antimicrob Agents Chemother 2024; 68:e0133923. [PMID: 38193668 PMCID: PMC10869336 DOI: 10.1128/aac.01339-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Escherichia coli sequence type ST410 is an emerging carbapenemase-producing multidrug-resistant (MDR) high-risk One-Health clone with the potential to significantly increase carbapenem resistance among E. coli. ST410 belongs to two clades (ST410-A and ST410-B) and three subclades (ST410-B1, ST410-B2, and ST410-B3). After a fimH switch between clades ST410-A and ST410-B1, ST410-B2 and ST410-B3 subclades showed a stepwise progression toward developing MDR. (i) ST410-B2 initially acquired fluoroquinolone resistance (via homologous recombination) in the 1980s. (ii) ST410-B2 then obtained CMY-2, CTX-M-15, and OXA-181 genes on different plasmid platforms during the 1990s. (iii) This was followed by the chromosomal integration of blaCMY-2, fstl YRIN insertion, and ompC/ompF mutations during the 2000s to create the ST410-B3 subclade. (iv) An IncF plasmid "replacement" scenario happened when ST410-B2 transformed into ST410-B3: F36:31:A4:B1 plasmids were replaced by F1:A1:B49 plasmids (both containing blaCTX-M-15) followed by blaNDM-5 incorporation during the 2010s. User-friendly cost-effective methods for the rapid identification of ST410 isolates and clades are needed because limited data are available about the frequencies and global distribution of ST410 clades. Basic mechanistic, evolutionary, surveillance, and clinical studies are urgently required to investigate the success of ST410 (including the ability to acquire successive MDR determinants). Such information will aid with management and prevention strategies to curb the spread of carbapenem-resistant E. coli. The medical community can ill afford to ignore the spread of a global E. coli clone with the potential to end the carbapenem era.
Collapse
Affiliation(s)
- Johann D. D. Pitout
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gisele Peirano
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Yasufumi Matsumura
- Kyoto University Graduate School of Medicine, Pretoria, Gauteng, South Africa
| | | | - Liang Chen
- Meridian Health Center for Discovery and Innovation, Kyoto, Japan
- Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
16
|
Sapula SA, Amsalu A, Whittall JJ, Hart BJ, Siderius NL, Nguyen L, Gerber C, Turnidge J, Venter H. The scope of antimicrobial resistance in residential aged care facilities determined through analysis of Escherichia coli and the total wastewater resistome. Microbiol Spectr 2023; 11:e0073123. [PMID: 37787536 PMCID: PMC10715142 DOI: 10.1128/spectrum.00731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance (AMR) is a global threat that imposes a heavy burden on our health and economy. Residential aged care facilities (RACFs), where frequent inappropriate antibiotic use creates a selective environment that promotes the development of bacterial resistance, significantly contribute to this problem. We used wastewater-based epidemiology to provide a holistic whole-facility assessment and comparison of antimicrobial resistance in two RACFs and a retirement village. Resistant Escherichia coli, a common and oftentimes problematic pathogen within RACFs, was isolated from the wastewater, and the phenotypic and genotypic AMR was determined for all isolates. We observed a high prevalence of an international high-risk clone, carrying an extended-spectrum beta-lactamase in one facility. Analysis of the entire resistome also revealed a greater number of mobile resistance genes in this facility. Finally, both facilities displayed high fluoroquinolone resistance rates-a worrying trend seen globally despite measures in place aimed at limiting their use.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Jon J. Whittall
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lynn Nguyen
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - John Turnidge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Daaboul D, Oueslati S, Rima M, Kassem II, Mallat H, Birer A, Girlich D, Hamze M, Dabboussi F, Osman M, Naas T. The emergence of carbapenemase-producing Enterobacterales in hospitals: a major challenge for a debilitated healthcare system in Lebanon. Front Public Health 2023; 11:1290912. [PMID: 38074718 PMCID: PMC10699444 DOI: 10.3389/fpubh.2023.1290912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Background Carbapenem- and extended-spectrum cephalosporin-resistant Enterobacterales (CR-E and ESCR-E, respectively) are increasingly isolated worldwide. Information about these bacteria is sporadic in Lebanon and generally relies on conventional diagnostic methods, which is detrimental for a country that is struggling with an unprecedented economic crisis and a collapsing public health system. Here, CR-E isolates from different Lebanese hospitals were characterized. Materials and methods Non-duplicate clinical ESCR-E or CR-E isolates (N = 188) were collected from three hospitals from June 2019 to December 2020. Isolates were identified by MALDI-TOF, and their antibiotic susceptibility by Kirby-Bauer disk diffusion assay. CR-E isolates (n = 33/188) were further analyzed using Illumina-based WGS to identify resistome, MLST, and plasmid types. Additionally, the genetic relatedness of the CR-E isolates was evaluated using an Infrared Biotyper system and compared to WGS. Results Using the Kirby-Bauer disk diffusion assay, only 90 isolates out of the 188 isolates that were collected based on their initial routine susceptibility profile by the three participating hospitals could be confirmed as ESCR-E or CR-E isolates and were included in this study. This collection comprised E. coli (n = 70; 77.8%), K. pneumoniae (n = 13; 14.4%), Enterobacter spp. (n = 6; 6.7%), and Proteus mirabilis (n = 1; 1.1%). While 57 were only ESBL producers the remaining 33 isolates (i.e., 26 E. coli, five K. pneumoniae, one E. cloacae, and one Enterobacter hormaechei) were resistant to at least one carbapenem, of which 20 were also ESBL-producers. Among the 33 CR-E, five different carbapenemase determinants were identified: blaNDM-5 (14/33), blaOXA-244 (10/33), blaOXA-48 (5/33), blaNDM-1 (3/33), and blaOXA-181 (1/33) genes. Notably, 20 CR-E isolates were also ESBL-producers. The analysis of the genetic relatedness revealed a substantial genetic diversity among CR-E isolates, suggesting evolution and transmission from various sources. Conclusion This study highlighted the emergence and broad dissemination of blaNDM-5 and blaOXA-244 genes in Lebanese clinical settings. The weak AMR awareness in the Lebanese community and the ongoing economic and healthcare challenges have spurred self-medication practices. Our findings highlight an urgent need for transformative approaches to combat antimicrobial resistance in both community and hospital settings.
Collapse
Affiliation(s)
- Dina Daaboul
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Saoussen Oueslati
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital Le Kremlin-Bicêtre, Paris, France
| | - Mariam Rima
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
| | - Issmat I. Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, United States
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Aurélien Birer
- French National Reference Center for Antibiotic Resistance, Clermont-Ferrand, France
| | - Delphine Girlich
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, United States
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Thierry Naas
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
18
|
Grey B, Upton M, Joshi LT. Urinary tract infections: a review of the current diagnostics landscape. J Med Microbiol 2023; 72. [PMID: 37966174 DOI: 10.1099/jmm.0.001780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Urinary tract infections are the most common bacterial infections worldwide. Infections can range from mild, recurrent (rUTI) to complicated (cUTIs), and are predominantly caused by uropathogenic Escherichia coli (UPEC). Antibiotic therapy is important to tackle infection; however, with the continued emergence of antibiotic resistance there is an urgent need to monitor the use of effective antibiotics through better stewardship measures. Currently, clinical diagnosis of UTIs relies on empiric methods supported by laboratory testing including cellular analysis (of both human and bacterial cells), dipstick analysis and phenotypic culture. Therefore, development of novel, sensitive and specific diagnostics is an important means to rationalise antibiotic therapy in patients. This review discusses the current diagnostic landscape and highlights promising novel diagnostic technologies in development that could aid in treatment and management of antibiotic-resistant UTIs.
Collapse
Affiliation(s)
- Braith Grey
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| |
Collapse
|
19
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
20
|
Qamar MU, Ejaz H, Mohsin M, Hadjadj L, Karadeniz A, Rolain JM, Saleem Z, Diene SM. Co-existence of NDM-, aminoglycoside- and fluoroquinolone-resistant genes in carbapenem-resistant Escherichia coli clinical isolates from Pakistan. Future Microbiol 2023; 18:959-969. [PMID: 37656032 DOI: 10.2217/fmb-2023-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background: To determine the prevalence of antimicrobial-resistant genes in carbapenem-resistant Escherichia coli (CRECO). Methods: A total of 290 carbapenem-resistant bacteria were collected from tertiary care hospitals in Lahore (Pakistan). These isolates were confirmed by VITEK 2 and matrix-assisted laser desorption/ionization time of flight. The minimum inhibitory concentration was performed by VITEK 2. Sequence typing, resistant gene identification, DNA hybridization and replicate typing were also performed. Results: 33 out of 290 (11.3%) were CRECO and carried blaNDM; 69, 18 and 12% were NDM-1, NDM-5 and NDM-7, respectively, with 100% resistance to β-lactams and β-lactam inhibitors. ST405 and ST468 were mostly identified. NDM-ECO carried approximately 50-450 kb of plasmids and 16 (55%) were associated with IncA/C. Conclusion: NDM-1-producing E. coli are highly prevalent in clinical settings.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Linda Hadjadj
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Aylin Karadeniz
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Seydina M Diene
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| |
Collapse
|
21
|
Sajeev S, Hamza M, Rajan V, Vijayan A, Sivaraman GK, Shome BR, Holmes MA. Resistance profiles and genotyping of extended-spectrum beta-lactamase (ESBL) -producing and non-ESBL-producing E. coli and Klebsiella from retail market fishes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105446. [PMID: 37245778 DOI: 10.1016/j.meegid.2023.105446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Studies on antimicrobial resistance (AMR) profiles and epidemiological affirmation for AMR transmission are limited in fisheries and aquaculture settings. Since 2015, based on Global Action Plan on AMR by World Health Organization (WHO) and World Organization for Animal Health (OIE), several initiatives have been under taken to enhance the knowledge, skills and capacity to establish AMR trends through surveillance and strengthening of epidemiological evidence. The focus of this study was to determine the prevalence of antimicrobial resistance (AMR), its resistance profiles and molecular characterization with respect to phylogroups, antimicrobial resistance genes (ARGs), virulence genes (VGs), quaternary ammonium compounds resistance (QAC) genes and plasmid typing in retail market fishes. Pulse field gel electrophoresis (PFGE) to understand the genetic lineage of the two most important Enterobacteriaceae members, E. coli and Klebsiella sp. was performed. 94 fish samples were collected from three different sites viz., Silagrant (S1), Garchuk (S2) and North Guwahati Town Committee (NGTC) Region (S3) in Guwahati, Assam. Out of the 113 microbial isolates from the fish samples, 45 (39.82%) were E. coli; 23 (20.35%) belonged to Klebsiella genus. Among E. coli, 48.88% (n = 22) of the isolates were alerted by the BD Phoenix M50 instrument as ESBL, 15.55% (n = 7) as PCP and 35.55% (n = 16) as non-ESBL. E. coli (39.82%) was the most prevalent pathogen among the Enterobacteriaceae members screened and showed resistance to ampicillin (69%) followed by cefazoline (64%), cefotaxime (49%) and piperacillin (49%). In the present study, 66.66% of E. coli and 30.43% of Klebsiella sp. were categorized as multi drug resistance (MDR) bacteria. CTX-M-gp-1, with CTX-M-15 variant (47%), was the most widely circulating beta-lactamase gene, while other ESBL genes blaTEM (7%), blaSHV (2%) and blaOXA-1-like (2%) were also identified in E. coli. Out of the 23 isolates of Klebsiella, 14(60.86%) were ampicillin (AM)-resistant (11(47.82%) K. oxytoca, 3(13.04%) K. aerogenes), whereas 8(34.78%) isolates of K. oxytoca showed intermediate resistance to AM. All Klebsiella isolates were susceptible to AN, SCP, MEM and TZP, although two K. aerogenes were resistant to imipenem. DHA and LAT genes were detected, respectively, in 7(16%) and 1(2%) of the E. coli strains while a single K. oxytoca (4.34%) isolate carried MOX, DHA and blaCMY-2 genes. The fluoroquinolone resistance genes identified in E. coli included qnrB (71%), qnrS (84%), oqxB (73%) and aac(6)-Ib-cr (27%); however, in Klebsiella, these genes, respectively, had a prevalence of 87%, 26%, 74% and 9%. The E. coli isolates belonged to phylogroup A(47%), B1(33%) and D(14%). All of the 22(100%) ESBL E. coli had chromosome-mediated disinfectant resistance genes viz., ydgE, ydgF, sugE(c), mdfA while 82% of ESBL E. coli had emrE. Among the non-ESBL E. coli isolates, 87% of them showed the presence of ydgE, ydgF and sugE(c) genes, while 78% of the isolates had mdfA and 39% had emrE genes respectively. 59% of the ESBL and 26% of the non-ESBL E. coli had showed the presence of qacEΔ1. The sugE(p) was present in 27% of the ESBL-producing E. coli and in 9% of non-ESBL isolates. Out of the 3 ESBL-producing Klebsiella isolates, 2(66.66%) K. oxytoca isolates were found harboring plasmid-mediated qacEΔ1 gene while one (33.33%) K. oxytoca isolate had sugE(p) gene. IncFI was the most prevalent plasmid type detected in the isolates studied, with A/C (18%), P (14%), X, Y (9% each) and I1-Iγ (14%, 4%). 50% (n = 11) of the ESBL and 17% (n = 4) of the non-ESBL E. coli isolates harboured IncFIB and 45% (n = 10) ESBL and one (4.34%) non-ESBL E. coli isolates harboured IncFIA. Dominance of E. coli over other Enterobacterales and diverse phylogenetic profiles of E. coli and Klebsiella sp. suggests the possibility of contamination and this may be due to compromised hygienic practices along the supply chain and contamination of aquatic ecosystem. Continuous surveillance in domestic markets must be a priority in addressing antimicrobial resistance in fishery settings and to identify any unwarranted epidemic clones of E. coli and Klebsiella that can challenge public health sector.
Collapse
Affiliation(s)
- Sudha Sajeev
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Muneeb Hamza
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Vineeth Rajan
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Ardhra Vijayan
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Gopalan Krishnan Sivaraman
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India.
| | - Bibek R Shome
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, UK
| |
Collapse
|
22
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
23
|
Vereecke N, Van Hoorde S, Sperling D, Theuns S, Devriendt B, Cox E. Virotyping and genetic antimicrobial susceptibility testing of porcine ETEC/STEC strains and associated plasmid types. Front Microbiol 2023; 14:1139312. [PMID: 37143544 PMCID: PMC10151945 DOI: 10.3389/fmicb.2023.1139312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Enterotoxigenic Escherichia coli (ETEC) infections are the most common cause of secretory diarrhea in suckling and post-weaning piglets. For the latter, Shiga toxin-producing Escherichia coli (STEC) also cause edema disease. This pathogen leads to significant economic losses. ETEC/STEC strains can be distinguished from general E. coli by the presence of different host colonization factors (e.g., F4 and F18 fimbriae) and various toxins (e.g., LT, Stx2e, STa, STb, EAST-1). Increased resistance against a wide variety of antimicrobial drugs, such as paromomycin, trimethoprim, and tetracyclines, has been observed. Nowadays, diagnosing an ETEC/STEC infection requires culture-dependent antimicrobial susceptibility testing (AST) and multiplex PCRs, which are costly and time-consuming. Methods Here, nanopore sequencing was used on 94 field isolates to assess the predictive power, using the meta R package to determine sensitivity and specificity and associated credibility intervals of genotypes associated with virulence and AMR. Results Genetic markers associated with resistance for amoxicillin (plasmid-encoded TEM genes), cephalosporins (ampC promoter mutations), colistin (mcr genes), aminoglycosides (aac(3) and aph(3) genes), florfenicol (floR), tetracyclines (tet genes), and trimethoprim-sulfa (dfrA genes) could explain most acquired resistance phenotypes. Most of the genes were plasmid-encoded, of which some collocated on a multi-resistance plasmid (12 genes against 4 antimicrobial classes). For fluoroquinolones, AMR was addressed by point mutations within the ParC and GyrA proteins and the qnrS1 gene. In addition, long-read data allowed to study the genetic landscape of virulence- and AMR-carrying plasmids, highlighting a complex interplay of multi-replicon plasmids with varying host ranges. Conclusion Our results showed promising sensitivity and specificity for the detection of all common virulence factors and most resistance genotypes. The use of the identified genetic hallmarks will contribute to the simultaneous identification, pathotyping, and genetic AST within a single diagnostic test. This will revolutionize future quicker and more cost-efficient (meta)genomics-driven diagnostics in veterinary medicine and contribute to epidemiological studies, monitoring, tailored vaccination, and management.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sander Van Hoorde
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
24
|
Choi JH, Ali MS, Moon BY, Kang HY, Kim SJ, Song HJ, Mechesso AF, Moon DC, Lim SK. Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Dogs and Cats in South Korea. Antibiotics (Basel) 2023; 12:antibiotics12040745. [PMID: 37107106 PMCID: PMC10135382 DOI: 10.3390/antibiotics12040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Overall, 836 Escherichia coli isolates (695 isolates from dogs and 141 from cats) were recovered from the diarrhea, skin/ear, urine, and genitals of dogs and cats between 2018 and 2019. Cefovecin and enrofloxacin resistance were noted in 17.1% and 21.2% of E. coli isolates, respectively. The cefovecin and enrofloxacin resistance rates were higher in dog isolates (18.1% and 22.9%) compared with the rates in cat isolates (12.1%, 12.8%). Interestingly, resistance to both antimicrobials was noted in 10.8% (90/836) of the isolates, predominantly in isolates from dogs. blaCTX-M-14, blaCTX-M-15, and blaCMY-2 were the most frequent extended-spectrum β-lactamase/plasmid-mediated AmpC β-lactamase (ESBL/AmpC)- gene types. The co-existence of blaCTX-M andblaCMY-2 was noted in six E. coli isolates from dogs. Sequencing analysis demonstrated that S83L and D87N in gyrA and S80I in parC were the most frequent point mutations in the quinolone resistance-determining regions of the cefovecin and enrofloxacin-resistant isolates. A total of 11 isolates from dogs carried the plasmid-mediated quinolone resistance genes (six aac(6')-Ib-cr, four qnrS, and one qnrB), while only two cat isolates carried the qnrS gene. Multilocus sequence typing of the cefovecin and enrofloxacin-resistant isolates revealed that sequence type (ST)131 E. coli carrying blaCTX-M-14 and blaCTX-M-15 genes and ST405 E. coli carrying blaCMY-2 gene were predominant among the isolated E. coli strains. The majority of the ESBL/AmpC-producing isolates displayed diverse pulsed-field gel electrophoresis profiles. This study demonstrated that third-generation cephalosporin- and fluoroquinolone-resistant E. coli were widely distributed in companion animals. The detection of the pandemic ST131 clone carrying blaCTX-M-14/15 in companion animals presented a public health threat.
Collapse
Affiliation(s)
- Ji-Hyun Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Hee-Young Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyun-Ju Song
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Abraham Fikru Mechesso
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Center for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
25
|
Pitout JD, Peirano G, DeVinney R. The contributions of multidrug resistant clones to the success of pandemic extra-intestinal Pathogenic Escherichia coli. Expert Rev Anti Infect Ther 2023; 21:343-353. [PMID: 36822840 DOI: 10.1080/14787210.2023.2184348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
INTRODUCTION High-risk multidrug (MDR) clones have played essential roles in the global emergence and spread of antimicrobial resistance (AMR), especially among Extra-intestinal Escherichia coli (ExPEC). AREAS COVERED Successful global ExPEC MDR clones are linked with the acquisition of fluoroquinolone resistance, CTX-M enzymes, and with carbapenemases. This article described the underlying mechanisms of fluoroquinolone resistance, the acquisition of CTX-M and carbapenemase genes among three global ExPEC high-risk MDR clones, namely i) ST1193 as being an example of a fluoroquinolone resistant clone. ii) ST131 as an example of a fluoroquinolone resistant and CTX-M clone. iii) ST410 as an example of a fluoroquinolone resistant, CTX-M and carbapenemase clone. This article also highlighted the contributions of these MDR determinants in the evolution of these high-risk MDR clones. EXPERT OPINION There is an enormous public health burden due to E. coli MDR high-risk clones such as ST1193, ST131 and ST410. These clones have played pivotal roles in the global spread of AMR. Sparse information is available on which specific features of these high-risk MDR clones have enabled them to become such successful global pathogens in relative short time periods.
Collapse
Affiliation(s)
- Johann Dd Pitout
- University of Calgary, Calgary, Alberta, Canada.,Dynalife Laboratories, University of Calgary, Calgary, Alberta, Canada.,University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gisele Peirano
- University of Calgary, Calgary, Alberta, Canada.,Dynalife Laboratories, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Ahmad G, Khalid A, Qamar MU, Rasool N, Saadullah M, Bilal M, Bajaber MA, Obaidullah AJ, Alotaibi HF, Alotaibi JM. Antibacterial Efficacy of N-(4-methylpyridin-2-yl) Thiophene-2-Carboxamide Analogues against Extended-Spectrum-β-Lactamase Producing Clinical Strain of Escherichia coli ST 131. Molecules 2023; 28:molecules28073118. [PMID: 37049881 PMCID: PMC10095758 DOI: 10.3390/molecules28073118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Development in the fields of natural-product-derived and synthetic small molecules is in stark contrast to the ongoing demand for novel antimicrobials to treat life-threatening infections caused by extended-spectrum β-lactamase producing Escherichia coli (ESBL E. coli). Therefore, there is an interest in the antibacterial activities of synthesized N-(4-methylpyridin-2-yl) thiophene-2-carboxamides (4a–h) against ESBL-producing E. coli ST131 strains. A blood sample was obtained from a suspected septicemia patient and processed in the Bactec Alert system. The isolate’s identification and antibacterial profile were determined using the VITEK 2® compact system. Multi-locus sequence typing of E. coli was conducted by identifying housekeeping genes, while ESBL phenotype detection was performed according to CLSI guidelines. Additionally, PCR was carried out to detect the blaCTX-M gene molecularly. Moreover, molecular docking studies of synthesized compounds (4a–h) demonstrated the binding pocket residues involved in the active site of the β-lactamase receptor of E. coli. The result confirmed the detection of E. coli ST131 from septicemia patients. The isolates were identified as ESBL producers carrying the blaCTX-M gene, which provided resistance against cephalosporins and beta-lactam inhibitors but sensitivity to carbapenems. Among the compounds tested, 4a and 4c exhibited high activity and demonstrated the best fit and interactions with the binding pocket of the β-lactamase enzyme. Interestingly, the maximum of the docking confirmations binds at a similar pocket region, further strengthening the importance of binding residues. Hence, the in vitro and molecular docking studies reflect the promising antibacterial effects of 4a and 4c compounds.
Collapse
|
27
|
Pitout JDD, Chen L. The Significance of Epidemic Plasmids in the Success of Multidrug-Resistant Drug Pandemic Extraintestinal Pathogenic Escherichia coli. Infect Dis Ther 2023; 12:1029-1041. [PMID: 36947392 PMCID: PMC10147871 DOI: 10.1007/s40121-023-00791-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Epidemic IncF plasmids have been pivotal in the selective advantage of multidrug-resistant (MDR) extraintestinal pathogenic Escherichia coli (ExPEC). These plasmids have offered several advantages to their hosts that allowed them to coevolve with the bacterial host genomes and played an integral role in the success of ExPEC. IncF plasmids are large, mosaic, and often contain various types of antimicrobial resistance (AMR) and virulence associated factor (VAF) genes. The presence of AMR, VAF genes, several addition/restriction systems combined with truncated transfer regions, led to the fixation of IncF plasmids in certain ExPEC MDR clones, such as ST131 and ST410. IncF plasmids entered the ST131 ancestral lineage in the mid 1900s and different ST131 clade/CTX-M plasmid combinations coevolved over time. The IncF_CTX-M-15/ST131-C2 subclade combination emerged during the early 2000s, spread rapidly across the globe, and is one of the greatest clone/plasmid successes of the millennium. The ST410-B3 subclade containing blaCTX-M-15 incorporated the NDM-5 carbapenemase gene into existing IncF platforms, providing an additional positive selective advantage that included the carbapenems. A "plasmid-replacement" clade scenario occurred in the histories of ST131 and ST410 as different subclades gained different AMR genes on different IncF platforms. The use of antimicrobial agents will generate selection pressures that enhance the risks for the continuous emergence of MDR ExPEC clone/IncF plasmid combinations. The reasons for clade/IncF replacements and associations between certain clades and specific IncF plasmid types are unknown. Such information will aid in designing management and prevention strategies to combat AMR.
Collapse
Affiliation(s)
- Johann D D Pitout
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, AB, T2L 2K8, Canada.
- Dynacare Laboratories, Alberta, Canada.
- University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
28
|
Development of a Method for the Fast Detection of Extended-Spectrum β-Lactamase- and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Dogs and Cats in the USA. Animals (Basel) 2023; 13:ani13040649. [PMID: 36830436 PMCID: PMC9951654 DOI: 10.3390/ani13040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Antibiotic resistance, such as resistance to beta-lactams and the development of resistance mechanisms, is associated with multifactorial phenomena and not only with the use of third-generation cephalosporins. Many methods have been recommended for the detection of ESBL and pAmpC β-lactamase production but they are very subjective and the appropriate facilities are not available in most laboratories, especially not in clinics. Therefore, for fast clinical antimicrobial selection, we need to rapidly detect ESBL- and pAmpC β-lactamase-producing bacteria using a simple method with samples containing large amounts of bacteria. For the detection of ESBL- and pAmpC phenotypes and genes, the disk diffusion test, DDST and multiplex PCR were conducted. Of the 109 samples, 99 (90.8%) samples were grown in MacConkey broth containing cephalothin, and 71 samples were grown on MacConkey agar containing ceftiofur. Of the 71 samples grown on MacConkey agar containing ceftiofur, 58 Escherichia coli and 19 Klebsiella pneumoniae isolates, in particular, harbored β-lactamase genes. Of the 38 samples that did not grow in MacConkey broth containing cephalothin or on MacConkey agar containing ceftiofur, 32 isolates were identified as E. coli, and 10 isolates were identified as K. pneumoniae; β-lactamase genes were not detected in these E. coli and K. pneumoniae isolates. Of the 78 ESBL- and pAmpC β-lactamase-producing E. coli and K. pneumoniae, 55 (70.5%) isolates carried one or more ESBL genes and 56 (71.8%) isolates carried one or more pAmpC β-lactamase genes. Our method is a fast, and low-cost tool for the screening of frequently encountered ESBL- and pAmpC β-lactamase-producing bacteria and it would assist in diagnosis and improve therapeutic treatment in animal hospitals.
Collapse
|
29
|
Shahbazi R, Salmanzadeh-Ahrabi S, Aslani MM, Alebouyeh M, Falahi J, Nikbin VS. The genotypic and phenotypic characteristics contributing to high virulence and antibiotics resistance in Escherichia coli O25-B2-ST131 in comparison to non- O25-B2-ST131. BMC Pediatr 2023; 23:59. [PMID: 36737722 PMCID: PMC9895973 DOI: 10.1186/s12887-023-03866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Escherichia coli serogroup O25b-sequence type 131 (E. coli O25-B2-ST131) is considered as multidrug-resistant and hypervirulent organism. There is lack of data about involvement of this pathogen in the children's infection. In this study, the prevalence, and clonality, virulence capacity, and antibiotic resistance phenotype and genotype of E. coli O25-B2-ST131 compared with non-O25-B2-ST131 isolates were investigated in children with urinary tract infection in Tehran, Iran. METHODS The E. coli isolates from urine samples were identified using conventional microbiological methods. Characterization of E. coli O25-B2-ST131 clone, antibiotic susceptibility, biofilm formation, ESBLs phenotype and genotype, serum resistance, hemolysis, hydrophobicity, and formation of curli fimbriae were done using conventional microbiological and molecular methods. Clonality of the isolates was done by rep-PCR typing. RESULTS Among 120 E. coli isolates, the highest and lowest antibiotic resistance was detected against ampicillin (92, 76.6%) and imipenem 5, (4.1%), respectively. Sixty-eight (56.6%) isolates were ESBL-producing and 58 (48.3%) isolates were considered as multi-drug resistance (MDR). The prevalence of ESBL-producing and MDR isolates in O25-B2-ST131 strains was higher compared with the non-O25-B2-ST131 strains (p value < 0.05). O25-B2-ST131 strains showed significant correlation with serum resistance and biofilm formation. Amongst the resistance and virulence genes, the prevalence of iucD, kpsMTII, cnf1, vat, blaCTX-M-15, and blaSHV were significantly higher among O25-B2-ST131 isolates in comparison with non-O25-B2-ST131 isolates (p value < 0.05). Considering a ≥ 80% homology cut-off, fifteen different clusters of the isolates were shown with the same rep-PCR pattern. CONCLUSIONS Our results confirmed the involvement of MDR-ESBLs producing E. coli strain O25-B2-ST131 in the occurrence of UTIs among children. Source tracking and control measures seem to be necessary for containment of the spread of hypervirulent and resistance variants in children.
Collapse
Affiliation(s)
- Razieh Shahbazi
- grid.411354.60000 0001 0097 6984Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Deh Vank Ave., Tehran, 1993891176 Iran
| | - Siavosh Salmanzadeh-Ahrabi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Deh Vank Ave., Tehran, 1993891176, Iran.
| | - Mohammad Mehdi Aslani
- grid.420169.80000 0000 9562 2611Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Alebouyeh
- grid.411600.2Pediatric Infections Research Center, Research for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Falahi
- Health Clinical Science Research Center, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Vajihe Sadat Nikbin
- grid.420169.80000 0000 9562 2611Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Akenten CW, Ofori LA, Khan NA, Mbwana J, Sarpong N, May J, Thye T, Obiri-Danso K, Paintsil EK, Fosu D, Philipps RO, Eibach D, Krumkamp R, Dekker D. Prevalence, Characterization, and Antimicrobial Resistance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli from Domestic Free-Range Poultry in Agogo, Ghana. Foodborne Pathog Dis 2023; 20:59-66. [PMID: 36779941 DOI: 10.1089/fpd.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Poultry has been suggested as an important source for extended-spectrum beta-lactamase (ESBL)-producing bacteria that can lead to difficult-to treat infections in humans. Therefore, this study aims to determine the frequency, the genetics, and antimicrobial resistance profiles of ESBL-producing Escherichia coli in domestic free-range poultry in Agogo, Ghana. The study was set up and piloted from January 2019 until June 2019. Between June and December 2019, fecal samples (N = 144) were collected from free-roaming chickens from domestic farms in the regions of Sukuumu, Bontodiase, and Freetown and cultured on ESBL screening agar. Strain identification and antibiotic susceptibility were performed using the VITEK 2 compact system. ESBL-producing E. coli were confirmed using the double disk synergy test. Molecular characterization of ESBL-associated genes (blaTEM, blaSHV, and blaCTX-M) were performed using conventional polymerase chain reaction (PCR) and further sequencing of obtained PCR amplicons. The result showed that 56.2% (n/N = 81/144) of collected fecal samples were positive for ESBL-producing E. coli. Majority of the isolates showed resistance to tetracycline (93.8%, n/N = 76/81) and trimethoprim-sulfamethoxazole (66.7, n/N = 54/81), whereas resistance to carbapenems was not found. The majority of ESBL-producing E. coli carried the blaCTX-M genes, with blaCTX-M-15 being the dominant (95.1%, n/N = 77/81) genotype. In this study, we report high frequencies of ESBL-producing E. coli in smallholder free-range poultry representing a potential source of infection, highlighting the need for control of antibiotic use and animal hygiene/sanitation measures, both important from a One Health perspective.
Collapse
Affiliation(s)
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Neyaz Ahmed Khan
- Research Group One Health Bacteriology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Joyce Mbwana
- National Institute for Medical Research (NIMR), Tanga, Tanzania
| | - Nimako Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Jürgen May
- Department Infectious Disease epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.,German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Tropical Medicine II, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thorsten Thye
- Department Infectious Disease epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | | | - Dennis Fosu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - Daniel Eibach
- Department Infectious Disease epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Ralf Krumkamp
- Department Infectious Disease epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.,German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Denise Dekker
- Research Group One Health Bacteriology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| |
Collapse
|
31
|
Chao CM, Lai CC, Yu WL. Epidemiology of extended-spectrum β-lactamases in Enterobacterales in Taiwan for over two decades. Front Microbiol 2023; 13:1060050. [PMID: 36762100 PMCID: PMC9905819 DOI: 10.3389/fmicb.2022.1060050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023] Open
Abstract
The emergence of antimicrobial resistance among microorganisms is a serious public health concern, and extended-spectrum β-lactamases (ESBL)-producing Enterobacterales is one of the major concerns among antibiotic-resistant bacteria. Although the prevalence of ESBL in Enterobacterales has been increasing with time, the prevalence of ESBL could differ according to the species, hospital allocation, sources of infections, nosocomial or community acquisitions, and geographic regions. Therefore, we conducted a comprehensive review of the epidemiology of ESBL-producing Enterobacterales in Taiwan. Overall, the rates of ESBL producers are higher in northern regions than in other parts of Taiwan. In addition, the genotypes of ESBL vary according to different Enterobacterales. SHV-type ESBLs (SHV-5 and SHV-12) were the major types of Enterobacter cloacae complex, but Serratia marcescens, Proteus mirabilis, Escherichia coli, and Klebsiella pneumoniae were more likely to possess CTX-M-type ESBLs (CTX-M-3 and CTX-M-14). Moreover, a clonal sequence type of O25b-ST131 has been emerging among urinary or bloodstream E. coli isolates in the community in Taiwan, and this clone was potentially associated with virulence, ESBL (CTX-M-15) production, ciprofloxacin resistance, and mortality. Finally, the evolution of the genetic traits of the ESBL-producing Enterobacterales isolates helps us confirm the interhospital and intrahospital clonal dissemination in several regions of Taiwan. In conclusion, continuous surveillance in the investigation of ESBL production among Enterobacterales is needed to establish its long-term epidemiology.
Collapse
Affiliation(s)
- Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Taiwan,Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan,Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Wen-Liang Yu,
| |
Collapse
|
32
|
Ben Haj Yahia A, Tayh G, Landolsi S, Maamar E, Galai N, Landoulsi Z, Messadi L. First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Microb Drug Resist 2023; 29:150-162. [PMID: 36695709 DOI: 10.1089/mdr.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were blaCTX-M (n = 26), blaSHV (n = 11), and blaTEM (n = 8), whereas only 1 isolate carried the blaCMY gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both blaOXA-48 and blaIMP genes and the other isolate carried only the blaIMP gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans.
Collapse
Affiliation(s)
- Asma Ben Haj Yahia
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, University of Tunis El Manar, Tunis, Tunisie
| | - Ghassan Tayh
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, University of Tunis El Manar, Tunis, Tunisie
| | - Sarrah Landolsi
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| | - Elaa Maamar
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| | - Nejia Galai
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| | - Zbaida Landoulsi
- Office des Terres Domaniales, Agrocombinat Ghezala, Mateur, Tunisie
| | - Lilia Messadi
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| |
Collapse
|
33
|
Berbers B, Vanneste K, Roosens NHCJ, Marchal K, Ceyssens PJ, De Keersmaecker SCJ. Using a combination of short- and long-read sequencing to investigate the diversity in plasmid- and chromosomally encoded extended-spectrum beta-lactamases (ESBLs) in clinical Shigella and Salmonella isolates in Belgium. Microb Genom 2023; 9:mgen000925. [PMID: 36748573 PMCID: PMC9973847 DOI: 10.1099/mgen.0.000925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/03/2022] [Indexed: 01/25/2023] Open
Abstract
For antimicrobial resistance (AMR) surveillance, it is important not only to detect AMR genes, but also to determine their plasmidic or chromosomal location, as this will impact their spread differently. Whole-genome sequencing (WGS) is increasingly used for AMR surveillance. However, determining the genetic context of AMR genes using only short-read sequencing is complicated. The combination with long-read sequencing offers a potential solution, as it allows hybrid assemblies. Nevertheless, its use in surveillance has so far been limited. This study aimed to demonstrate its added value for AMR surveillance based on a case study of extended-spectrum beta-lactamases (ESBLs). ESBL genes have been reported to occur also on plasmids. To gain insight into the diversity and genetic context of ESBL genes detected in clinical isolates received by the Belgian National Reference Center between 2013 and 2018, 100 ESBL-producing Shigella and 31 ESBL-producing Salmonella were sequenced with MiSeq and a representative selection of 20 Shigella and six Salmonella isolates additionally with MinION technology, allowing hybrid assembly. The bla CTX-M-15 gene was found to be responsible for a rapid rise in the ESBL Shigella phenotype from 2017. This gene was mostly detected on multi-resistance-carrying IncFII plasmids. Based on clustering, these plasmids were determined to be distinct from the circulating plasmids before 2017. They were spread to different Shigella species and within Shigella sonnei between multiple genotypes. Another similar IncFII plasmid was detected after 2017 containing bla CTX-M-27 for which only clonal expansion occurred. Matches of up to 99 % to plasmids of various bacterial hosts from all over the world were found, but global alignments indicated that direct or recent ESBL-plasmid transfers did not occur. It is most likely that travellers introduced these in Belgium and subsequently spread them domestically. However, a clear link to a specific country could not be made. Moreover, integration of bla CTX-M in the chromosome of two Shigella isolates was determined for the first time, and shown to be related to ISEcp1. In contrast, in Salmonella, ESBL genes were only found on plasmids, of which bla CTX-M-55 and IncHI2 were the most prevalent, respectively. No matching ESBL plasmids or cassettes were detected between clinical Shigella and Salmonella isolates. The hybrid assembly data allowed us to check the accuracy of plasmid prediction tools. MOB-suite showed the highest accuracy. However, these tools cannot replace the accuracy of long-read and hybrid assemblies. This study illustrates the added value of hybrid assemblies for AMR surveillance and shows that a strategy where even just representative isolates of a collection used for hybrid assemblies could improve international AMR surveillance as it allows plasmid tracking.
Collapse
Affiliation(s)
- Bas Berbers
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | | | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | | |
Collapse
|
34
|
Neffe L, Forde TL, Oravcova K, Köhler U, Bautsch W, Tomasch J, Häussler S. Genomic epidemiology of clinical ESBL-producing Enterobacteriaceae in a German hospital suggests infections are primarily community- and regionally-acquired. Microb Genom 2022; 8:mgen000901. [PMID: 36748515 PMCID: PMC9837565 DOI: 10.1099/mgen.0.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clinical Enterobacteriaceae isolates that produce extended-spectrum β-lactamases (ESBLs) have been increasingly reported at a global scale. However, comprehensive data on the molecular epidemiology of ESBL-producing strains are limited and few studies have been conducted in non-outbreak situations.We used whole-genome sequencing to describe the population structure of 294 ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates that were recovered from a German community hospital throughout a 1 year sampling period in a non-outbreak situation.We found a high proportion of E. coli isolates (61.5 %) belonged to the globally disseminated extraintestinal pathogenic ST131, whereas a wider diversity of STs was observed among K. pneumoniae isolates. The E. coli ST131 population in this study was shaped by multiple introductions of strains as demonstrated by contextual genomic analysis including ST131 strains from other geographical sources. While no recent common ancestor of the isolates of the current study and other international isolates was found, our clinical isolates clustered with those previously recovered in the region. Furthermore, we found that the isolation of ESBL-producing clinical strains in hospitalized patients could only rarely be associated with likely patient-to-patient transmission, indicating primarily a community and regional acquisition of strains.Further genomic analyses of clinical, carriage and environmental isolates is needed to uncover hidden transmissions and thus discover the most common sources of ESBL-producing pathogen infections in our hospitals.
Collapse
Affiliation(s)
- Lisa Neffe
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ute Köhler
- Städtisches Klinikum Braunschweig gGmbH, Germany
| | | | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany,Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany,*Correspondence: Susanne Häussler,
| |
Collapse
|
35
|
Emergence and Dissemination of Extraintestinal Pathogenic High-Risk International Clones of Escherichia coli. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122077. [PMID: 36556442 PMCID: PMC9780897 DOI: 10.3390/life12122077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Multiresistant Escherichia coli has been disseminated worldwide, and it is one of the major causative agents of nosocomial infections. E. coli has a remarkable and complex genomic plasticity for taking up and accumulating genetic elements; thus, multiresistant high-risk clones can evolve. In this review, we summarise all available data about internationally disseminated extraintestinal pathogenic high-risk E. coli clones based on whole-genome sequence (WGS) data and confirmed outbreaks. Based on genetic markers, E. coli is clustered into eight phylogenetic groups. Nowadays, the E. coli ST131 clone from phylogenetic group B2 is the predominant high-risk clone worldwide. Currently, strains of the C1-M27 subclade within clade C of ST131 are circulating and becoming prominent in Canada, China, Germany, Hungary and Japan. The C1-M27 subclade is characterised by blaCTX-M-27. Recently, the ST1193 clone has been reported as an emerging high-risk clone from phylogenetic group B2. ST38 clone carrying blaOXA-244 (a blaOXA-48-like carbapenemase gene) caused several outbreaks in Germany and Switzerland. Further high-risk international E. coli clones include ST10, ST69, ST73, ST405, ST410, ST457. High-risk E. coli strains are present in different niches, in the human intestinal tract and in animals, and persist in environment. These strains can be transmitted easily within the community as well as in hospital settings. WGS analysis is a useful tool for tracking the dissemination of resistance determinants, the emergence of high-risk mulitresistant E. coli clones and to analyse changes in the E. coli population on a genomic level.
Collapse
|
36
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
37
|
Epidemiology of Plasmid Lineages Mediating the Spread of Extended-Spectrum Beta-Lactamases among Clinical Escherichia coli. mSystems 2022; 7:e0051922. [PMID: 35993734 PMCID: PMC9601178 DOI: 10.1128/msystems.00519-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prevalence of extended-spectrum beta-lactamases (ESBLs) among clinical isolates of Escherichia coli has been increasing, with this spread driven by ESBL-encoding plasmids. However, the epidemiology of ESBL-disseminating plasmids remains understudied, obscuring the roles of individual plasmid lineages in ESBL spread. To address this, we performed an in-depth genomic investigation of 149 clinical ESBL-like E. coli isolates from a tertiary care hospital. We obtained high-quality assemblies for 446 plasmids, revealing an extensive map of plasmid sharing that crosses time, space, and bacterial sequence type boundaries. Through a sequence-based network, we identified specific plasmid lineages that are responsible for the dissemination of major ESBLs. Notably, we demonstrate that IncF plasmids separate into 2 distinct lineages that are enriched for different ESBLs and occupy distinct host ranges. Our work provides a detailed picture of plasmid-mediated spread of ESBLs, demonstrating the extensive sequence diversity within identified lineages, while highlighting the genetic elements that underlie the persistence of these plasmids within the clinical E. coli population. IMPORTANCE The increasing incidence of nosocomial infections with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli represents a significant threat to public health, given the limited treatment options available for such infections. The rapid ESBL spread is suggested to be driven by localization of the resistance genes on conjugative plasmids. Here, we identify the contributions of different plasmid lineages in the nosocomial spread of ESBLs. We provide further support for plasmid-mediated spread of ESBLs but demonstrate that some ESBL genes rely on dissemination through plasmids more than the others. We identify key plasmid lineages that are enriched in major ESBL genes and highlight the encoded genetic elements that facilitate the transmission and stable maintenance of these plasmid groups within the clinical E. coli population. Overall, our work provides valuable insight into the dissemination of ESBLs through plasmids, furthering our understating of factors underlying the increased prevalence of these genes in nosocomial settings.
Collapse
|
38
|
Pérez-Etayo L, González D, Vitas AI. Clonal Complexes 23, 10, 131 and 38 as Genetic Markers of the Environmental Spread of Extended-Spectrum β-Lactamase (ESBL)-Producing E. coli. Antibiotics (Basel) 2022; 11:1465. [PMID: 36358120 PMCID: PMC9686695 DOI: 10.3390/antibiotics11111465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
In accordance with the global action plan on antimicrobial resistance adopted by the World Health Assembly in 2015, there is a need to develop surveillance programs for antimicrobial resistant bacteria. In this context, we have analyzed the clonal diversity of Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from aquatic environments and human and food samples in Spain, with the aim of determining possible clonal complexes (CCs) that act as markers of the potential risk of transmission of these resistant bacteria. The phylogenetic groups, sequence types (STs) and CCs were determined by different Polymerase Chain Reaction (PCR) and Multilocus Sequence Typing (MLST) techniques. Phylogroup A was prevalent and was mainly present in food and water strains, while human strains were mostly associated with phylogroup B2. According to the observed prevalence in the different niches, CC23 and CC10 are proposed as markers of phylogroups A and C, related with the spread of blaCTX-M1 and blaCTX-M15 genes. Similarly, CC131 and CC38 could be associated to the dissemination of pathogenic strains (phylogroups B2 and D) carrying mainly blaCTX-M14 and blaCTX-M15 genes. Some strains isolated from wastewater treatment plants (WWTPs) showed identical profiles to those isolated from other environments, highlighting the importance that water acquires in the dissemination of bacterial resistance. In conclusion, the detection of these genetic markers in different environments could be considered as an alert in the spread of ESBL.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
39
|
Naini A, Bartetzko MP, Sanapala SR, Broecker F, Wirtz V, Lisboa MP, Parameswarappa SG, Knopp D, Przygodda J, Hakelberg M, Pan R, Patel A, Chorro L, Illenberger A, Ponce C, Kodali S, Lypowy J, Anderson AS, Donald RGK, von Bonin A, Pereira CL. Semisynthetic Glycoconjugate Vaccine Candidates against Escherichia coli O25B Induce Functional IgG Antibodies in Mice. JACS AU 2022; 2:2135-2151. [PMID: 36186572 PMCID: PMC9516715 DOI: 10.1021/jacsau.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a major health concern due to emerging antibiotic resistance. Along with O1A, O2, and O6A, E. coli O25B is a major serotype within the ExPEC group, which expresses a unique O-antigen. Clinical studies with a glycoconjugate vaccine of the above-mentioned O-types revealed O25B as the least immunogenic component, inducing relatively weak IgG titers. To evaluate the immunological properties of semisynthetic glycoconjugate vaccine candidates against E. coli O25B, we here report the chemical synthesis of an initial set of five O25B glycan antigens differing in length, from one to three repeat units, and frameshifts of the repeat unit. The oligosaccharide antigens were conjugated to the carrier protein CRM197. The resulting semisynthetic glycoconjugates induced functional IgG antibodies in mice with opsonophagocytic activity against E. coli O25B. Three of the oligosaccharide-CRM197 conjugates elicited functional IgGs in the same order of magnitude as a conventional CRM197 glycoconjugate prepared with native O25B O-antigen and therefore represent promising vaccine candidates for further investigation. Binding studies with two monoclonal antibodies (mAbs) revealed nanomolar anti-O25B IgG responses with nanomolar K D values and with varying binding epitopes. The immunogenicity and mAb binding data now allow for the rational design of additional synthetic antigens for future preclinical studies, with expected further improvements in the functional antibody responses. Moreover, acetylation of a rhamnose residue was shown to be likely dispensable for immunogenicity, as a deacylated antigen was able to elicit strong functional IgG responses. Our findings strongly support the feasibility of a semisynthetic glycoconjugate vaccine against E. coli O25B.
Collapse
Affiliation(s)
- Arun Naini
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Max Peter Bartetzko
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Someswara Rao Sanapala
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Felix Broecker
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Victoria Wirtz
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Marilda P. Lisboa
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | | | - Daniel Knopp
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Jessica Przygodda
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Matthias Hakelberg
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Rosalind Pan
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Axay Patel
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Laurent Chorro
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arthur Illenberger
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Christopher Ponce
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Srinivas Kodali
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Jacqueline Lypowy
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | | | - Robert G. K. Donald
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arne von Bonin
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Claney L. Pereira
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| |
Collapse
|
40
|
Torres RT, Cunha MV, Araujo D, Ferreira H, Fonseca C, Palmeira JD. A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119367. [PMID: 35489528 DOI: 10.1016/j.envpol.2022.119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.
Collapse
Affiliation(s)
- Rita Tinoco Torres
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Débora Araujo
- Faculty of Engineering of University of Porto, Porto, Portugal
| | - Helena Ferreira
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE - University of Porto, Porto, Portugal; Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Carlos Fonseca
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Josman Dantas Palmeira
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
41
|
Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022; 11:pathogens11080852. [PMID: 36014973 PMCID: PMC9414889 DOI: 10.3390/pathogens11080852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are a universal public health alarm frequently identified among humans, animals, and poultry. Livestock and poultry production are a possible source of multidrug-resistant microorganisms, including ESBL-producing Enterobacteriaceae, which confer antimicrobial resistance to different β-lactam antimicrobial agents. From January to May 2020, a cross-sectional study was carried out in three dairy cattle farms and four poultry farms in different districts of northern Egypt to assess the prevalence of ESBLs, AmpC beta-lactamase-producing E. coli and Klebsiella in livestock, poultry, and human contacts, and to investigate the genetic relatedness of the recovered isolates. In total, 140 samples were collected, including human fecal samples (n = 20) of workers with intimate livestock contact, cattle rectal swabs (n = 34), milk (n = 14), milking machine swabs (n = 8), rations (n = 2), and water (n = 2) from different cattle farms, as well as cloacal swabs (n = 45), rations (n = 5), water (n = 5) and litter (n = 5) from poultry farms. The specimens were investigated for ESBL-producing E. coli and Klebsiella using HiCrome ESBL media agar. The agar disk diffusion method characterized the isolated strains for their phenotypic antimicrobial susceptibility. The prevalence of ESBL-producing Enterobacteriaceae was 30.0%, 20.0%, and 25.0% in humans, cattle, and poultry, respectively. Further genotypic characterization was performed using conventional and multiplex PCR assays for the molecular identification of ESBL and AmpC genes. The majority of the ESBL-producing Enterobacteriaceae showed a multi-drug resistant phenotype. Additionally, blaSHV was the predominant ESBL genotype (n = 31; 93.94%), and was mainly identified in humans (n = 6), cattle (n = 11), and poultry (14); its existence in various reservoirs is a concern, and highlights the necessity of the development of definite control strategies to limit the abuse of antimicrobial agents.
Collapse
|
42
|
Sun H, Schnürer A, Müller B, Mößnang B, Lebuhn M, Makarewicz O. Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154556. [PMID: 35306061 DOI: 10.1016/j.scitotenv.2022.154556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden.
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Mößnang
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
43
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
44
|
Genomic insights of high-risk clones of ESBL-producing Escherichia coli isolated from community infections and commercial meat in southern Brazil. Sci Rep 2022; 12:9354. [PMID: 35672430 PMCID: PMC9174282 DOI: 10.1038/s41598-022-13197-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
During a microbiological and genomic surveillance study conducted to investigate the molecular epidemiology of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from community-acquired urinary tract infections (UTI) and commercial meat samples, in a Brazilian city with a high occurrence of infections by ESBL-producing bacteria, we have identified the presence of CTX-M (-2, -14, -15, -24, -27 and -55)-producing E. coli of international clones ST38, ST117, ST131 and ST354. The ST131 was more prevalent in human samples, and worryingly the high-risk ST131-C1-M27 was identified in human infections for the first time. We also detected CTX-M-55-producing E. coli ST117 from meat samples (i.e., chicken and pork) and human infections. Moreover, the clinically relevant CTX-M-24-positive E. coli ST354 clone was detected for the first time in human samples. In summary, our results highlight a potential of commercialized meat as a reservoir of high-priority E. coli lineages in the community, whereas the identification of E. coli ST131-C1-M27 indicates that novel pandemic clones have emerged in Brazil, constituting a public health issue.
Collapse
|
45
|
Gruel G, Couvin D, Guyomard-Rabenirina S, Arlet G, Bambou JC, Pot M, Roy X, Talarmin A, Tressieres B, Ferdinand S, Breurec S. High Prevalence of bla CTXM-1/IncI1-Iγ/ST3 Plasmids in Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Collected From Domestic Animals in Guadeloupe (French West Indies). Front Microbiol 2022; 13:882422. [PMID: 35651489 PMCID: PMC9149308 DOI: 10.3389/fmicb.2022.882422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) have been classified in the group of resistant bacteria of highest priority. We determined the prevalence of ESBL-E collected in feces from household and shelter pets in Guadeloupe (French West Indies). A single rectal swab was taken from 125 dogs and 60 cats between June and September 2019. The prevalence of fecal carriage of ESBL-E was 7.6% (14/185, 95% CI: 4.2-12.4), within the range observed worldwide. The only risk factor associated with a higher prevalence of ESBL-E rectal carriage was a stay in a shelter, suggesting that refuges could be hotspots for their acquisition. All but one (Klebsiella pneumoniae from a cat) were Escherichia coli. We noted the presence of a bla CTX-M-1/IncI1-Iγ/sequence type (ST3) plasmid in 11 ESBL-producing E. coli isolates belonging to ST328 (n = 6), ST155 (n = 4) and ST953 (n = 1). A bla CTX-M-15 gene was identified in the three remaining ESBL-E isolates. The bla CTX-M-1 and most of the antimicrobial resistance genes were present in a well-conserved large conjugative IncI1-Iγ/ST3 plasmid characterized by two accessory regions containing antibiotic resistance genes. The plasmid has been detected worldwide in E. coli isolates from humans and several animal species, such as food-producing animals, wild birds and pets, and from the environment. This study shows the potential role of pets as a reservoir of antimicrobial-resistant bacteria or genes for humans and underlines the importance of basic hygiene measures by owners of companion animals.
Collapse
Affiliation(s)
- Gaëlle Gruel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | | | | | - Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Benoit Tressieres
- INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France.,INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France.,Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, Pointe-à-Pitre, France
| |
Collapse
|
46
|
Mahoney MT, Brigman HV, Johnston BD, Johnson JR, Hirsch EB. Prevalence and characteristics of multidrug-resistant Escherichia coli sequence type ST131 at two academic centers in Boston and Minneapolis, USA. Am J Infect Control 2022; 51:434-439. [PMID: 35764181 DOI: 10.1016/j.ajic.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Escherichia coli sequence type (ST) ST131, with its emergent resistance-associated H30Rx, H30R1, and C1-M27 clonal subsets, accounts for the greatest share of extraintestinal E. coli infections and most extended-spectrum β-lactamase (ESBL)-producing E. coli. METHODS We characterized and compared consecutive E. coli urine isolates from two geographically distinct medical centers in Minneapolis, Minnesota (n = 172) and Boston, Massachusetts (n = 143) for ESBL phenotype, CTX-M-type ESBL genes, phylogenetic groups, selected ST131 subclones, and 40 extraintestinal virulence genes. RESULTS Whereas the Boston vs. Minneapolis isolates had a similar prevalence of phylogenetic groups (mainly B2: 79% vs 73%), ST131 (34% vs 28%), H30 (28% vs 21%), and H30Rx (6% vs 5%), the emerging C1-M27 subclone occurred uniquely among Boston (6%) isolates. ESBL production was more prevalent among Boston isolates (15% vs 8%) and among ST131 isolates. Identified ESBL genes included blaCTX-M-27 (Boston only) and blaCTX-M-15. Ciprofloxacin resistance was ST131-associated and similarly prevalent across centers. Boston isolates had higher virulence gene scores. CONCLUSIONS Despite numerous similarities to Minneapolis isolates, Boston ST131 isolates demonstrated more prevalent ESBL production, higher virulence gene scores, and, uniquely, the C1-M27 subclone and blaCTX-M-27. Broader surveillance is needed to define the prevalence of ST131's globally successful C1-M27 subclone across the U.S.
Collapse
|
47
|
Neffe L, Abendroth L, Bautsch W, Häussler S, Tomasch J. High plasmidome diversity of extended-spectrum beta-lactam-resistant Escherichia coli isolates collected during one year in one community hospital. Genomics 2022; 114:110368. [PMID: 35447310 DOI: 10.1016/j.ygeno.2022.110368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 04/09/2022] [Indexed: 01/14/2023]
Abstract
Plasmid-encoded antibiotic resistance encompasses many classes of currently used antibiotics. In globally distributed Escherichia coli lineages plasmids, which spread via horizontal gene transfer, are responsible for the dissemination of genes encoding extended-spectrum β-lactamases (ESBL). In this study, we combined 2nd and 3rd generation sequencing techniques to reconstruct the plasmidome of overall 97 clinical ESBL-E. coli isolates. Our results highlight the enormous plasmid diversity in respect to size, replicon-type and genetic content. Furthermore, we emphasize the diverse plasmid distribution patterns among the clinical isolates and the high intra- and extracellular mobility potential of resistance conferring genes. While the majority of resistance conferring genes were located on large plasmids of known replicon type, small cryptic plasmids seem to be underestimated resistance gene vectors. Our results contribute to a better understanding of the dissemination of resistance-conferring genes through horizontal gene transfer as well as clonal spread.
Collapse
Affiliation(s)
- Lisa Neffe
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Abendroth
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, Hannover, Germany; Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30265 Hannover, Germany.
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
48
|
Pokhrel LR, Jacobs ZL, Dikin D, Akula SM. Five nanometer size highly positive silver nanoparticles are bactericidal targeting cell wall and adherent fimbriae expression. Sci Rep 2022; 12:6729. [PMID: 35468937 PMCID: PMC9039075 DOI: 10.1038/s41598-022-10778-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
To tackle growing antibiotic resistance (AR) and hospital-acquired infections (HAIs), novel antimicrobials are warranted that are effective against HAIs and safer for human use. We hypothesize that small 5 nm size positively charged nanoparticles could specifically target bacterial cell wall and adherent fimbriae expression, serving as the next generation antibacterial agent. Herein we show highly positively charged, 5 nm amino-functionalized silver nanoparticles (NH2–AgNPs) were bactericidal; highly negatively charged, 45 nm citrate-functionalized AgNPs (Citrate–AgNPs) were nontoxic; and Ag+ ions were bacteriostatic forming honeycomb-like potentially resistant phenotype, at 10 µg Ag/mL in E. coli. Further, adherent fimbriae were expressed with Citrate–AgNPs (0.5–10 µg/mL), whereas NH2–AgNPs (0.5–10 µg/mL) or Ag+ ions (only at 10 µg/mL) inhibited fimbriae expression. Our results also showed no lipid peroxidation in human lung epithelial and dermal fibroblast cells upon NH2–AgNPs treatments, suggesting NH2–AgNPs as a biocompatible antibacterial candidate. Potent bactericidal effects demonstrated by biocompatible NH2–AgNPs and the lack of toxicity of Citrate–AgNPs lend credence to the hypothesis that small size, positively charged AgNPs may serve as a next-generation antibacterial agent, potentially addressing the rising HAIs and patient health and safety.
Collapse
Affiliation(s)
- Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Zachary L Jacobs
- School of Law, University of California, Berkeley, Berkeley, CA, USA
| | - Dmitriy Dikin
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
49
|
Sarwar F, Rasool MH, Khurshid M, Qamar MU, Aslam B. Escherichia coli Isolates Harboring blaNDM Variants and 16S Methylases Belonging to Clonal Complex 131 in Southern Punjab, Pakistan. Microb Drug Resist 2022; 28:623-635. [PMID: 35363080 DOI: 10.1089/mdr.2021.0315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The emergence of carbapenem-resistant Escherichia coli (CREC) especially harboring the New Delhi Metallo-β-lactamase (blaNDM) variants are increasingly being reported from many countries, however, the data from Pakistan is limited. In the present study, 109 CREC isolates were obtained from 4,091 E. coli isolates in five tertiary care hospitals in southern Punjab, Pakistan. The antimicrobial susceptibility profiling and screening for the resistance determinants were performed followed by blaNDM typing and multilocus sequence typing (MLST) to characterize the CREC strains. Among the carbapenemases, 57 CREC isolates were found to harbor blaNDM. The blaNDM-1, blaNDM-5, blaNDM-7, and blaNDM-4 variants were identified in 30 (52.6%), 18 (31.6%), (12.3%), 2 (3.5%) isolates, respectively. The ESBL genes, such as blaCTX-M and blaTEM, were also found in different combinations, whereas the 16S methylases that is, rmtB and armA were found in 69 (63.3%) and 55 (50.5%) CREC isolates, respectively. The MLST of blaNDM carrying E. coli revealed eight different sequence types (STs) with ST131 belonging to 21 isolates being the most prevalent. The clonal complex 131 was the predominant complex corresponding to 47 (82.5%) of blaNDM-positive strains. Large-scale surveillance studies coupled with active infection control policies are suggested on an urgent basis to avoid an epidemic in the future.
Collapse
Affiliation(s)
- Faiza Sarwar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman Qamar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
50
|
Pan-genome and resistome analysis of extended-spectrum ß-lactamase-producing Escherichia coli: A multi-setting epidemiological surveillance study from Malaysia. PLoS One 2022; 17:e0265142. [PMID: 35271656 PMCID: PMC8912130 DOI: 10.1371/journal.pone.0265142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
This study profiled the prevalence of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC) in the community and compared their resistome and genomic profiles with isolates from clinical patients through whole-genome sequencing.
Methods
Fecal samples from 233 community dwellers from Segamat, a town in southern Malaysia, were obtained between May through August 2018. Putative ESBL strains were screened and tested using antibiotic susceptibility tests. Additionally, eight clinical ESBL-EC were obtained from a hospital in the same district between June through October 2020. Whole-genome sequencing was then conducted on selected ESBL-EC from both settings (n = 40) for pan-genome comparison, cluster analysis, and resistome profiling.
Results
A mean ESBL-EC carriage rate of 17.82% (95% CI: 10.48%– 24.11%) was observed in the community and was consistent across demographic factors. Whole-genome sequences of the ESBL-EC (n = 40) enabled the detection of multiple plasmid replicon groups (n = 28), resistance genes (n = 34) and virulence factors (n = 335), with no significant difference in the number of genes carried between the community and clinical isolates (plasmid replicon groups, p = 0.13; resistance genes, p = 0.47; virulence factors, p = 0.94). Virulence gene marker analysis detected the presence of extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), and enteroaggregative E. coli (EAEC) in both the community and clinical isolates. Multiple blaCTX-M variants were observed, dominated by blaCTX-M-27 (n = 12), blaCTX-M-65 (n = 10), and blaCTX-M-15 (n = 9). The clinical and community isolates did not cluster together based on the pan-genome comparison, suggesting isolates from the two settings were clonally unrelated. However, cluster analysis based on carried plasmids, resistance genes and phenotypic susceptibility profiles identified four distinct clusters, with similar patterns between the community and clinical isolates.
Conclusion
ESBL-EC from the clinical and community settings shared similar resistome profiles, suggesting the frequent exchange of genetic materials through horizontal gene transfer.
Collapse
|