1
|
Wang Z, Tang R, Wang H, Li X, Liu Z, Li W, Peng G, Zhou H. Bioinformatics analysis of the role of lysosome-related genes in breast cancer. Comput Methods Biomech Biomed Engin 2024:1-20. [PMID: 39054687 DOI: 10.1080/10255842.2024.2379936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to investigate the roles of lysosome-related genes in BC prognosis and immunity. Transcriptome data from TCGA and MSigDB, along with lysosome-related gene sets, underwent NMF cluster analysis, resulting in two subtypes. Using lasso regression and univariate/multivariate Cox regression analysis, an 11-gene signature was successfully identified and verified. High- and low-risk populations were dominated by HR+ sample types. There were differences in pathway enrichment, immune cell infiltration, and immune scores. Sensitive drugs targeting model genes were screened using GDSC and CCLE. This study constructed a reliable prognostic model with lysosome-related genes, providing valuable insights for BC clinical immunotherapy.
Collapse
Affiliation(s)
- Zhongming Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Ruiyao Tang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huazhong Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Xizhang Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Zhenbang Liu
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Wenjie Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Gui Peng
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huaiying Zhou
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
2
|
Qin X, Ruan H, Yuan L, Lin L. Colorectal cancer tumor stem cells mediate bevacizumab resistance through the signal IL-22-STAT3 signaling pathway. 3 Biotech 2023; 13:327. [PMID: 37663749 PMCID: PMC10473997 DOI: 10.1007/s13205-023-03742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Bevacizumab is the standard treatment for colorectal cancer (CRC) in the advanced stage. However, poor diagnosis identified due to the bevacizumab resistance in many CRC patients. Previous studies have found that CRC stem cells (CCSCs) and interleukin 22 (IL-22) are involved in the resistance of bevacizumab, however, the mechanism of remains unclear. In this study, we established the bevacizumab drug-resistant cell line HCT-116-R by concentration gradient method, and the cell viability was detected by CCK-8 assay. The resistance of bevacizumab in CRC cell lines HCT-116-R was identified by characterizing epithelial-mesenchymal transition (EMT). Additionally, HCT-116-R cell lines were isolated from CCSCs and their tumorigenicity was validated in nude mice. We observed that that compared with the matched group, the expression of IL-22, IL-22R, STAT3, and GP130 in drug-resistant cells increased distinctly, with blocked IL-22 cells were successfully constructed by lentiviral interference. The level of proteins in stem cell landmarks (EpCAM, CD133), and stem cell landmarks (Oct4, Sox2) was identified by western blotting. Furthermore, the IL-22 role was evaluated by xenograft model. We found that short hairpin RNA (shRNA) suppression of IL-22 expression can restore the sensitivity of drug-resistant CCSCs to bevacizumab, Moreover, xenograft tumor models show that suppression of IL-22 can increase the anti-tumor influence of bevacizumab. In summary, we demonstrated that CCSCs play a major part in bevacizumab-resistant CRC. Inhibiting the signaling pathway of IL-22/STAT3 can improve the anti-tumor influence on bevacizumab in vitro and in vivo. Thus, IL-22 may represent a new anti-bevacizumab target in CRC.
Collapse
Affiliation(s)
- Xiaoning Qin
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Hongxun Ruan
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Liqing Yuan
- The Second Department of Gynaecology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Lin Lin
- The Third Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
3
|
Zhang Y, Xu S, Jiang F, Hu M, Han Y, Wang Y, Liu Z. A comprehensive insight into the role of molecular pathways affected by the Angiopoietin and Tie system involved in hematological malignancies' pathogenesis. Pathol Res Pract 2023; 248:154677. [PMID: 37467636 DOI: 10.1016/j.prp.2023.154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Angiogenesis has been recognized as a critical factor in developing solid tumors and hematological malignancies. How angiogenesis affects the molecular pathways in malignancies is still a mystery. The angiopoietin family, one of the known molecular mediators for angiogenesis, encourages angiogenesis by attaching to Tie receptors on cell surfaces. Angiopoietin, Tie, and particularly the molecular pathways they mediate have all been the subject of recent studies that have established their diagnostic, prognostic, and therapeutic potential. Here, we've reviewed the function of molecular pathways impacted by the Angiogenin and Tie system in hematological malignancies.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
4
|
Das A, Deka D, Banerjee A, Radhakrishnan AK, Zhang H, Sun XF, Pathak S. A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer. Curr Top Med Chem 2022; 22:2571-2588. [PMID: 35578849 DOI: 10.2174/1568026622666220516105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Abstract
Colorectal cancer being the second leading cause of cancer-associated deaths has become a significant health concern around the globe. Though there are various cancer treatment approaches, many of them show adverse effects and some compromise the health of cancer patients. Hence, significant efforts are being made for the evolution of a novel biological therapeutic approach with better efficacy and minimal side effects. Current research suggests that the application of peptides in colorectal cancer therapeutics holds the possibility of the emergence of an anticancer reagent. The primary beneficial factors of peptides are their comparatively rapid and easy process of synthesis and the enormous potential for chemical alterations that can be evaluated for designing novel peptides and enhancing the delivery capacity of peptides. Peptides might be utilized as agents with cytotoxic activities or as a carrier of a specific drug or as cytotoxic agents that can efficiently target the tumor cells. Further, peptides can also be used as a tool for diagnostic purposes. The recent analysis aims at developing peptides that have the potential to efficiently target the tumor moieties without harming the nearby normal cells. Additionally, decreasing the adverse effects, and unfolding the other therapeutic properties of potential peptides, are also the subject matter of in-depth analysis. This review provides a concise summary of the function of both natural and synthetically derived peptides in colorectal cancer therapeutics that are recently being evaluated and their potent applications in the clinical field.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
5
|
Garcia-Etxebarria K, Clos-Garcia M, Telleria O, Nafría B, Alonso C, Iruarrizaga-Lejarreta M, Franke A, Crespo A, Iglesias A, Cubiella J, Bujanda L, Falcón-Pérez JM. Interplay between Genome, Metabolome and Microbiome in Colorectal Cancer. Cancers (Basel) 2021; 13:6216. [PMID: 34944836 PMCID: PMC8699218 DOI: 10.3390/cancers13246216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC), a major health concern, is developed depending on environmental, genetic and microbial factors. The microbiome and metabolome have been analyzed to study their role in CRC. However, the interplay of host genetics with those layers in CRC remains unclear. METHODS 120 individuals were sequenced and association analyses were carried out for adenoma and CRC risk, and for selected components of the microbiome and metabolome. The epistasis between genes located in cholesterol pathways was analyzed; modifiable risk factors were studied using Mendelian randomization; and the three omic layers were used to integrate their data and to build risk prediction models. RESULTS We detected genetic variants that were associated to components of metabolome or microbiome and adenoma or CRC risk (e.g., in LINC01605, PROKR2 and CCSER1 genes). In addition, we found interactions between genes of cholesterol metabolism, and HDL cholesterol levels affected adenoma (p = 0.0448) and CRC (p = 0.0148) risk. The combination of the three omic layers to build risk prediction models reached high AUC values (>0.91). CONCLUSIONS The use of the three omic layers allowed for the finding of biological mechanisms related to the development of adenoma and CRC, and each layer provided complementary information to build risk prediction models.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Grupo de Genética Gastrointestinal, Biodonostia, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Marc Clos-Garcia
- Exosomes Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Grupo de Enfermedades Gastrointestinales, Biodonostia, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Oiana Telleria
- Exosomes Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
| | - Beatriz Nafría
- Grupo de Enfermedades Gastrointestinales, Biodonostia, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, 48160 Derio, Spain
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Anais Crespo
- Department of Gastroenterology, Instituto de Investigación Sanitario Galicia Sur, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain
| | - Agueda Iglesias
- Department of Gastroenterology, Instituto de Investigación Sanitario Galicia Sur, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain
| | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Department of Gastroenterology, Instituto de Investigación Sanitario Galicia Sur, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Grupo de Enfermedades Gastrointestinales, Biodonostia, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Juan Manuel Falcón-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Exosomes Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Basque Foundation for Sciences, Ikerbasque, 48013 Bilbao, Spain
- Metabolomics Platform, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
| |
Collapse
|
6
|
Tagai N, Goi T, Shimada M, Kurebayashi H. Plasma Prokineticin 1, a prognostic biomarker in colorectal cancer patients with curative resection: a retrospective cohort study. World J Surg Oncol 2021; 19:302. [PMID: 34657605 PMCID: PMC8522247 DOI: 10.1186/s12957-021-02421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prokineticin 1 (PROK1) was reported as an angiogenic factor, which is associated with tumor progression, cell invasion, and metastasis in colorectal cancer. Although the association between PROK1 expression in primary cancer lesion and patient prognosis was reported, it is unclear whether plasma PROK1 concentration may be a predictive factor in colorectal cancer patients. This study investigated the association between PROK1 concentration in plasma and prognosis in colorectal cancer patients. METHODS We measured preoperative PROK1 plasma levels using ELISA method, while PROK1 expression in primary cancer lesion was evaluated using immunohistochemistry (IHC). The association between plasma PROK1 levels and cancer-related survival rate (CRS) was evaluated. Additionally, we examined whether simultaneous PROK1 expression in both primary cancer lesions and plasma was correlated with CRS. The cancer-related survival rate was calculated using the Kaplan-Meier method, and survival estimates were compared using the log-rank test. RESULTS We have gathered eligible 130 CRC patients retrospectively. Out of 130 patients, 61 (46.9%) were positive on IHC in primary cancer, and 69 (53.1%) were negative, while 43 (33.1%) had high-value PROK1 in plasma. Out of these 43, 30 (25.4%) also had concomitant higher IHC expression in primary cancer. The plasma PROK1 levels tended to increase with advancing stages. The plasma PROK1-positive group had a lower 5-year CRS than the negative group (63.6% vs. 88.2%; P = 0.006). Additionally, simultaneous PROK1 expression was associated with a more significant decrease of 5-year CRS than both negative groups in all stages (76.2% vs. 92.5%; P = 0.003) and stage III (59.3% vs. 84.5%; P = 0.047). Multivariate analysis showed simultaneous PROK1 expression was independently associated with worse CRS (HR, 1.97; 95% CI 1.20‑3.24, P < 0.01). CONCLUSION PROK1 expression in preoperative plasma reflects poor prognosis in patients undergoing curative resection for colorectal cancer. The plasma PROK1 level may be a potential predictive marker, especially in stage III colorectal cancer patients.
Collapse
Affiliation(s)
- Noriyuki Tagai
- Department of Surgery 1, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Takanori Goi
- Department of Surgery 1, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Michiaki Shimada
- Department of Surgery 1, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Hidetaka Kurebayashi
- Department of Surgery 1, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
7
|
Reynaud D, Sergent F, Abi Nahed R, Traboulsi W, Collet C, Marquette C, Hoffmann P, Balboni G, Zhou QY, Murthi P, Benharouga M, Alfaidy N. Evidence-Based View of Safety and Effectiveness of Prokineticin Receptors Antagonists during Pregnancy. Biomedicines 2021; 9:309. [PMID: 33802771 PMCID: PMC8002561 DOI: 10.3390/biomedicines9030309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Endocrine gland derived vascular endothelial growth factor (EG-VEGF) is a canonical member of the prokineticin (PROKs) family. It acts via the two G-protein coupled receptors, namely PROKR1 and PROKR2. We have recently demonstrated that EG-VEGF is highly expressed in the human placenta; contributes to placental vascularization and growth and that its aberrant expression is associated with pregnancy pathologies including preeclampsia and fetal growth restriction. These findings strongly suggested that antagonization of its receptors may constitute a potential therapy for the pregnancy pathologies. Two specific antagonists of PROKR1 (PC7) and for PROKR2 (PKRA) were reported to reverse PROKs adverse effects in other systems. In the view of using these antagonists to treat pregnancy pathologies, a proof of concept study was designed to determine the biological significances of PC7 and PKRA in normal pregnancy outcome. PC7 and PKRA were tested independently or in combination in trophoblast cells and during early gestation in the gravid mouse. Both independent and combined treatments uncovered endogenous functions of EG-VEGF. The independent use of antagonists distinctively identified PROKR1 and PROKR2-mediated EG-VEGF signaling on trophoblast differentiation and invasion; thereby enhancing feto-placental growth and pregnancy outcome. Thus, our study provides evidence for the potential safe use of PC7 or PKRA to improve pregnancy outcome.
Collapse
Affiliation(s)
- Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Wael Traboulsi
- Lombardi Comprehensive Cancer Center, Laboratory for Immuno-Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Christel Marquette
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California, Irvine, CA 92697, USA;
| | - Padma Murthi
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| |
Collapse
|
8
|
Zhang Y, Qu H. Expression and clinical significance of aquaporin-1, vascular endothelial growth factor and microvessel density in gastric cancer. Medicine (Baltimore) 2020; 99:e21883. [PMID: 32899018 PMCID: PMC7478653 DOI: 10.1097/md.0000000000021883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To investigate the expression and clinical significance of aquaporin-1 (AQP1), vascular endothelial growth factor (VEGF) and microvessel density (MVD) in gastric cancer.A total of 79 gastric cancer patients who were admitted into Beijing Chao-Yang Hospital from January, 2018 to December, 2019 were involved in this study. Tumor specimens and para-cancerous normal tissues (> 2 cm away from the tumor) of all the enrolled patients were collected. Immunohistochemistry were performed to identify the expression of AQP1, VEGF, and MVD and the correlation between AQP1, VEGF, MVD, and clinicopathological parameters was analyzed.The expression of AQP1, VEGF and MVD in gastric cancer tissue was increased significantly compared with those in para-cancerous tissue (P < .05). AQP1, VEGF, and MVD were closely correlated with gastric cancer differentiation, lymph node metastasis, vascular tumor thrombosis and clinical stage (P < .05). Spearman correlation analysis showed that AQP1 was positively associated with VEGF expression (r = 0.497, P < .05). MVD was enhanced in VEGF or AQP1 positive cancer tissues compared with that in VEGF or AQP1 negative tissue (P < .05).Synergistic effect among AQP1, VEGF, and MVD is involved in occurrence and development of gastric cancer.
Collapse
|
9
|
Yan X, Hui Y, Hua Y, Huang L, Wang L, Peng F, Tang C, Liu D, Song J, Wang F. EG-VEGF silencing inhibits cell proliferation and promotes cell apoptosis in pancreatic carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2019; 109:762-769. [PMID: 30551529 DOI: 10.1016/j.biopha.2018.10.125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Pancreatic carcinoma (PC), one of the most prevalent and malignant tumors, has a poor prognosis and a high mortality rate. EG-VEGF, a vascular endothelial growth factor from endocrine glands, also termed as PROK1, has a high positive expression rate in PC tissues and is involved in the pathogenesis of various tumors. However, the expression and potential role of EG-VEGF in PC has not been thoroughly explored. The aim of this study was to better clarify the expression and potential role of EG-VEGF in pancreatic carcinoma. METHODS Immunohistochemical staining, western blotting, and RT-qPCR analysis were performed to detect the EG-VEGF level in PC tissues and cells. Subsequently, two short hairpin RNA (shRNA) lentiviral expression vector, shPROK1-1/shPROK1-2, were transfected into PANC-1 and BxPC-3 PC cell lines. MTT assay was used to determine cell proliferation. Meanwhile, flow cytometry assay was conducted to measure cell cycle and cell apoptosis. The protein levels of PI3K/AKT/mTOR pathway-related genes were also determined by western blotting. RESULTS EG-VEGF was aberrantly expressed in PC samples, as compared with paracancerous samples. Knockdown of PROK1 notably decreased the protein level of EG-VEGF, indicating a successful downregulation model of EG-VEGF. EG-VEGF silencing remarkably attenuated cell proliferation, while also induced G0/G1 arrest and magnified the extent of cell apoptosis. Further, EG-VEGF knockdown significantly inhibited PI3K/AKT/mTOR signaling pathway by downregulating p-PI3K, p-AKT, and p-mTOR levels. CONCLUSION This study identified the high-expression of EG-VEGF in pancreatic carcinoma tissues and cells, and demonstrated that EG-VEGF silencing inhibits the proliferation of PC cells and promotes apoptosis via regulating PI3K/AKT/mTOR pathway. Thus, EG-VEGF may become an essential target for the therapy of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Xiaogang Yan
- Department of Surgical Oncology, The First People's Hospital of Yinchuan, Yinchuan 750010, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Yongqiang Hua
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liya Huang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Libin Wang
- Department of Beijing National Biochip Research Center Sub-center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Fei Peng
- Ningxia Medical University, Yinchuan 750001, China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Di Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China
| | - Feng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China.
| |
Collapse
|