1
|
de Albuquerque A, Lopes BA, Fernandes RA, Gimba ERP, Emerenciano M. IKZF1 and BTG1 silencing reduces glucocorticoid response in B-cell precursor acute leukemia cell line. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S163-S170. [PMID: 39095315 PMCID: PMC11726076 DOI: 10.1016/j.htct.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Secondary genetic alterations, which contribute to the dysregulation of cell cycle progression and lymphoid specialization, are frequently observed in B-cell precursor acute lymphoblastic leukemia (B-ALL). As IKZF1 and BTG1 deletions are associated with a worse outcome in B-ALL, this study aimed to address whether they synergistically promote glucocorticoid resistance. METHODS Small interfering RNA was used to downregulate either IKZF1, or BTG1, or both genes in the 207 B-ALL cell line. Cell viability was investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and trypan blue exclusion assays. The expression levels of IKZF1, BTG1 and glucocorticoid-responsive genes (DUSP1, SGK1, FBXW7 and NR3C1) were evaluated by real time quantitative real time polymerase chain reaction (PCR). RESULTS Isolated silencing of BTG1, IKZF1, or both genes in combination under dexamethasone treatment increased cell viability by 24%, 40% and 84%, respectively. Although BTG1 silencing did not alter the expression of glucocorticoid-responsive genes, IKZF1 knockdown decreased the transcript levels of DUSP1 (2.6-fold), SGK1 (1.8-fold), FBXW7 (2.2-fold) and NR3C1 (1.7-fold). The expression of glucocorticoid-responsive genes reached even lower levels (reducing 2.4-4 fold) when IKZF1 and BTG1 silencing occurred in combination. CONCLUSIONS IKZF1 silencing impairs the transcription of glucocorticoid-responsive genes; this effect is enhanced by concomitant loss of BTG1. These results demonstrate the molecular mechanism by which the combination of both genetic deletions might contribute to higher relapse rates in B-ALL.
Collapse
Affiliation(s)
- Amanda de Albuquerque
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Bruno A Lopes
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Genetics of Acute Leukemia Laboratory, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Renan Amphilophio Fernandes
- Pharmacology and Medicinal Chemistry Program, Institute of Biological Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Etel Rodrigues Pereira Gimba
- Department of Natural Sciences (RCN), Institute of Humanities and Health (IHS), Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil; Hematology-Molecular Oncology Program, Research Coordination, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Mariana Emerenciano
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Genetics of Acute Leukemia Laboratory, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Feng L, Zhang H, Liu T. Multifaceted roles of IKZF1 gene, perspectives from bench to bedside. Front Oncol 2024; 14:1383419. [PMID: 38978740 PMCID: PMC11228169 DOI: 10.3389/fonc.2024.1383419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.
Collapse
Affiliation(s)
| | | | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Pieters R, de Groot-Kruseman H, Fiocco M, Verwer F, Van Overveld M, Sonneveld E, van der Velden V, Beverloo HB, Bierings M, Dors N, de Haas V, Hoogerbrugge P, Van der Sluis I, Tissing W, Veening M, Boer J, Den Boer M. Improved Outcome for ALL by Prolonging Therapy for IKZF1 Deletion and Decreasing Therapy for Other Risk Groups. J Clin Oncol 2023; 41:4130-4142. [PMID: 37459571 DOI: 10.1200/jco.22.02705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 07/20/2023] Open
Abstract
PURPOSE The ALL10 protocol improved outcomes for children with ALL by stratifying and adapting therapy into three minimal residual disease-defined risk groups: standard risk, medium risk (MR), and high risk. IKZF1-deleted (IKZF1del) ALL in the largest MR group still showed poor outcome, in line with protocols worldwide, accounting for a high number of overall relapses. ALL10 showed high toxicity in Down syndrome (DS) and excellent outcome in ETV6::RUNX1 ALL. Poor prednisone responders (PPRs) were treated as high risk in ALL10. In ALL11, we prolonged therapy for IKZF1del from 2 to 3 years. We reduced therapy for DS by omitting anthracyclines completely, for ETV6::RUNX1 in intensification, and for PPR by treatment as MR. METHODS Eight hundred nineteen patients with ALL (age, 1-18 years) were enrolled on ALL11 and stratified as in ALL10. Results were compared with those in ALL10. RESULTS The five-year overall survival (OS), event-free survival (EFS), cumulative risk of relapse (CIR), and death in complete remission on ALL11 were 94.2% (SE, 0.9%), 89.0% (1.2), 8.2% (1.1), and 2.3% (0.6), respectively. Prolonged maintenance for IKZF1del MR improved 5-year CIR by 2.2-fold (10.8% v 23.4%; P = .035) and EFS (87.1% v 72.3%; P = .019). Landmark analysis at 2 years from diagnosis showed a 2.9-fold reduction of CIR (25.6%-8.8%; P = .008) and EFS improvement (74.4%-91.2%; P = .007). Reduced therapy did not abrogate 5-year outcome for ETV6::RUNX1 (EFS, 98.3%; OS, 99.4%), DS (EFS, 87.0%; OS, 87.0%), and PPR (EFS, 81.1%; OS, 94.9%). CONCLUSION Children with IKZF1del ALL seem to benefit from prolonged maintenance therapy. Chemotherapy was successfully reduced for patients with ETV6::RUNX1, DS, and PPR ALL. It has to be noted that these results were obtained in a nonrandomized study using a historical control group.
Collapse
Affiliation(s)
- Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
| | - Hester de Groot-Kruseman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
- Department of Biomedical Data Science, Section Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Femke Verwer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
| | | | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
| | | | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
| | - Natasja Dors
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Valérie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, the Netherlands
| | | | | | - Wim Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Margreet Veening
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Judith Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Monique Den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
4
|
Bedics G, Egyed B, Kotmayer L, Benard-Slagter A, de Groot K, Bekő A, Hegyi LL, Bátai B, Krizsán S, Kriván G, Erdélyi DJ, Müller J, Haltrich I, Kajtár B, Pajor L, Vojcek Á, Ottóffy G, Ujfalusi A, Szegedi I, Tiszlavicz LG, Bartyik K, Csanádi K, Péter G, Simon R, Hauser P, Kelemen Á, Sebestyén E, Jakab Z, Matolcsy A, Kiss C, Kovács G, Savola S, Bödör C, Alpár D. PersonALL: a genetic scoring guide for personalized risk assessment in pediatric B-cell precursor acute lymphoblastic leukemia. Br J Cancer 2023; 129:455-465. [PMID: 37340093 PMCID: PMC10403542 DOI: 10.1038/s41416-023-02309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Recurrent genetic lesions provide basis for risk assessment in pediatric acute lymphoblastic leukemia (ALL). However, current prognostic classifiers rely on a limited number of predefined sets of alterations. METHODS Disease-relevant copy number aberrations (CNAs) were screened genome-wide in 260 children with B-cell precursor ALL. Results were integrated with cytogenetic data to improve risk assessment. RESULTS CNAs were detected in 93.8% (n = 244) of the patients. First, cytogenetic profiles were combined with IKZF1 status (IKZF1normal, IKZF1del and IKZF1plus) and three prognostic subgroups were distinguished with significantly different 5-year event-free survival (EFS) rates, IKAROS-low (n = 215): 86.3%, IKAROS-medium (n = 27): 57.4% and IKAROS-high (n = 18): 37.5%. Second, contribution of genetic aberrations to the clinical outcome was assessed and an aberration-specific score was assigned to each prognostically relevant alteration. By aggregating the scores of aberrations emerging in individual patients, personalized cumulative values were calculated and used for defining four prognostic subgroups with distinct clinical outcomes. Two favorable subgroups included 60% of patients (n = 157) with a 5-year EFS of 96.3% (excellent risk, n = 105) and 87.2% (good risk, n = 52), respectively; while 40% of patients (n = 103) showed high (n = 74) or ultra-poor (n = 29) risk profile (5-year EFS: 67.4% and 39.0%, respectively). CONCLUSIONS PersonALL, our conceptually novel prognostic classifier considers all combinations of co-segregating genetic alterations, providing a highly personalized patient stratification.
Collapse
Affiliation(s)
- Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lili Kotmayer
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Bátai
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergely Kriván
- Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - László Pajor
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Medical School, Pécs, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Medical School, Pécs, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Paediatrics and Paediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Bartyik
- Department of Paediatrics and Paediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Réka Simon
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, Hungarian Pediatric Oncology Network, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Delage L, Lambert M, Bardel É, Kundlacz C, Chartoire D, Conchon A, Peugnet AL, Gorka L, Auberger P, Jacquel A, Soussain C, Destaing O, Delecluse HJ, Delecluse S, Merabet S, Traverse-Glehen A, Salles G, Bachy E, Billaud M, Ghesquières H, Genestier L, Rouault JP, Sujobert P. BTG1 inactivation drives lymphomagenesis and promotes lymphoma dissemination through activation of BCAR1. Blood 2023; 141:1209-1220. [PMID: 36375119 DOI: 10.1182/blood.2022016943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.
Collapse
Affiliation(s)
- Lorric Delage
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM U1016, Plateforme BioMecan'IC, Biomécanique de la cellule, Paris, France
| | - Émilie Bardel
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Cindy Kundlacz
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Chartoire
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Axel Conchon
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Anne-Laure Peugnet
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Lucas Gorka
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Patrick Auberger
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Carole Soussain
- Institut Curie, Site de Saint-Cloud, Hematologie, et INSERM U932 Institut Curie, PSL Research University, Paris, France
| | - Olivier Destaing
- Centre de Recherche UGA, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | | | | | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alexandra Traverse-Glehen
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emmanuel Bachy
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Marc Billaud
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hervé Ghesquières
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | - Jean-Pierre Rouault
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
- INSERM Unité Mixte de Recherche (UMR)-U1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (Team LIB), Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| |
Collapse
|
6
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
7
|
Tomás-Daza L, Rovirosa L, López-Martí P, Nieto-Aliseda A, Serra F, Planas-Riverola A, Molina O, McDonald R, Ghevaert C, Cuatrecasas E, Costa D, Camós M, Bueno C, Menéndez P, Valencia A, Javierre BM. Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution. Nat Commun 2023; 14:268. [PMID: 36650138 PMCID: PMC9845235 DOI: 10.1038/s41467-023-35911-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples. We demonstrate that the dynamic promoter architecture identifies developmental trajectories and orchestrates transcriptional transitions during cell-state commitment. Moreover, liCHi-C enables the identification of disease-relevant cell types, genes and pathways potentially deregulated by non-coding alterations at distal regulatory elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-abundance cell populations, and offers an opportunity to uncover factors and regulatory networks involved in disease pathogenesis.
Collapse
Affiliation(s)
- Laureano Tomás-Daza
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | - Llorenç Rovirosa
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Paula López-Martí
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | | | - François Serra
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Oscar Molina
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Cedric Ghevaert
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Esther Cuatrecasas
- Pediatric Institute of Rare Diseases, Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
| | - Dolors Costa
- Hospital Clinic, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
- Cancer Network Biomedical Research Center, Barcelona, Spain
| | - Mireia Camós
- Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona, Spain
- Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
- Center for Biomedical Research in the Rare Diseases Network (CIBERER), Carlos III Health Institute, Madrid, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Badalona, Barcelona, Spain.
| |
Collapse
|
8
|
Clinical and Prognostic Impact of Copy Number Alterations and Associated Risk Profiles in a Cohort of Pediatric B-cell Precursor Acute Lymphoblastic Leukemia Cases Treated Under ICiCLe Protocol. Hemasphere 2022; 6:e782. [PMID: 36204689 PMCID: PMC9529051 DOI: 10.1097/hs9.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Copy number alteration (CNA) status and CNA risk profiles of IKZF1plus, UK-ALL CNA risk groups and MRplus scores, were evaluated for clinical and prognostic impact in a cohort of 493 B-cell acute lymphoblastic leukemia cases diagnosed and treated under the Indian Collaborative Childhood Leukemia group (ICiCLe) protocol trial. Overall CNA frequency was 59% with 60% of cases showing 2-loci deletion. CDKN2A/B deletion was most common CNA (36.3%), while IKZF1 deletion and IKZF1plus profile were noted in 19.5% and 13.4% of cases, respectively. IKZF1 deletions and other CNA risk profiles were significantly associated with poor (PR)/high risk (HR) clinical and genetic profile parameters (P < 0.001). In addition, the 3-year OS, event-free survival (EFS) was significantly poor with high relapse rate (RR) of 38.6%, 46.5%, and 35.2% for IKZF1 deletions, IKZF1plus profiles, and UK-ALL CNA-intermediate risk (IR)+PR risk groups, respectively (P < 0.001). Integrated evaluation of UK-ALL CNA risk profile with ICiCLe trial risk stratification groups revealed a worse overall survival, EFS, and RR of 63.3%, 43.2%, and 35.2% for CNA-IR+PR profile compared to CNA-good risk profile (81.3%, 65.0%, and 21.0%; P < 0.001). Hence, routine CNA testing in our setting is must to identify standard risk and IR cases likely to benefit from HR treatment.
Collapse
|
9
|
Butler M, Vervoort BM, van Ingen Schenau DS, Jongeneel L, van der Zwet JC, Marke R, Meijerink JP, Scheijen B, van der Meer LT, van Leeuwen FN. Reversal of IKZF1-induced glucocorticoid resistance by dual targeting of AKT and ERK signaling pathways. Front Oncol 2022; 12:905665. [PMID: 36119546 PMCID: PMC9478899 DOI: 10.3389/fonc.2022.905665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Although long-term survival in pediatric acute lymphoblastic leukemia (ALL) currently exceeds 90%, some subgroups, defined by specific genomic aberrations, respond poorly to treatment. We previously reported that leukemias harboring deletions or mutations affecting the B-cell transcription factor IKZF1 exhibit a tumor cell intrinsic resistance to glucocorticoids (GCs), one of the cornerstone drugs used in the treatment of ALL. Here, we identified increased activation of both AKT and ERK signaling pathways as drivers of GC resistance in IKZF1-deficient leukemic cells. Indeed, combined pharmacological inhibition of AKT and ERK signaling effectively reversed GC resistance in IKZF1-deficient leukemias. As inhibitors for both pathways are under clinical investigation, their combined use may enhance the efficacy of prednisolone-based therapy in this high-risk patient group.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | - René Marke
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Frank N. van Leeuwen
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
- *Correspondence: Frank N. van Leeuwen,
| |
Collapse
|
10
|
Affiliation(s)
- Sang Hyeon Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ryeong Jung
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
11
|
Balasubramanian S, Hodkinson B, Schuster SJ, Fowler NH, Trotman J, Hess G, Cheson BD, Schaffer M, Sun S, Deshpande S, Vermeulen J, Salles G, Gopal AK. Identification of a genetic signature enriching for response to ibrutinib in relapsed/refractory follicular lymphoma in the DAWN phase 2 trial. Cancer Med 2021; 11:61-73. [PMID: 34791836 PMCID: PMC8704158 DOI: 10.1002/cam4.4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Background The single‐arm DAWN trial (NCT01779791) of ibrutinib monotherapy in patients with relapsed/refractory follicular lymphoma (FL) showed an overall response rate (ORR) of 20.9% and a median response duration of 19.4 months. This biomarker analysis of the DAWN dataset sought to determine genetic classifiers for prediction of response to ibrutinib treatment. Methods Whole exome sequencing was performed on baseline tumor samples. Potential germline variants were excluded; a custom set of 1216 cancer‐related genes was examined. Responder‐ versus nonresponder‐associated variants were identified using Fisher's exact test. Classifiers with increasing numbers of genes were created using a greedy algorithm that repeatedly selected genes, adding the most nonresponders to the existing “predicted nonresponders” set and were evaluated with 10‐fold cross‐validation. Results Exome data were generated from 88 patient samples and 13,554 somatic mutation variants were inferred. Response data were available for 83 patients (17 responders, 66 nonresponders). Each sample showed 100 to >500 mutated genes, with greater variance across nonresponders. The overall variant pattern was consistent with previous FL studies; 75 genes had mutations in >10% of patients, including genes previously reported as associated with FL. Univariate analysis yielded responder‐associated genes FANCA, HISTH1B, ANXA6, BTG1, and PARP10, highlighting the importance of functions outside of B‐cell receptor signaling, including epigenetic processes, DNA damage repair, cell cycle/proliferation, and cell motility/invasiveness. While nonresponder‐associated genes included well‐known TP53 and CARD11, genetic classifiers developed using nonresponder‐associated genes included ATP6AP1, EP400, ARID1A, SOCS1, and TBL1XR1, suggesting resistance to ibrutinib may be related to broad biological functions connected to epigenetic modification, telomere maintenance, and cancer‐associated signaling pathways (mTOR, JAK/STAT, NF‐κB). Conclusion The results from univariate and genetic classifier analyses provide insights into genes associated with response or resistance to ibrutinib in FL and identify a classifier developed using nonresponder‐associated genes, which warrants further investigation. Trial registration: NCT01779791.
Collapse
Affiliation(s)
| | | | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan H Fowler
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Judith Trotman
- Haematology Department, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Georg Hess
- Department of Hematology/Oncology, Johannes Gutenberg-University, Mainz, Germany
| | - Bruce D Cheson
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, District of Columbia, USA
| | | | - Steven Sun
- Janssen Research & Development, Raritan, New Jersey, USA
| | | | | | - Gilles Salles
- Hospices Civils de Lyon, Université de Lyon, Pierre-Bénite Cedex, Lyon, France
| | - Ajay K Gopal
- Division of Medical Oncology, Department of Medicine, The University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Lymphoma Program, Seattle Cancer Care Alliance, Seattle, Washington, USA
| |
Collapse
|
12
|
Mangum DS, Meyer JA, Mason CC, Shams S, Maese LD, Gardiner JD, Downie JM, Pei D, Cheng C, Gleason A, Luo M, Pui CH, Aplenc R, Hunger SP, Loh M, Greaves M, Trede N, Raetz E, Frazer JK, Mullighan CG, Engel ME, Miles RR, Rabin KR, Schiffman JD. Association of Combined Focal 22q11.22 Deletion and IKZF1 Alterations With Outcomes in Childhood Acute Lymphoblastic Leukemia. JAMA Oncol 2021; 7:1521-1528. [PMID: 34410295 DOI: 10.1001/jamaoncol.2021.2723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. Objective To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. Design, Setting, and Participants This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. Exposures Focal 22q11.22 deletions. Main Outcomes and Measures Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). Results This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). Conclusions and Relevance This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.
Collapse
Affiliation(s)
- David Spencer Mangum
- Nemours/Alfred I. DuPont Hospital for Children, Division of Pediatric Hematology/Oncology, Wilmington, Delaware
| | - Julia A Meyer
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City.,Division of Pediatric Hematology and Oncology, University of California, San Francisco
| | - Clinton C Mason
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Luke D Maese
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City
| | - Jamie D Gardiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City
| | | | - Deqing Pei
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Adam Gleason
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Minjie Luo
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard Aplenc
- Division of Oncology and the Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Stephen P Hunger
- Division of Oncology and the Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Mignon Loh
- Division of Pediatric Hematology and Oncology, University of California, San Francisco
| | - Mel Greaves
- Institute of Cancer Research, London, England
| | | | - Elizabeth Raetz
- Department of Pediatrics, NYU Langone Health, New York, New York
| | - J Kimble Frazer
- Jimmy Everest Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael E Engel
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Virginia, Charlottesville
| | - Rodney R Miles
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City
| | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Joshua D Schiffman
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City.,PEEL Therapeutics, Inc, Salt Lake City, Utah
| |
Collapse
|
13
|
Yamashita M, Morio T. Inborn errors of IKAROS and AIOLOS. Curr Opin Immunol 2021; 72:239-248. [PMID: 34265590 DOI: 10.1016/j.coi.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
IKAROS is a pioneer protein of the IKZF family of transcription factors that plays an essential role in lymphocyte development. Recently, inborn errors of IKAROS have been identified in patients with B cell deficiency and hypogammaglobulinemia, and these patients often present with recurrent sinopulmonary infection. Autoimmunity and hematologic malignancies are other characteristic complications seen in the patients with IKAROS deficiency. Missense mutation involving asparagine at the 159th position results in combined immunodeficiency, often presenting with Pneumocystis jirovecii pneumonia. Inborn errors of AIOLOS, HELIOS, and PEGASUS have also been reported in patients with B cell deficiency, Evans syndrome, and hereditary thrombocytopenia, respectively. Here, we briefly review the phenotype and genotype of IKZF mutations, especially IKAROS.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
Liang C, Li Y, Wang LN, Zhang XL, Luo JS, Peng CJ, Tang WY, Huang LB, Tang YL, Luo XQ. Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238. ACTA ACUST UNITED AC 2021; 26:16-25. [PMID: 33357126 DOI: 10.1080/16078454.2020.1860187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. Our aim was to identify a novel miRNA that can predict prognosis of childhood ALL patients and explore its potential mechanism. METHODS The miRNA expression profiles of childhood ALL were analyzed using GEO database and HiSeq instruments. The expression of miR-155 was examined by RT-PCR in 42 ALL patients. To investigate the role of miR-155 in ALL, four ALL cell lines (CEM-C1, Jurkat, MOLT-3 and MOLT-4) were transfected with miR-155 mimics, miR-155 inhibitors or corresponding controls. Dual-luciferase reporter system was applied to confirm the miR-155 target ZNF238. Moreover, proliferation and apoptosis were evaluated by MTT and flow cytometry. RESULTS Dataset GSE56489 and GSE23024 demonstrated that miR-155 was up-regulated and ZNF238 was down-regulated at diagnosis status of ALL. High miR-155 expression was associated with poor outcome. Overexpressed miR-155 promoted ALL cell proliferation and inhibited apoptosis. Dual-luciferase reporter result showed that miR-155 directly regulated ZNF238. Silencing ZNF238 promoted cell proliferation in ALL cells. DISCUSSION Our research indicating that miR-155 might possess potential value as a biomarker for predicting the prognosis of individuals. However, the role of ZNF238 in childhood ALL remain unknown. In the present study, we found the possible role of ZNF238 as a new tumor suppressor in ALL, which might be necessary for the antiproliferative functions of normal cells to counteract ALL formation. CONCLUSION Our results propose that miR-155 is in association with poor prognosis of childhood ALL. Furthermore, miR-155 could promote cell proliferation targeting ZNF238.
Collapse
Affiliation(s)
- Cong Liang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Li
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Na Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Li Zhang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie-Si Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chun-Jin Peng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen-Yan Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Ge Z, Song C, Ding Y, Tan BH, Desai D, Sharma A, Gowda R, Yue F, Huang S, Spiegelman V, Payne JL, Reeves ME, Iyer S, Dhanyamraju PK, Imamura Y, Bogush D, Bamme Y, Yang Y, Soliman M, Kane S, Dovat E, Schramm J, Hu T, McGrath M, Chroneos ZC, Payne KJ, Gowda C, Dovat S. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia 2021; 35:1267-1278. [PMID: 33531656 PMCID: PMC8102195 DOI: 10.1038/s41375-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.
Collapse
Affiliation(s)
- Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Zhongda Hospital, Medical School of Southeast University Nanjing, 210009, Nanjing, China
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Feng Yue
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Jonathon L Payne
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Mark E Reeves
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Soumya Iyer
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Yuka Imamura
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yevgeniya Bamme
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yiping Yang
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Mario Soliman
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shriya Kane
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Elanora Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tommy Hu
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Mary McGrath
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zissis C Chroneos
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kimberly J Payne
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
16
|
Liu H, Li Z, Qiu F, Li C, Lin X, He Y, Qian M, Song Y, Zhang H. Association Between NR3C1 Mutations and Glucocorticoid Resistance in Children With Acute Lymphoblastic Leukemia. Front Pharmacol 2021; 12:634956. [PMID: 33854435 PMCID: PMC8039513 DOI: 10.3389/fphar.2021.634956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment outcomes in children with acute lymphoblastic leukemia (ALL) have been improved substantially, with a cure rate exceeding 80% using conventional therapy. However, the outcome for patients with relapsed/refractory ALL remains unsatisfactory, despite the fact that these patients generally receive more intense therapy. Glucocorticoid (GC) resistance is a leading cause of treatment failure and relapse in ALL. Abnormal NR3C1 transcription and/or translation is strongly associated with GC resistance, but the underlying molecular mechanism and the clinical value of NR3C1 alterations with GC resistance in ALL treatment remain unclear. This study applied panel sequencing to 333 newly diagnosed and 18 relapsed ALL samples to characterize the link between NR3C1 and ALL further. We identified NR3C1 mutations in three patients with newly diagnosed ALL (0.9%) and two patients with relapsed ALL (11.1%). Functional analyses revealed that four of these five NR3C1 mutations (p. R477H, p. Y478C, p. P530fs, and p. H726P) were loss-of-function (LoF) mutations. A drug sensitivity test further showed that LoF NR3C1 mutations influence GC resistance. Saturated mutagenesis of hotspot R477 demonstrated the importance of this residue for NR3C1 function. The dominant-negative effect of p. R477C and p. R477S and the non-dominant negative effect of p. R477H and p. Y478C suggests multiple mechanisms underlying GC resistance. Thus, primary or acquired genomic lesions in NR3C1 may play a critical role in GC resistance and contribute to ALL treatment failure and/or relapse.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ziping Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fei Qiu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, China
| | - Chunjie Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiaojing Lin
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanbin Song
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
17
|
IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity in high-risk B-cell acute lymphoblastic leukemia. Blood 2021; 136:1520-1534. [PMID: 32396934 DOI: 10.1182/blood.2019002655] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.
Collapse
|
18
|
Roderick JE, Gallagher KM, Murphy LC, O'Connor KW, Tang K, Zhang B, Brehm MA, Greiner DL, Yu J, Zhu LJ, Green MR, Kelliher MA. Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death. Blood 2021; 137:500-512. [PMID: 33507291 PMCID: PMC7845005 DOI: 10.1182/blood.2020005712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoid (GC) resistance remains a clinical challenge in pediatric acute lymphoblastic leukemia where response to GC is a reliable prognostic indicator. To identify GC resistance pathways, we conducted a genome-wide, survival-based, short hairpin RNA screen in murine T-cell acute lymphoblastic leukemia (T-ALL) cells. Genes identified in the screen interfere with cyclic adenosine monophosphate (cAMP) signaling and are underexpressed in GC-resistant or relapsed ALL patients. Silencing of the cAMP-activating Gnas gene interfered with GC-induced gene expression, resulting in dexamethasone resistance in vitro and in vivo. We demonstrate that cAMP signaling synergizes with dexamethasone to enhance cell death in GC-resistant human T-ALL cells. We find the E prostanoid receptor 4 expressed in T-ALL samples and demonstrate that prostaglandin E2 (PGE2) increases intracellular cAMP, potentiates GC-induced gene expression, and sensitizes human T-ALL samples to dexamethasone in vitro and in vivo. These findings identify PGE2 as a target for GC resensitization in relapsed pediatric T-ALL.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Child
- Chromogranins/antagonists & inhibitors
- Colforsin/pharmacology
- Cyclic AMP/pharmacology
- Cyclic AMP/physiology
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Dinoprostone/administration & dosage
- Dinoprostone/antagonists & inhibitors
- Dinoprostone/pharmacology
- Dinoprostone/physiology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Female
- GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gs/deficiency
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Male
- Mice
- Models, Animal
- Molecular Targeted Therapy
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Radiation Chimera
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Receptors, Prostaglandin E, EP4 Subtype/biosynthesis
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Second Messenger Systems/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jun Yu
- Department of Molecular, Cell, and Cancer Biology
| | | | | | | |
Collapse
|
19
|
González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-Like Clinical Implications of the CDKN2A/ARF/CDKN2B Gene Cluster in Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12010079. [PMID: 33435487 PMCID: PMC7827355 DOI: 10.3390/genes12010079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant clonal expansion of lymphoid hematopoietic precursors that exhibit developmental arrest at varying stages of differentiation. Similar to what occurs in solid cancers, transformation of normal hematopoietic precursors is governed by a multistep oncogenic process that drives initiation, clonal expansion and metastasis. In this process, alterations in genes encoding proteins that govern processes such as cell proliferation, differentiation, and growth provide us with some of the clearest mechanistic insights into how and why cancer arises. In such a scenario, deletions in the 9p21.3 cluster involving CDKN2A/ARF/CDKN2B genes arise as one of the oncogenic hallmarks of ALL. Deletions in this region are the most frequent structural alteration in T-cell acute lymphoblastic leukemia (T-ALL) and account for roughly 30% of copy number alterations found in B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Here, we review the literature concerning the involvement of the CDKN2A/B genes as a prognosis marker of good or bad response in the two ALL subtypes (BCP-ALL and T-ALL). We compare frequencies observed in studies performed on several ALL cohorts (adult and child), which mainly consider genetic data produced by genomic techniques. We also summarize what we have learned from mouse models designed to evaluate the functional involvement of the gene cluster in ALL development and in relapse/resistance to treatment. Finally, we examine the range of possibilities for targeting the abnormal function of the protein-coding genes of this cluster and their potential to act as anti-leukemic agents in patients.
Collapse
Affiliation(s)
- Celia González-Gil
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Josep Maria Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Correspondence: ; Tel.: +34-93-557-28-08
| |
Collapse
|
20
|
Rosales-Rodríguez B, Núñez-Enríquez JC, Mejía-Aranguré JM, Rosas-Vargas H. Prognostic Impact of Somatic Copy Number Alterations in Childhood B-Lineage Acute Lymphoblastic Leukemia. Curr Oncol Rep 2020; 23:2. [PMID: 33190177 DOI: 10.1007/s11912-020-00998-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The high prevalence of relapse in pediatric B-lineage acute lymphoblastic leukemia (B-ALL) despite the improvements achieved using current risk stratification schemes, demands more accurate methods for outcome prediction. Here, we provide a concise overview about the key advances that have expanded our knowledge regarding the somatic defects across B-ALL genomes, particularly focusing on copy number alterations (CNAs) and their prognostic impact. RECENT FINDINGS The identification of commonly altered genes in B-ALL has inspired the development of risk classifiers based on copy number states such as the IKZF1plus and the United Kingdom (UK) ALL-CNA classifiers to improve outcome prediction in B-ALL. CNA-risk classifiers have emerged as effective tools to predict disease relapse; though, their clinical applications are yet to be transferred to routine practice.
Collapse
Affiliation(s)
- Beatriz Rosales-Rodríguez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico.,Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico. .,Coordinación de Investigación en Salud, IMSS, Torre Academia Nacional de Medicina, 06720, Ciudad de México, Mexico.
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06720, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Zhou X, Xu X, Tian Z, Xu WY, Cui Y. Mutational profiling of lung adenocarcinoma in China detected by next-generation sequencing. J Cancer Res Clin Oncol 2020; 146:2277-2287. [DOI: 10.1007/s00432-020-03284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
22
|
Comprehensive profiling of disease-relevant copy number aberrations for advanced clinical diagnostics of pediatric acute lymphoblastic leukemia. Mod Pathol 2020; 33:812-824. [PMID: 31857684 DOI: 10.1038/s41379-019-0423-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Acute lymphoblastic leukemia is the most common pediatric cancer characterized by a heterogeneous genomic landscape with copy number aberrations occurring at various stages of pathogenesis, disease progression, and treatment resistance. In this study, disease-relevant copy number aberrations were profiled in bone marrow samples of 91 children with B- or T-cell precursor acute lymphoblastic leukemia using digital multiplex ligation-dependent probe amplification (digitalMLPATM). Whole chromosome gains and losses, subchromosomal copy number aberrations, as well as unbalanced alterations conferring intrachromosomal gene fusions were simultaneously identified with results available within 36 hours. Aberrations were observed in 96% of diagnostic patient samples, and increased numbers of copy number aberrations were detected at the time of relapse as compared with diagnosis. Comparative scrutiny of 24 matching diagnostic and relapse samples from 11 patients revealed three different patterns of clonal relationships with (i) one patient displaying identical copy number aberration profiles at diagnosis and relapse, (ii) six patients showing clonal evolution with all lesions detected at diagnosis being present at relapse, and (iii) four patients displaying conserved as well as lost or gained copy number aberrations at the time of relapse, suggestive of the presence of a common ancestral cell compartment giving rise to clinically manifest leukemia at different time points during the disease course. A newly introduced risk classifier combining cytogenetic data with digitalMLPATM-based copy number aberration profiles allowed for the determination of four genetic subgroups of B-cell precursor acute lymphoblastic leukemia with distinct event-free survival rates. DigitalMLPATM provides fast, robust, and highly optimized copy number aberration profiling for the genomic characterization of acute lymphoblastic leukemia samples, facilitates the decipherment of the clonal origin of relapse and provides highly relevant information for clinical prognosis assessment.
Collapse
|
23
|
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020; 44:100677. [PMID: 32245541 DOI: 10.1016/j.blre.2020.100677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Advances in genomics have deepened our understanding of the biology of acute lymphoblastic leukemia (ALL), defined novel molecular leukemia subtypes, discovered new prognostic biomarkers and paved the way to emerging molecularly targeted therapeutic avenues. Since its discovery, IKZF1 has generated significant interest within the leukemia scientific community.IKZF1 plays a critical role in lymphoid development and its alterations cooperate to mediate leukemogenesis. IKZF1 alterations are present in approximately 15% of childhood ALL, rise in prevalence among adults with ALL and become highly enriched within kinase-driven ALL. A cumulating body of literature has highlighted the adverse prognostic impact of IKZF1 alterations in both Philadelphia chromosome (Ph)-negative and Ph-driven ALL. IKZF1 alterations thus emerge as an important prognostic biomarker in ALL. This article aims to provide a state-of-the-art review focusing on the prognostic clinical relevance of IKZF1 alterations in ALL, as well as current and future therapeutic strategies targeting IKZF1-altered ALL.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Upfront Treatment Influences the Composition of Genetic Alterations in Relapsed Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2020; 4:e318. [PMID: 32072138 PMCID: PMC7000475 DOI: 10.1097/hs9.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text Genomic alterations in relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) may provide insight into the role of specific genomic events in relapse development. Along this line, comparisons between the spectrum of alterations in relapses that arise in different upfront treatment protocols may provide valuable information on the association between the tumor genome, protocol components and outcome. Here, we performed a comprehensive characterization of relapsed BCP-ALL cases that developed in the context of 3 completed Dutch upfront studies, ALL8, ALL9, and ALL10. In total, 123 pediatric BCP-ALL relapses and 77 paired samples from primary diagnosis were analyzed for alterations in 22 recurrently affected genes. We found pronounced differences in relapse alterations between the 3 studies. Specifically, CREBBP mutations were observed predominantly in relapses after treatment with ALL8 and ALL10 which, in the latter group, were all detected in medium risk-treated patients. IKZF1 alterations were enriched 2.2-fold (p = 0.01) and 2.9-fold (p < 0.001) in ALL8 and ALL9 relapses compared to diagnosis, respectively, whereas no significant enrichment was found for relapses that were observed after treatment with ALL10. Furthermore, IKZF1 deletions were more frequently preserved from a major clone at diagnosis in relapses after ALL9 compared to relapses after ALL8 and ALL10 (p = 0.03). These data are in line with previous studies showing that the prognostic value of IKZF1 deletions differs between upfront protocols and is particularly strong in the ALL9 regimen. In conclusion, our data reveal a correlation between upfront treatment and the genetic composition of relapsed BCP-ALL.
Collapse
|
25
|
Alsagaby SA. Omics-based insights into therapy failure of pediatric B-lineage acute lymphoblastic leukemia. Oncol Rev 2019; 13:435. [PMID: 31565196 PMCID: PMC6747058 DOI: 10.4081/oncol.2019.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is the most common type of cancer seen in children and is characterized by a variable clinical course. Although there have been remarkable improvements in the therapy outcomes of pediatric B-ALL, treatment failure remains the leading-cause of death in 18% of the afflicted patients during the first 5 years after diagnosis. Molecular heterogeneities of pediatric B-ALL play important roles as determinants of the therapy response. Therefore, many of these molecular abnormalities have an established prognostic value in the disease. The present review discusses the omics-based revelations from epigenomics, genomics, transcriptomics and proteomics about treatment failure in pediatric B-ALL. Next it highlights the promise of the molecular aberration-targeted therapy to improve the treatment outcomes.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Saudi Arabia
| |
Collapse
|
26
|
Ayón-Pérez MF, Pimentel-Gutiérrez HJ, Durán-Avelar MDJ, Vibanco-Pérez N, Pérez-Peraza VM, Pérez-González ÓA, Barrientos-Ríos R, Santillán-Ávila CF, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Gutiérrez-Franco J, Vázquez-Reyes A. IKZF1 Gene Deletion in Pediatric Patients Diagnosed with Acute Lymphoblastic Leukemia in Mexico. Cytogenet Genome Res 2019; 158:10-16. [DOI: 10.1159/000499641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
The IKZF1 gene is formed by 8 exons and encodes IKAROS, a transcription factor that regulates the expression of genes that control cell cycle progression and cell survival. In general, 15-20% of the patients with preB acute lymphoblastic leukemia (preB ALL) harbor IKZF1 deletions, and the frequency of these deletions increases in BCR-ABL1 or Ph-like subgroups. These deletions have been associated with poor treatment response and the risk of relapse. The aim of this descriptive study was to determine the frequency of IKZF1 deletions and the success of an induction therapy response in Mexican pediatric patients diagnosed with preB ALL in 2 hospitals from 2017 to August 2018. Thirty-six bone marrow samples from patients at the Instituto Nacional de Pediatría in Mexico City and the Centro Estatal de Cancerología in Tepic were analyzed. The IKZF1 deletion was identified by MLPA using the SALSA MLPA P335 ALL-IKZF1 probemix. Deletions of at least 1 IKZF1 exon were observed in 7/34 samples (20.6%): 3 with 1 exon deleted; 1 with 2 exons, 1 with 5 exons, 1 with 6 exons, and 1 patient with a complete IKZF1 deletion. This study was descriptive in nature; we calculated the frequency of the IKZF1 gene deletion in a Mexican pediatric population with preB ALL as 20.6%.
Collapse
|
27
|
Steeghs EMP, Boer JM, Hoogkamer AQ, Boeree A, de Haas V, de Groot-Kruseman HA, Horstmann MA, Escherich G, Pieters R, den Boer ML. Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 2019; 9:4634. [PMID: 30874617 PMCID: PMC6420659 DOI: 10.1038/s41598-019-41078-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1, EBF1, PAX5, CDKN2A/B, RB1, BTG1, ETV6, and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1-deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1-deleted primary BCR-ABL1-like and non-BCR-ABL1-like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1-like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses.
Collapse
Affiliation(s)
- Elisabeth M P Steeghs
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex Q Hoogkamer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Aurélie Boeree
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Valerie de Haas
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | | | - Martin A Horstmann
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gabriele Escherich
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Monique L den Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands.
| |
Collapse
|
28
|
Gu S, Lin S, Ye D, Qian S, Jiang D, Zhang X, Li Q, Yang J, Ying X, Li Z, Tang M, Wang J, Jin M, Chen K. Genome-wide methylation profiling identified novel differentially hypermethylated biomarker MPPED2 in colorectal cancer. Clin Epigenetics 2019; 11:41. [PMID: 30846004 PMCID: PMC6407227 DOI: 10.1186/s13148-019-0628-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epigenetic alternation is a common contributing factor to neoplastic transformation. Although previous studies have reported a cluster of aberrant promoter methylation changes associated with silencing of tumor suppressor genes, little is known concerning their sequential DNA methylation changes during the carcinogenetic process. The aim of the present study was to address a genome-wide search for identifying potentially important methylated changes and investigate the onset and pattern of methylation changes during the progression of colorectal neoplasia. METHODS A three-phase design was employed in this study. In the screening phase, DNA methylation profile of 12 pairs of colorectal cancer (CRC) and adjacent normal tissues was analyzed by using the Illumina MethylationEPIC BeadChip. Significant CpG sites were selected based on a cross-validation analysis from The Cancer Genome Atlas (TCGA) database. Methylation levels of candidate CpGs were assessed using pyrosequencing in the training dataset (tumor lesions and adjacent normal tissues from 46 CRCs) and the validation dataset (tumor lesions and paired normal tissues from 13 hyperplastic polyps, 129 adenomas, and 256 CRCs). A linear mixed-effects model was used to examine the incremental changes of DNA methylation during the progression of colorectal neoplasia. RESULTS The comparisons between normal and tumor samples in the screening phase revealed an extensive CRC-specific methylomic pattern with 174,006 (21%) methylated CpG sites, of which 22,232 (13%) were hyermethylated and 151,774 (87%) were hypomethylated. Hypermethylation mostly occurred in CpG islands with an overlap of gene promoters, while hypomethylation tended to be mapped far away from functional regions. Further cross validation analysis from TCGA dataset confirmed 265 hypermethylated promoters coupling with downregulated gene expression. Among which, hypermethylated changes in MEEPD2 promoter was successfully replicated in both training and validation phase. Significant hypermethylation appeared since precursor lesions with an extensive modification in CRCs. The linear mixed-effects modeling analysis found that a cumulative pattern of MPPED2 methylation changes from normal mucosa to hyperplastic polyp to adenoma, and to carcinoma (P < 0.001). CONCLUSIONS Our findings indicate that epigenetic alterations of MPPED2 promoter region appear sequentially during the colorectal neoplastic progression. It might be able to serve as a promising biomarker for early diagnosis and stage surveillance of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shujuan Lin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ding Ye
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Epidemiology and Biostatistics, Zhejiang Chinese Medical University School of Public Health, 548 Binwen Road, Hangzhou, 310053, China
| | - Sangni Qian
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danjie Jiang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaocong Zhang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qilong Li
- Jiashan Institute of Cancer Prevention and Treatment, 345 Jiefangdong Road, Jiashan, 314100, China
| | - Jinhua Yang
- Jiashan Institute of Cancer Prevention and Treatment, 345 Jiefangdong Road, Jiashan, 314100, China
| | - Xiaojiang Ying
- Department of Anorectal Surgery, Shaoxing People's Hospital, 568 Zhongxingbei Road, Shaoxing, 312000, China
| | - Zhenjun Li
- Department of Anorectal Surgery, Shaoxing People's Hospital, 568 Zhongxingbei Road, Shaoxing, 312000, China
| | - Mengling Tang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
29
|
Hamadeh L, Enshaei A, Schwab C, Alonso CN, Attarbaschi A, Barbany G, den Boer ML, Boer JM, Braun M, Dalla Pozza L, Elitzur S, Emerenciano M, Fechina L, Felice MS, Fronkova E, Haltrich I, Heyman MM, Horibe K, Imamura T, Jeison M, Kovács G, Kuiper RP, Mlynarski W, Nebral K, Ivanov Öfverholm I, Pastorczak A, Pieters R, Piko H, Pombo-de-Oliveira MS, Rubio P, Strehl S, Stary J, Sutton R, Trka J, Tsaur G, Venn N, Vora A, Yano M, Harrison CJ, Moorman AV. Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL. Blood Adv 2019; 3:148-157. [PMID: 30651283 PMCID: PMC6341196 DOI: 10.1182/bloodadvances.2018025718] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic abnormalities provide vital diagnostic and prognostic information in pediatric acute lymphoblastic leukemia (ALL) and are increasingly used to assign patients to risk groups. We recently proposed a novel classifier based on the copy-number alteration (CNA) profile of the 8 most commonly deleted genes in B-cell precursor ALL. This classifier defined 3 CNA subgroups in consecutive UK trials and was able to discriminate patients with intermediate-risk cytogenetics. In this study, we sought to validate the United Kingdom ALL (UKALL)-CNA classifier and reevaluate the interaction with cytogenetic risk groups using individual patient data from 3239 cases collected from 12 groups within the International BFM Study Group. The classifier was validated and defined 3 risk groups with distinct event-free survival (EFS) rates: good (88%), intermediate (76%), and poor (68%) (P < .001). There was no evidence of heterogeneity, even within trials that used minimal residual disease to guide therapy. By integrating CNA and cytogenetic data, we replicated our original key observation that patients with intermediate-risk cytogenetics can be stratified into 2 prognostic subgroups. Group A had an EFS rate of 86% (similar to patients with good-risk cytogenetics), while group B patients had a significantly inferior rate (73%, P < .001). Finally, we revised the overall genetic classification by defining 4 risk groups with distinct EFS rates: very good (91%), good (81%), intermediate (73%), and poor (54%), P < .001. In conclusion, the UKALL-CNA classifier is a robust prognostic tool that can be deployed in different trial settings and used to refine established cytogenetic risk groups.
Collapse
Affiliation(s)
- Lina Hamadeh
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - Amir Enshaei
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - Claire Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - Cristina N Alonso
- Hematology-Oncology Department, Hospital de Pediatría "Prof. Dr. J. P. Garrahan," Buenos Aires, Argentina
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Clinical Genetics Section, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Luciano Dalla Pozza
- Cancer Center for Children, Sydney Childrens Hospital Network, Westmead, NSW, Australia
| | - Sarah Elitzur
- Pediatric Hematology Oncology, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mariana Emerenciano
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Larisa Fechina
- Regional Children's Hospital 1, Ekaterinburg, Russia
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russia
| | - Maria Sara Felice
- Hematology-Oncology Department, Hospital de Pediatría "Prof. Dr. J. P. Garrahan," Buenos Aires, Argentina
| | - Eva Fronkova
- Childhood Leukaemia Investigation, Prague, Czech Republic
- Department of Paediatric Haematology/Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Irén Haltrich
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Mats M Heyman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Marta Jeison
- Cancer Cytogenetic Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Gábor Kovács
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Karin Nebral
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Ingegerd Ivanov Öfverholm
- Department of Molecular Medicine and Surgery, Clinical Genetics Section, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Henriett Piko
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Maria S Pombo-de-Oliveira
- Pediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Patricia Rubio
- Hematology-Oncology Department, Hospital de Pediatría "Prof. Dr. J. P. Garrahan," Buenos Aires, Argentina
| | - Sabine Strehl
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jan Stary
- Department of Paediatric Haematology/Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; and
| | - Jan Trka
- Childhood Leukaemia Investigation, Prague, Czech Republic
- Department of Paediatric Haematology/Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Grigory Tsaur
- Regional Children's Hospital 1, Ekaterinburg, Russia
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russia
| | - Nicola Venn
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; and
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, United Kingdom
| | - Mio Yano
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
30
|
Yan W, Li SX, Gao H, Yang W. Identification of B-cell translocation gene 1-controlled gene networks in diffuse large B-cell lymphoma: A study based on bioinformatics analysis. Oncol Lett 2019; 17:2825-2835. [PMID: 30854058 PMCID: PMC6365947 DOI: 10.3892/ol.2019.9900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. The present study evaluated the impact of BTG1 gene expression on the clinical outcome of diffuse large B-cell lymphoma (DLBCL) and investigated potential mechanisms using the Gene Expression Omnibus (GEO) database. The gene expression profile datasets GSE31312, GSE10846, GSE65420 and GSE87371 were downloaded from the GEO database. BTG1 expression and clinicopathological data were obtained from the GSE31312 dataset. In 498 cases, the expression of BTG1 in DLBCL was associated with treatment response (χ2=19.020; P<0.001) and International Prognostic Index score (χ2=5.320; P=0.025). Using the Kaplan-Meier method, it was identified that the expression of BTG1 was associated with overall survival (OS) and progression-free survival (PFS) times. Univariate and multivariate Cox regression analysis demonstrated that BTG1 was an independent predictive factor for OS and PFS. From the overlapping analysis of 407 BTG1-associated genes and 22,187 DLBCL-associated genes, 401 genes were identified as BTG1-associated DLBCL genes. Pathway analysis revealed that BTG1-associated DLBCL genes were associated with cancer progression and DLBCL signaling pathways. Subsequently, a protein-protein interaction network was constructed of the BTG1-associated genes, which consisted of 235 genes and 601 interactions. Additionally, 24 genes with high degrees in the network were identified as hub genes, which included genes associated with ‘ribosome’ [ribosomal protein (RP) L11, RPL3, RPS29, RPL19, RPL15 and RPL12], ‘cell cycle’ (ubiquitin carboxyl extension protein 52, ATM and Ras homolog family member H), ‘mitogen-activated protein kinase pathway’ (mitogen-activated protein kinase 1), ‘histone modification’ (ASH1-like protein) and ‘transcription/translation’ (eukaryotic translation initiation factor 3 subunit E, eukaryotic translation elongation factor 1 δ, transcription termination factor 1, cAMP responsive element binding protein 1 and RNA polymerase II subunit F). In conclusion, BTG1 may serve as a predictive biomarker for DLBCL prognosis. Additionally, bioinformatics analysis indicated that BTG1 may exhibit key functions in the progression and development of DLBCL.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Hongyu Gao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
31
|
Monks A, Zhao Y, Hose C, Hamed H, Krushkal J, Fang J, Sonkin D, Palmisano A, Polley EC, Fogli LK, Konaté MM, Miller SB, Simpson MA, Voth AR, Li MC, Harris E, Wu X, Connelly JW, Rapisarda A, Teicher BA, Simon R, Doroshow JH. The NCI Transcriptional Pharmacodynamics Workbench: A Tool to Examine Dynamic Expression Profiling of Therapeutic Response in the NCI-60 Cell Line Panel. Cancer Res 2018; 78:6807-6817. [PMID: 30355619 PMCID: PMC6295263 DOI: 10.1158/0008-5472.can-18-0989] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across agents and cell types and uncovered gene-expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses and identifying candidate biomarkers of drug activity. The NCI TPW, publicly available at https://tpwb.nci.nih.gov, provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to commonly used anticancer drugs. SIGNIFICANCE: The NCI Transcriptional Pharmacodynamics Workbench represents the most extensive compilation to date of directly measured longitudinal transcriptional responses to anticancer agents across a thoroughly characterized ensemble of cancer cell lines.
Collapse
Affiliation(s)
- Anne Monks
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Curtis Hose
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Hossein Hamed
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Jianwen Fang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Dmitriy Sonkin
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Eric C Polley
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Laura K Fogli
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Melanie A Simpson
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Ming-Chung Li
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Erik Harris
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - John W Connelly
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Annamaria Rapisarda
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Richard Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
32
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Yeoh AEJ, Lu Y, Chin WHN, Chiew EKH, Lim EH, Li Z, Kham SKY, Chan YH, Abdullah WA, Lin HP, Chan LL, Lam JCM, Tan PL, Quah TC, Tan AM, Ariffin H. Intensifying Treatment of Childhood B-Lymphoblastic Leukemia With IKZF1 Deletion Reduces Relapse and Improves Overall Survival: Results of Malaysia-Singapore ALL 2010 Study. J Clin Oncol 2018; 36:2726-2735. [PMID: 30044693 DOI: 10.1200/jco.2018.78.3050] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Although IKZF1 deletion ( IKZF1del) confers a higher risk of relapse in childhood B-cell acute lymphoblastic leukemia (B-ALL), it is uncertain whether treatment intensification will reverse this risk and improve outcomes. The Malaysia-Singapore ALL 2010 study (MS2010) prospectively upgraded the risk assignment of patients with IKZF1del to the next highest level and added imatinib to the treatment of all patients with BCR- ABL1 fusion. Patients and Methods In total, 823 patients with B-ALL treated in the Malyasia-Singapore ALL 2003 study (MS2003; n = 507) and MS2010 (n = 316) were screened for IKZF1del using the multiplex ligation-dependent probe amplification assay. The impact of IKZF1del on the 5-year cumulative incidence of relapse (CIR) was compared between the two studies. Results Patient characteristics were similar in both cohorts, including IKZF1del frequencies (59 of 410 [14.4%] v 50 of 275 [18.2%]; P = .2). In MS2003, where IKZF1del was not used in risk assignment, IKZF1del conferred a significantly higher 5-year CIR (30.4% v 8.1%; P = 8.7 × 10-7), particularly in the intermediate-risk group who lacked high-risk features (25.0% v 7.5%; P = .01). For patients with BCR-ABL1-negative disease, IKZF1del conferred a higher 5-year CIR (20.5% v 8.0%; P = .01). In MS2010, the 5-year CIR of patients with IKZF1del significantly decreased to 13.5% ( P = .05) and no longer showed a significant difference in patients with BCR-ABL1-negative disease (11.4% v 4.4%; P = .09). The 5-year overall survival for patients with IKZF1del improved from 69.6% in MS2003 to 91.6% in MS2010 ( P = .007). Conclusion Intensifying therapy for childhood B-ALL with IKZF1del significantly reduced the risk of relapse and improved overall survival. Incorporating IKZF1del screening significantly improved treatment outcomes in contemporary ALL therapy.
Collapse
Affiliation(s)
- Allen Eng Juh Yeoh
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Yi Lu
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Winnie Hui Ni Chin
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Edwynn Kean Hui Chiew
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Evelyn Huizi Lim
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Zhenhua Li
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Shirley Kow Yin Kham
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Yiong Huak Chan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Wan Ariffin Abdullah
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Hai Peng Lin
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Lee Lee Chan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Joyce Ching Mei Lam
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Poh Lin Tan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Thuan Chong Quah
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Ah Moy Tan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Hany Ariffin
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| |
Collapse
|
34
|
Short NJ, Kantarjian H, Pui CH, Goldstone A, Jabbour E. SOHO State of the Art Update and Next Questions: Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2018; 18:439-446. [DOI: 10.1016/j.clml.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
|
35
|
Derenzini E, Rossi A, Treré D. Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why. J Hematol Oncol 2018; 11:75. [PMID: 29855342 PMCID: PMC5984324 DOI: 10.1186/s13045-018-0609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
It is well known that chemotherapy can cure only some cancers in advanced stage, mostly those with an intact p53 pathway. Hematological cancers such as lymphoma and certain forms of leukemia are paradigmatic examples of such scenario. Recent evidence indicates that the efficacy of many of the alkylating and intercalating agents, antimetabolites, topoisomerase, and kinase inhibitors used in cancer therapy is largely due to p53 stabilization and activation consequent to the inhibition of ribosome biogenesis. In this context, innovative drugs specifically hindering ribosome biogenesis showed preclinical activity and are currently in early clinical development in hematological malignancies. The mechanism of p53 stabilization after ribosome biogenesis inhibition is a multistep process, depending on specific factors that can be altered in tumor cells, which can affect the antitumor efficacy of ribosome biogenesis inhibitors (RiBi). In the present review, the basic mechanisms underlying the anticancer activity of RiBi are discussed based on the evidence deriving from available preclinical and clinical studies, with the purpose of defining when and why the treatment with drugs inhibiting ribosomal biogenesis could be highly effective in hematological malignancies.
Collapse
Affiliation(s)
- Enrico Derenzini
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy.
| | - Alessandra Rossi
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Davide Treré
- DIMES, Università di Bologna, Via Massarenti 9, Bologna, Italy.
| |
Collapse
|
36
|
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes. Int J Hematol 2018; 108:312-318. [DOI: 10.1007/s12185-018-2474-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
|
37
|
Abstract
Transcription factor IKZF1 (IKAROS) acts as a critical regulator of lymphoid differentiation and is frequently deleted or mutated in B-cell precursor acute lymphoblastic leukemia. IKZF1 gene defects are associated with inferior treatment outcome in both childhood and adult B-cell precursor acute lymphoblastic leukemia and occur in more than 70% of BCR-ABL1-positive and BCR-ABL1-like cases of acute lymphoblastic leukemia. Over the past few years, much has been learned about the tumor suppressive function of IKZF1 during leukemia development and the molecular pathways that relate to its impact on treatment outcome. In this review, we provide a concise overview on the role of IKZF1 during normal lymphopoiesis and the pathways that contribute to leukemia pathogenesis as a consequence of altered IKZF1 function. Furthermore, we discuss different mechanisms by which IKZF1 alterations impose therapy resistance on leukemic cells, including enhanced cell adhesion and modulation of glucocorticoid response.
Collapse
Affiliation(s)
- René Marke
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands .,Department of Pathology, Radboud University Medical Center; Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|
38
|
Sutton R, Venn NC, Law T, Boer JM, Trahair TN, Ng A, Den Boer ML, Dissanayake A, Giles JE, Dalzell P, Mayoh C, Barbaric D, Revesz T, Alvaro F, Pieters R, Haber M, Norris MD, Schrappe M, Dalla Pozza L, Marshall GM. A risk score including microdeletions improves relapse prediction for standard and medium risk precursor B-cell acute lymphoblastic leukaemia in children. Br J Haematol 2017; 180:550-562. [DOI: 10.1111/bjh.15056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Rosemary Sutton
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
- School of Women's and Children's Health; UNSW; Sydney Australia
| | - Nicola C. Venn
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
| | - Tamara Law
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
| | - Judith M. Boer
- Department of Paediatric Oncology/Haematology; Erasmus Medical Centre; Sophia Children's Hospital; Rotterdam The Netherlands
- Princess Máxima Centre for Paediatric Oncology; Utrecht The Netherlands
| | - Toby N. Trahair
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
- School of Women's and Children's Health; UNSW; Sydney Australia
- Kids Cancer Centre; Sydney Children's Hospital; Randwick Australia
| | - Anthea Ng
- Cancer Centre for Children; The Children's Hospital at Westmead; Westmead Australia
| | - Monique L. Den Boer
- Department of Paediatric Oncology/Haematology; Erasmus Medical Centre; Sophia Children's Hospital; Rotterdam The Netherlands
- Dutch Childhood Oncology Group; The Hague The Netherlands
| | | | - Jodie E. Giles
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
| | | | - Chelsea Mayoh
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
| | - Draga Barbaric
- Kids Cancer Centre; Sydney Children's Hospital; Randwick Australia
| | - Tamas Revesz
- Women's and Children's Hospital, SA Pathology; University of Adelaide; Adelaide Australia
| | - Frank Alvaro
- John Hunter Children's Hospital; Newcastle Australia
| | - Rob Pieters
- Princess Máxima Centre for Paediatric Oncology; Utrecht The Netherlands
- Dutch Childhood Oncology Group; The Hague The Netherlands
| | - Michelle Haber
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
- School of Women's and Children's Health; UNSW; Sydney Australia
| | - Murray D. Norris
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
- UNSW Centre for Childhood Cancer Research; Kensington Australia
| | - Martin Schrappe
- Christian-Albrechts-University Kiel and University Medical Centre Schleswig-Holstein; Kiel Germany
| | - Luciano Dalla Pozza
- Cancer Centre for Children; The Children's Hospital at Westmead; Westmead Australia
| | - Glenn M Marshall
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW; Sydney Australia
- School of Women's and Children's Health; UNSW; Sydney Australia
- Kids Cancer Centre; Sydney Children's Hospital; Randwick Australia
| |
Collapse
|
39
|
BTG1 low expression in pancreatic ductal adenocarcinoma is associated with a poorer prognosis. Int J Biol Markers 2017; 33:189-194. [PMID: 29076521 DOI: 10.5301/ijbm.5000310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE BTG1 is a member of the TOB/BTG protein family, which is a transducer of ErbB-2 and TOB2. It is known to inhibit tumor genesis, but its role in pancreatic ductal adenocarcinoma (PDAC) is still unknown. The purpose of this study is to investigate the expression of BTG1 protein in PDAC and to determine its prognostic significance. METHODS Immunohistochemistry is used to determine the protein expression of the BTG1 gene in 79 surgically resected PDAC. The association of BTG1 expression with all the patients' clinicopathologic parameters, including survival, was analyzed using statistical software. RESULTS High BTG1 expression was observed in 27.8% (22/79) of the PDAC tissues, which was significantly lower than the 58.2% (46/79) of corresponding normal adjacent noncancerous tissues by immunohistochemical staining (p<0.001).Through the stratified analysis, we found a significant difference of BTG1 expression in peri-neural invasion (p = 0.002), T stage (p = 0.000), N stage (p = 0.018), and tumor, node, and metastasis stage (p = 0.000). Univariate and multivariate Cox analysis revealed that BTG1 expression status was an independent prognostic factor in PDAC (p = 0.027). Moreover, overall survival was better in PDAC cases with higher rather than lower BTG1 expression (p = 0.027). CONCLUSIONS This study demonstrated for the first time that lower expression of BTG1 might be involved in the progression of PDAC, suggesting that BTG1 might be a novel prognostic marker and a target for therapy.
Collapse
|
40
|
Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, Boeree A, van de Ven C, de Groot-Kruseman HA, de Haas V, Horstmann MA, Escherich G, Zwaan CM, Cuppen E, Koudijs MJ, Pieters R, den Boer ML. RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia 2017; 32:931-940. [PMID: 28972594 PMCID: PMC5886052 DOI: 10.1038/leu.2017.303] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
RAS pathway mutations have been linked to relapse and chemotherapy resistance in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive data on the frequency and prognostic value of subclonal mutations in well-defined subgroups using highly sensitive and quantitative methods are lacking. Targeted deep sequencing of 13 RAS pathway genes was performed in 461 pediatric BCP-ALL cases at initial diagnosis and in 19 diagnosis-relapse pairs. Mutations were present in 44.2% of patients, with 24.1% carrying a clonal mutation. Mutation frequencies were highest in high hyperdiploid, infant t(4;11)-rearranged, BCR-ABL1-like and B-other cases (50-70%), whereas mutations were less frequent in ETV6-RUNX1-rearranged, and rare in TCF3-PBX1- and BCR-ABL1-rearranged cases (27-4%). RAS pathway-mutated cells were more resistant to prednisolone and vincristine ex vivo. Clonal, but not subclonal, mutations were linked to unfavorable outcome in standard- and high-risk-treated patients. At relapse, most RAS pathway mutations were clonal (9 of 10). RAS mutant cells were sensitive to the MEK inhibitor trametinib ex vivo, and trametinib sensitized resistant cells to prednisolone. We conclude that RAS pathway mutations are frequent, and that clonal, but not subclonal, mutations are associated with unfavorable risk parameters in newly diagnosed pediatric BCP-ALL. These mutations may designate patients eligible for MEK inhibitor treatment.
Collapse
Affiliation(s)
- I S Jerchel
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - A Q Hoogkamer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - I M Ariës
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E M P Steeghs
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J M Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - N J M Besselink
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Boeree
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C van de Ven
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - V de Haas
- DCOG, The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M A Horstmann
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,On behalf of the COALL
| | - G Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,On behalf of the COALL
| | - C M Zwaan
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E Cuppen
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Koudijs
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Pieters
- DCOG, The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M L den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.,DCOG, The Hague, The Netherlands
| |
Collapse
|
41
|
IKZF1 Gene in Childhood B-cell Precursor Acute Lymphoblastic Leukemia: Interplay between Genetic Susceptibility and Somatic Abnormalities. Cancer Prev Res (Phila) 2017; 10:738-744. [DOI: 10.1158/1940-6207.capr-17-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/10/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
|
42
|
Lopes BA, Meyer C, Barbosa TC, zur Stadt U, Horstmann M, Venn NC, Heatley S, White DL, Sutton R, Pombo-de-Oliveira MS, Marschalek R, Emerenciano M. COBL is a novel hotspot for IKZF1 deletions in childhood acute lymphoblastic leukemia. Oncotarget 2016; 7:53064-53073. [PMID: 27419633 PMCID: PMC5288169 DOI: 10.18632/oncotarget.10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Because of its clinical importance, we previously mapped breakpoints of intragenic deletions and developed a multiplex PCR assay to detect recurrent intragenic ΔIKZF1. Since the multiplex PCR was not able to detect complete deletions (IKZF1 Δ1-8), which account for ~30% of all ΔIKZF1, we aimed at investigating the genomic scenery of IKZF1 Δ1-8. Six samples of cases with IKZF1 Δ1-8 were analyzed by microarray assay, which identified monosomy 7, isochromosome 7q, and large interstitial deletions presenting breakpoints within COBL gene. Then, we established a multiplex ligation-probe amplification (MLPA) assay and screened copy number alterations within chromosome 7 in 43 diagnostic samples with IKZF1 Δ1-8. Our results revealed that monosomy and large interstitial deletions within chromosome 7 are the main causes of IKZF1 Δ1-8. Detailed analysis using long distance inverse PCR showed that six patients (16%) had large interstitial deletions starting within intronic regions of COBL at diagnosis, which is ~611 Kb downstream of IKZF1, suggesting that COBL is a hotspot for ΔIKZF1. We also investigated a series of 25 intragenic deletions (Δ2-8, Δ3-8 or Δ4-8) and 24 relapsed samples, and found one IKZF1-COBL tail-to-tail fusion, thus supporting that COBL is a novel hotspot for ΔIKZF1. Finally, using RIC score methodology, we show that breakpoint sequences of IKZF1 Δ1-8 are not analog to RAG-recognition sites, suggesting a different mechanism of error promotion than that suggested for intragenic ΔIKZF1.
Collapse
Affiliation(s)
- Bruno Almeida Lopes
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Claus Meyer
- Diagnostic Center of Acute Leukemia/Institute of Pharmaceutical Biology/ZAFES, Goethe-University of Frankfurt, Biocenter, Germany
| | - Thayana Conceição Barbosa
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Udo zur Stadt
- Center for Diagnostics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Center for Diagnostics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola C. Venn
- Children's Cancer Institute, Lowy Cancer Research Centre UNSW, Sydney, New South Wales, Australia
| | - Susan Heatley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Deborah L. White
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre UNSW, Sydney, New South Wales, Australia
| | - Maria S. Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Rolf Marschalek
- Diagnostic Center of Acute Leukemia/Institute of Pharmaceutical Biology/ZAFES, Goethe-University of Frankfurt, Biocenter, Germany
| | - Mariana Emerenciano
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|