1
|
Ullah H. Gut-vitamin D interplay: key to mitigating immunosenescence and promoting healthy ageing. Immun Ageing 2025; 22:20. [PMID: 40390005 PMCID: PMC12087203 DOI: 10.1186/s12979-025-00514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/26/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Immunosenescence is the loss and change of immunological organs, as well as innate and adaptive immune dysfunction with ageing, which can lead to increased sensitivity to infections, age-related diseases, and cancer. Emerging evidence highlights the role of gut-vitamin D axis in the regulation of immune ageing, influencing chronic inflammation and systemic health. This review aims to explore the interplay between the gut microbiota and vitamin D in mitigating immunosenescence and preventing against chronic inflammation and age-related diseases. MAIN TEXT Gut microbiota dysbiosis and vitamin D insufficiency accelerate immunosenescence and risk of chronic diseases. Literature data reveal that vitamin D modulates gut microbiota diversity and composition, enhances immune resilience, and reduce systemic inflammation. Conversely, gut microbiota influences vitamin D metabolism to promote the synthesis of active vitamin D metabolites with implications for immune health. CONCLUSIONS These findings underscore the potential of targeting gut-vitamin D axis to modulate immune responses, delay the immune ageing, and mitigate age-related diseases. Further research is needed to integrate vitamin D supplementation and microbiome modulation into strategies aimed at promoting healthy ageing.
Collapse
Affiliation(s)
- Hammad Ullah
- School of Pharmacy, University of Management and Technology, Lahore, 54000, Pakistan.
| |
Collapse
|
2
|
Sălcudean A, Bodo CR, Popovici RA, Cozma MM, Păcurar M, Crăciun RE, Crisan AI, Enatescu VR, Marinescu I, Cimpian DM, Nan AG, Sasu AB, Anculia RC, Strete EG. Neuroinflammation-A Crucial Factor in the Pathophysiology of Depression-A Comprehensive Review. Biomolecules 2025; 15:502. [PMID: 40305200 PMCID: PMC12024626 DOI: 10.3390/biom15040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Depression is a multifactorial psychiatric condition with complex pathophysiology, increasingly linked to neuroinflammatory processes. The present review explores the role of neuroinflammation in depression, focusing on glial cell activation, cytokine signaling, blood-brain barrier dysfunction, and disruptions in neurotransmitter systems. The article highlights how inflammatory mediators influence brain regions implicated in mood regulation, such as the hippocampus, amygdala, and prefrontal cortex. The review further discusses the involvement of the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the kynurenine pathway, providing mechanistic insights into how chronic inflammation may underlie emotional and cognitive symptoms of depression. The bidirectional relationship between inflammation and depressive symptoms is emphasized, along with the role of peripheral immune responses and systemic stress. By integrating molecular, cellular, and neuroendocrine perspectives, this review supports the growing field of immunopsychiatry and lays the foundation for novel diagnostic biomarkers and anti-inflammatory treatment approaches in depression. Further research in this field holds promise for developing more effective and personalized interventions for individuals suffering from depression.
Collapse
Affiliation(s)
- Andreea Sălcudean
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Cristina-Raluca Bodo
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Ramona-Amina Popovici
- Department of Management and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Bv., 300070 Timisoara, Romania
| | - Maria-Melania Cozma
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Mariana Păcurar
- Orthodontic Department, Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania;
| | | | - Andrada-Ioana Crisan
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Virgil-Radu Enatescu
- Department of Psychiatry, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Ileana Marinescu
- Discipline of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dora-Mihaela Cimpian
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Andreea-Georgiana Nan
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Andreea-Bianca Sasu
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Ramona-Camelia Anculia
- Discipline of Occupational Medicine, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timișoara, Romania;
| | - Elena-Gabriela Strete
- Department of Psychiatry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| |
Collapse
|
3
|
Li J, Lian T, Li J, Wei N, Guo P, He M, Zhang Y, Huang Y, Qi J, Luo D, Zhang W, Wang R, Wang M, Zhang W. Alzheimer's disease with depression: clinical characteristics and potential mechanisms involving orexin and brain atrophy. Transl Psychiatry 2025; 15:66. [PMID: 39994172 PMCID: PMC11850912 DOI: 10.1038/s41398-025-03251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
This study aimed to explore the clinical characteristics and alteration of orexinergic level in cerebrospinal fluid (CSF) and the volumes of brain grey and white matters, and investigate the roles of orexinergic level on the association between brain atrophy and depression in Alzheimer's disease (AD) patients. The demographic variables of 156 participants were collected. Orexinergic level in CSF and the volumes of brain grey and white matters were evaluated. The correlations of orexinergic level in CSF with depression and brain volume in AD patients were analyzed. The mediating effect of orexinergic level in CSF on the association between brain atrophy and depression in AD patients was investigated. The joint predictive value of orexinergic level in CSF and brain volume for depression in AD patients was established. AD with depression patients showed significantly elevated levels of orexin A and orexin B in CSF; orexin A level in CSF was positively correlated with HAMD score in AD patients. The elevated orexin A level in CSF mediated 49.6% of total association between the decreased grey matter volume of right dorsal medial thalamic nucleus and depression, and 50.3% of total association between the reduced white matter volume of left amygdala and depression. Combinations of above parameters could predict depression in AD patients with a significantly high area under the curve (AUC = 0.841). Therefore, the elevated orexin A level in CSF mediates its effect on the atrophy of the right dorsal medial thalamic nucleus and the white matter of the left amygdala, eventually alleviating depression in AD.
Collapse
Grants
- H2021206416 Natural Science Foundation of Hebei Province (Hebei Provincial Natural Science Foundation)
- This research was supported by the Capital’s Funds for Health Improvement and Research (CFH) (2022-2-2048), the Research on Mechano-Biomaterial Sciences in Brain Diseases and Neuromodulation (T2488101), the Collaborative Research Project of Traditional Chinese and Western Medicine of the Major Difficult Disease-Alzheimer’ s Disease of Beijing (2023BJSZDYNJBXTGG-018), the National Key Research and Development Program of China (2016YFC1306300), the National Natural Science Foundation of China (81970992), the Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing (JJ2018-48), the Project of Beijing Institute for Brain Disorders (BIBD-PXM2013_014226_07_000084), the Natural Science Foundation Natural Science Foundation of Hebei, China (H2021206416), Medical Science Research Project of Health Commission of Hebei, China(20221377), the National 644 Natural Science Foundation of China (32000792), STI2030-Major Projects Youth Scientist Program (No. 2022ZD0213600), Science and Technology Innovation 2030 Major Projects (Grant No. 2022ZD0211600), the National Natural Science Foundation of China (Grant No. T2488101).
- This research was supported by the Natural Science Foundation Natural Science Foundation of Hebei, China (H2021206416), Medical Science Research Project of Health Commission of Hebei, China(20221377).
- This research was supported by the National 644 Natural Science Foundation of China (32000792).
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tenghong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingyue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Human Brain & Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Bejjing, China
- Centre for Healthy Brain Aging (CHeBA), Discipline of Psychiatry & Mental Health School of Clinical Medicine, Faculty of Medicine and Health, UNsW Sydney, Sydney, NSW, Australia
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongmei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weijia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruidan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingwei Wang
- The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory on Parkinson Disease, Beijing, China.
| |
Collapse
|
4
|
Bertollo AG, Santos CF, Bagatini MD, Ignácio ZM. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front Neurosci 2025; 19:1541075. [PMID: 39981404 PMCID: PMC11839829 DOI: 10.3389/fnins.2025.1541075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) and gut-brain axes are vital biological pathways in depression. The HPA axis regulates the body's stress response, and chronic stress can lead to overactivation of the HPA axis, resulting in elevated cortisol levels that contribute to neuronal damage, particularly in regions such as the hippocampus and prefrontal cortex, both of which are involved in mood regulation and mental disorders. In parallel, the gut-brain axis, a bidirectional communication network between the gut microbiota and the central nervous system, influences emotional and cognitive functions. Imbalances in gut microbiota can affect the HPA axis, promoting inflammation and increasing gut permeability. This allows endotoxins to enter the bloodstream, contributing to neuroinflammation and altering neurotransmitter production, including serotonin. Since the majority of serotonin is produced in the gut, disruptions in this pathway may be linked to depressive symptoms. This review explores the interplay between the HPA axis and the gut-brain axis in the context of depression.
Collapse
|
5
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
6
|
Zhang Y, Liu C, Zhu Q, Wu H, Liu Z, Zeng L. Relationship Between Depression and Epigallocatechin Gallate from the Perspective of Gut Microbiota: A Systematic Review. Nutrients 2025; 17:259. [PMID: 39861389 PMCID: PMC11767295 DOI: 10.3390/nu17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression. Gut microbes influence depression-like behaviors by impacting the hypothalamic-pituitary-adrenal axis (HPA), monoamine neurotransmitters, immune responses, cell signaling, and metabolic pathways. Tea, widely used in clinical practice to improve neuropsychiatric disorders, contains Epigallocatechin gallate (EGCG), a major ingredient of green tea, which effectively regulates intestinal flora. This review examined the risks and causes of depression, the complications associated with intestinal flora, their role in the development and treatment of depression, and how EGCG may alleviate depression through interactions with gut microbiota and other mechanisms.
Collapse
Affiliation(s)
- Yangbo Zhang
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qi Zhu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Hui Wu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Li Zeng
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| |
Collapse
|
7
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
8
|
Priego-Parra BA, Remes-Troche JM. Bidirectional relationship between gastrointestinal cancer and depression: The key is in the microbiota-gut-brain axis. World J Gastroenterol 2024; 30:5104-5110. [PMID: 39735265 PMCID: PMC11612697 DOI: 10.3748/wjg.v30.i48.5104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
In this Editorial, we review the recent publication in the World Journal of Gastroenterology, which explores the complex relationship between depression and gastric cancer and offers perspectives. Key topics discussed include the microbiota-gut-brain axis, dysbiosis, and the influence of microbial metabolites in homeostasis. Additionally, we address toxic stress caused by hypothalamic-pituitary-adrenal axis dysregulation, psychological assessments, and future research directions. Our Editorial aims to expand the understanding of the bidirectional relationship between depression and gastrointestinal cancer.
Collapse
Affiliation(s)
- Bryan Adrian Priego-Parra
- Digestive Physiology and Gastrointestinal Motility Laboratory, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz 91700, Mexico
| | - Jose Maria Remes-Troche
- Digestive Physiology and Gastrointestinal Motility Laboratory, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz 91700, Mexico
| |
Collapse
|
9
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
10
|
S S, L.S. D, Rajendran P, N H, Singh S A. Exploring the potential of probiotics in Alzheimer's disease and gut dysbiosis. IBRO Neurosci Rep 2024; 17:441-455. [PMID: 39629018 PMCID: PMC11612366 DOI: 10.1016/j.ibneur.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Alzheimer's disease is a fatal neurodegenerative disorder that causes memory loss and cognitive decline in older people. There is increasing evidence suggesting that gut microbiota alteration is a cause of Alzheimer's disease pathogenesis. This review explores the link between gut dysbiosis and the development of Alzheimer's disease contributing to neuroinflammation, amyloid β accumulation, and cognitive decline. We examine the recent studies that illustrate the gut-brain axis (GBA) as a bidirectional communication between the gut and brain and how its alteration can influence neurological health. Furthermore, we discuss the potential of probiotic supplementation as a management approach to restore gut microbiota balance, and ultimately improve cognitive function in AD patients. Based on current research findings, this review aims to provide insights into the promising role of probiotics in Alzheimer's disease management and the need for further investigation into microbiota-targeted interventions.
Collapse
Affiliation(s)
- Sowmiya S
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Dhivya L.S.
- Department of Pharmaceutical Chemistry, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Praveen Rajendran
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Harikrishnan N
- Department of pharmaceutical analysis, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| | - Ankul Singh S
- Department of Pharmacology, Dr M.G.R. Educational and Research Institute, Poonamalle High Road, Velappanchavadi, Chennai, Tamil Nadu 600 077, India
| |
Collapse
|
11
|
Mi Y, Chen K, Lin S, Tong L, Zhou J, Wan M. Lactobacillaceae-mediated eye-brain-gut axis regulates high myopia-related anxiety: from the perspective of predictive, preventive, and personalized medicine. EPMA J 2024; 15:573-585. [PMID: 39635020 PMCID: PMC11612067 DOI: 10.1007/s13167-024-00387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Background High myopia has become a major cause of blindness worldwide and can contribute to emotional deficits through its impact on the central nervous system. The potential crosstalk with gut microbiome positions high myopia as a valuable model for studying the eye-brain-gut axis, highlighting the intricate interplay between visual health, neurological function, and the gut microbiome. Understanding these connections is crucial from a predictive, preventive, and personalized medicine (PPPM) perspective, as it may reveal novel intervention targets for managing both visual and mental health. Working hypothesis and methodology In our study, we hypothesized that visual stimuli associated with high myopia may lead to gut microecological dysregulation, potentially triggering mood disorders such as anxiety and depression. To test this hypothesis, we assessed genetic associations between high myopia (N = 50,372) and depression (N = 674,452) as well as anxiety (N = 21,761) using inverse variance weighted as the primary analytical method. We also investigated the potential mediating role of the gut microbiome (N = 18,340). The findings were validated in an independent cohort and summarized through meta-analysis. Results A genetic causal relationship between high myopia and anxiety was found (odds ratio [OR] = 8.76; 95% confidence interval [CI], 2.69-28.54; p = 3.16 × 10-4), with 20.3% of the effect mediated by the gut microbiome family Lactobacillaceae (β = 0.517; 95% CI, 0.104-1.090; p = 0.037). The analysis also showed a suggestive causal relationship between high myopia and depression (OR = 1.25; 95% CI, 1.00-1.57; p = 0.048). Conclusions Our study shows that high myopia causes anxiety via the Lactobacillaceae family of the gut microbiome, supporting the eye-brain-gut axis concept. This underscores the need to shift from reactive to predictive, preventive, and personalized medicine (PPPM). Targeting Lactobacillaceae offers novel insights for early intervention and personalized treatment of high myopia-related anxiety and sheds light on interventions for other vision-related brain disorders. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00387-z.
Collapse
Affiliation(s)
- Yuze Mi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ke Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shaokai Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Luyao Tong
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiawei Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Minghui Wan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Rd, Wenzhou, Zhejiang 325027 China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Shoji H, Maeda Y, Miyakawa T. Chronic corticosterone exposure causes anxiety- and depression-related behaviors with altered gut microbial and brain metabolomic profiles in adult male C57BL/6J mice. Mol Brain 2024; 17:79. [PMID: 39511657 PMCID: PMC11545877 DOI: 10.1186/s13041-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic exposure to glucocorticoids in response to long-term stress is thought to be a risk factor for major depression. Depression is associated with disturbances in the gut microbiota composition and peripheral and central energy metabolism. However, the relationship between chronic glucocorticoid exposure, the gut microbiota, and brain metabolism remains largely unknown. In this study, we first investigated the effects of chronic corticosterone exposure on various domains of behavior in adult male C57BL/6J mice treated with the glucocorticoid corticosterone to evaluate them as an animal model of depression. We then examined the gut microbial composition and brain and plasma metabolome in corticosterone-treated mice. Chronic corticosterone treatment resulted in reduced locomotor activity, increased anxiety-like and depression-related behaviors, decreased rotarod latency, reduced acoustic startle response, decreased social behavior, working memory deficits, impaired contextual fear memory, and enhanced cued fear memory. Chronic corticosterone treatment also altered the composition of gut microbiota, which has been reported to be associated with depression, such as increased abundance of Bifidobacterium, Turicibacter, and Corynebacterium and decreased abundance of Barnesiella. Metabolomic data revealed that long-term exposure to corticosterone led to a decrease in brain neurotransmitter metabolites, such as serotonin, 5-hydroxyindoleacetic acid, acetylcholine, and gamma-aminobutyric acid, as well as changes in betaine and methionine metabolism, as indicated by decreased levels of adenosine, dimethylglycine, choline, and methionine in the brain. These results indicate that mice treated with corticosterone have good face and construct validity as an animal model for studying anxiety and depression with altered gut microbial composition and brain metabolism, offering new insights into the neurobiological basis of depression arising from gut-brain axis dysfunction caused by prolonged exposure to excessive glucocorticoids.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
13
|
Xiong W, Lin X, Lin X, Wu L, Lin W. A Ketogenic Diet Affects Gut Microbiota by Regulating Gut Microbiota and Promoting Hippocampal TRHR Expression to Combat Seizures. J Mol Neurosci 2024; 74:104. [PMID: 39489848 DOI: 10.1007/s12031-024-02245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/05/2024] [Indexed: 11/05/2024]
Abstract
With the persistent challenge that epilepsy presents to therapeutic avenues, the study seeks to decipher the effects of the ketogenic diet (KD) on gut microbiota and subsequent epileptic outcomes. Mouse fecal samples from distinct KD and control diet (CD) cohorts underwent 16S rRNA sequencing. Differential genes of epileptic mice under these diets were sourced from the GEO database. The study melded in vivo and in vitro techniques to explore the nuanced interactions between KD, gut microbiota, and hippocampal TRHR dynamics. The KD regimen was found to result in a notable reduction in gut microbiota diversity when compared to the CD groups. Distinctive microbial strains, which are hypothesised to interact with epilepsy through G protein-coupled receptors, were spotlighted. In vivo, explorations affirmed that gut microbiota as central to KD's anti-epileptic efficacy. Of 211 distinguished genes, the neuroactive ligand-receptor interaction pathway was underscored, particularly emphasizing TRHR and TRH. Clinical observations revealed a surge in hippocampal TRHR and TRH expressions influenced by KD, mirroring shifts in neuronal discharges. The KD, leveraging gut microbiota alterations, amplifies hippocampal TRHR expression. This finding provides a novel intervention strategy to reduce seizures.
Collapse
Affiliation(s)
- Wenting Xiong
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xiaohui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xin Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Luyan Wu
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Wanhui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
14
|
Kearns R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol Neurobiol 2024; 44:64. [PMID: 39377830 PMCID: PMC11461658 DOI: 10.1007/s10571-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Belfast, UK.
| |
Collapse
|
15
|
Shi M, Fan H, Liu H, Zhang Y. Effects of saponins R b1 and R e in American ginseng intervention on intestinal microbiota of aging model. Front Nutr 2024; 11:1435778. [PMID: 39346650 PMCID: PMC11428427 DOI: 10.3389/fnut.2024.1435778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Aging brings about physiological dysfunction, disease, and eventual mortality. An increasing number of studies indicate that aging can easily lead to dysbiosis of the gut microbiota, which can further affect digestion, nerves, cognition, emotions, and more. Therefore, gut bacteria play an important role in regulating the physical functions of aging populations. While saponins, the primary components of American ginseng, are frequently utilized for treating common ailments in the elderly due to their potent antioxidant properties, there is a scarcity of comprehensive studies on aging organisms. This study focused on 18 month old aging mice and investigated the effects of single intervention and combined intervention of Rb1 and Re, the main components of Panax quinquefolium saponins, on the gut microbiota of aging mice. High throughput 16s RNA gene sequencing analysis was performed on the gut contents of the tested mice, and the results showed that Rb1 and Re had a significant impact on the gut microbiota. Rb1, Re, and Rb1 + Re can effectively enhance the diversity of gut microbiota, especially in the combined Rb1 + Re group, which can recover to the level of young mice. Re can promote the abundance of probiotics such as Lactobacillus, Lactobacillaceae, and Lactobacillus, and inhibit the abundance of harmful bacteria such as Enterobacteriaceae. This indicates that the intervention of Rb1, Re, and Rb1 + Re can maintain the homeostasis of gut microbiota, and the combined application of Rb1 + Re has a better effect. The relationship between aging, brain gut axis, and gut microbiota is very close. Saponins can improve the gut microbiota of aging individuals by maintaining the balance of gut microbiota and the normal function of the brain gut axis, enabling the body to achieve a gut microbiota homeostasis closer to that of young healthy mice.
Collapse
Affiliation(s)
- Mao Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - HongXiu Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - HongCheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - YanRong Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Kearns R. The Kynurenine Pathway in Gut Permeability and Inflammation. Inflammation 2024:10.1007/s10753-024-02135-x. [PMID: 39256304 DOI: 10.1007/s10753-024-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Newry, Northern Ireland, United Kingdom.
| |
Collapse
|
17
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
18
|
Tan H, Cao K, Zhao Y, Zhong J, Deng D, Pan B, Zhang J, Zhang R, Wang Z, Chen T, Shi Y. Brain-Targeted Black Phosphorus-Based Nanotherapeutic Platform for Enhanced Hypericin Delivery in Depression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310608. [PMID: 38461532 DOI: 10.1002/smll.202310608] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.
Collapse
Affiliation(s)
- Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kerun Cao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuying Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jialong Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
19
|
da Costa-Oliveira C, Pereira ML, de Carvalho NF, Silvério LAL, Jessé Ramos Y, Mazzola PG. Exploring the Significance of Pharmaceutical Care in Mental Health: A Spotlight on Cannabis. PHARMACY 2024; 12:100. [PMID: 39051384 PMCID: PMC11270281 DOI: 10.3390/pharmacy12040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Although preliminary evidence suggests Cannabis's efficacy in symptom control for anxiety and depression-psychiatric disorders that significantly impact mental health-much remains to be understood about its effects on the central nervous system (CNS) and how to optimize treatment for these disorders. This study aims to conduct a narrative review to evaluate pharmaceutical care in treating symptoms of anxiety and depression alongside Cannabis use, focusing on safety and therapeutic efficacy optimization. We seek to conceptualize anxiety and depression disorders, review evidence on Cannabis use, evaluate the evidence quality, and identify knowledge gaps. Twelve articles were identified, revealing a significant gap in the literature regarding the integration of pharmaceutical care with Cannabis-based therapies, specifically for anxiety and depression. Despite a growing interest in the relationship between Cannabis and mental health, current research is insufficient for a comprehensive understanding. The relationship between Cannabis use and anxiety and depression disorders requires further, more targeted investigations. This study underscores the importance of future research to fill existing gaps, providing informed insights and robust guidelines for the safe and effective use of Cannabis as part of the treatment for anxiety and depression. It is crucial that pharmaceutical care integrates these therapies responsibly to improve the overall well-being of patients.
Collapse
Affiliation(s)
- Claudete da Costa-Oliveira
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil
- APEPI—Medicinal Cannabis Research and Patient Support Association, Rio de Janeiro 20040-030, Brazil
| | - Michele Lafayette Pereira
- Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro, Campus Zona Oeste, Rio de Janeiro 23070-200, Brazil
| | - Nicole Ferrari de Carvalho
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-871, Brazil; (N.F.d.C.); (L.A.L.S.); (P.G.M.)
| | - Luiza Aparecida Luna Silvério
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-871, Brazil; (N.F.d.C.); (L.A.L.S.); (P.G.M.)
| | - Ygor Jessé Ramos
- Farmácia da Terra Laboratory, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil;
| | - Priscila Gava Mazzola
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-871, Brazil; (N.F.d.C.); (L.A.L.S.); (P.G.M.)
| |
Collapse
|
20
|
Wang Y, Wang Y, Ding K, Liu Y, Liu D, Chen W, Zhang X, Luo C, Zhang H, Xu T, Chen T. Effectiveness of Psychobiotic Bifidobacterium breve BB05 in Managing Psychosomatic Diarrhea in College Students by Regulating Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:1989. [PMID: 38999739 PMCID: PMC11243164 DOI: 10.3390/nu16131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Diarrhea of college students (DCS) is a prevalent issue among college students, affecting their daily lives and academic performance. This study aims to explore the potential effect of Bifidobacterium breve BB05 supplements on the DCS. Initially, fifty healthy and fifty diarrheal students were recruited in the observational experiment and allocated into control and diarrhea groups, respectively. Subsequently, one hundred diarrheal students were newly recruited in the intervention experiment and randomly allocated into placebo and probiotic groups, both treated for 2 weeks. Questionnaires (BSS, HAMA-14, and HDRS-17) were performed to assess the students' diarrheal states and mental health at baseline and post-treatment. Fecal samples underwent 16S rRNA sequencing and Enzyme-Linked Immunosorbent Assay to evaluate gut microbiota and fecal metabolite alternations. Results indicated that B. breve BB05 supplementation significantly enriched (p < 0.05) the reduced gut microbial diversity caused by diarrhea. Diarrhea resulted in notable alterations in gut microbiota composition, as exhibited by elevated Collinsella and Streptococcus, alongside substantially decreased Bifidobacterium, Bacteroides, and Prevotella, while B. breve BB05 supplementation partially restored the compromised gut microbiota at both the phylum and genus levels, particularly by increasing Bifidobacterium and Roseburia (p < 0.05). Importantly, questionnaire results suggested that B. breve BB05 administration achieved superior efficacy in relieving diarrhea symptoms and the associated anxiety and depression in college students. An increased fecal concentration of 5-hydroxytryptamine (5-HT) was also observed in the probiotic group, while Acetylcholine (ACH), Epinephrine (EPI), and Noradrenaline/Norepinephrine (NANE) reduced, revealing the potential of B. breve BB05 in alleviating anxiety and depression via modulating the microbiota-gut-brain axis. Furthermore, correlation analysis suggested that the altered microbiota and fecal neurotransmitters were closely associated with the mental symptoms. These results endorse B. breve BB05 intervention as a promising and innovative approach to alleviate both diarrhea and mental health conditions among college students.
Collapse
Affiliation(s)
- Yufan Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yufei Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Kunpeng Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang 330031, China
| | - Yuhan Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dingming Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Weijun Chen
- The Reproductive Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang 330031, China
| | - Xinyi Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chuanlin Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tangchang Xu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tingtao Chen
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
21
|
Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Amoroso C, Bottiroli S, Tassorelli C, Greco R. A Narrative Review of Intestinal Microbiota's Impact on Migraine with Psychopathologies. Int J Mol Sci 2024; 25:6655. [PMID: 38928361 PMCID: PMC11203823 DOI: 10.3390/ijms25126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Migraine is a common and debilitating neurological disorder characterized by the recurrent attack of pulsating headaches typically localized on one side of the head associated with other disabling symptoms, such as nausea, increased sensitivity to light, sound and smell and mood changes. Various clinical factors, including the excessive use of migraine medication, inadequate acute treatment and stressful events, can contribute to the worsening of the condition, which may evolve to chronic migraine, that is, a headache present on >15 days/month for at least 3 months. Chronic migraine is frequently associated with various comorbidities, including anxiety and mood disorders, particularly depression, which complicate the prognosis, response to treatment and overall clinical outcomes. Emerging research indicates a connection between alterations in the composition of the gut microbiota and mental health conditions, particularly anxiety and depression, which are considered disorders of the gut-brain axis. This underscores the potential of modulating the gut microbiota as a new avenue for managing these conditions. In this context, it is interesting to investigate whether migraine, particularly in its chronic form, exhibits a dysbiosis profile similar to that observed in individuals with anxiety and depression. This could pave the way for interventions aimed at modulating the gut microbiota for treating difficult-to-manage migraines.
Collapse
Affiliation(s)
- Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Demartini
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| |
Collapse
|
22
|
Roussin L, Gry E, Macaron M, Ribes S, Monnoye M, Douard V, Naudon L, Rabot S. Microbiota influence on behavior: Integrative analysis of serotonin metabolism and behavioral profile in germ-free mice. FASEB J 2024; 38:e23648. [PMID: 38822661 PMCID: PMC12086753 DOI: 10.1096/fj.202400334r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.
Collapse
Affiliation(s)
- Léa Roussin
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Elisa Gry
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Mira Macaron
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Sandy Ribes
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Magali Monnoye
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Véronique Douard
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Laurent Naudon
- Université Paris‐Saclay, INRAE, AgroParisTech, CNRSMicalis InstituteJouy‐en‐JosasFrance
| | - Sylvie Rabot
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| |
Collapse
|
23
|
Pu B, Zhu H, Wei L, Gu L, Zhang S, Jian Z, Xiong X. The Involvement of Immune Cells Between Ischemic Stroke and Gut Microbiota. Transl Stroke Res 2024; 15:498-517. [PMID: 37140808 DOI: 10.1007/s12975-023-01151-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
24
|
Potter K, Gayle EJ, Deb S. Effect of gut microbiome on serotonin metabolism: a personalized treatment approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2589-2602. [PMID: 37922012 DOI: 10.1007/s00210-023-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023]
Abstract
Several factors including diet, exercise, and medications influence the makeup of the resilient but adaptable gut microbiome. Bacteria in the gut have a significant role in the homeostasis of the neurotransmitter serotonin, also known as 5-hydroxytryptamine, involved in mood and behavior. The goal of the current work is to review the effect of the gut microbiome on serotonin metabolism, and how it can potentially contribute to the development of a personalized treatment approach for depression and anxiety. Bacterial strains provide innovative therapeutic targets that can be used for disorders, such as depression, that involve dysregulation of serotonin. Advances in bacterial genomic sequencing have increased the accessibility and affordability of microbiome testing, which unlocks a new targeted pathway to modulate serotonin metabolism by targeting the gut-brain axis. Microbiome testing can facilitate the recommendation of strain-specific probiotic supplements based on patient-specific microbial profiles. Several studies have shown that supplementation with probiotics containing specific species of bacteria, such as Bifidobacterium and Lactobacillus, can improve symptoms of depression. Further research is needed to improve the process and interpretation of microbiome testing and how to successfully incorporate testing results into guiding clinical decision-making. This targeted approach centered around the gut-brain axis can provide a novel way to personalize therapy for mental health disorders.
Collapse
Affiliation(s)
- Kristal Potter
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Subrata Deb
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
25
|
Falkenstein M, Simon MC, Mantri A, Weber B, Koban L, Plassmann H. Impact of the gut microbiome composition on social decision-making. PNAS NEXUS 2024; 3:pgae166. [PMID: 38745566 PMCID: PMC11093127 DOI: 10.1093/pnasnexus/pgae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
There is increasing evidence for the role of the gut microbiome in the regulation of socio-affective behavior in animals and clinical conditions. However, whether and how the composition of the gut microbiome may influence social decision-making in health remains unknown. Here, we tested the causal effects of a 7-week synbiotic (vs. placebo) dietary intervention on altruistic social punishment behavior in an ultimatum game. Results showed that the intervention increased participants' willingness to forgo a monetary payoff when treated unfairly. This change in social decision-making was related to changes in fasting-state serum levels of the dopamine-precursor tyrosine proposing a potential mechanistic link along the gut-microbiota-brain-behavior axis. These results improve our understanding of the bidirectional role body-brain interactions play in social decision-making and why humans at times act "irrationally" according to standard economic theory.
Collapse
Affiliation(s)
- Marie Falkenstein
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
| | - Aakash Mantri
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, University of Bonn and University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn and University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Leonie Koban
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
- Lyon Neuroscience Research Center, CNRS, INSERM, Claude Bernard University Lyon 1, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France
| | - Hilke Plassmann
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
| |
Collapse
|
26
|
Li B, Yan Y, Zhang T, Xu H, Wu X, Yao G, Li X, Yan C, Wu LL. Quercetin reshapes gut microbiota homeostasis and modulates brain metabolic profile to regulate depression-like behaviors induced by CUMS in rats. Front Pharmacol 2024; 15:1362464. [PMID: 38595919 PMCID: PMC11002179 DOI: 10.3389/fphar.2024.1362464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Quercetin, an abundant flavonoid compound in plants, is considered a novel antidepressant; however, its mechanisms of action are poorly understood. This study aimed to investigate the therapeutic effects of quercetin on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors in rats and explore the underlying mechanisms by combining untargeted metabolomics and 16S rRNA sequencing analysis of brain tissue metabolites and gut microbiota. Gut microbiota analysis revealed that at the phylum level, quercetin reduced Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio and enhanced Cyanobacteria. At the genus level, quercetin downregulated 6 and upregulated 14 bacterial species. Metabolomics analysis revealed that quercetin regulated multiple metabolic pathways, including glycolysis/gluconeogenesis, sphingolipid metabolism, the pentose phosphate pathway, and coenzyme A biosynthesis. This modulation leads to improvements in depression-like phenotypes, anxiety-like phenotypes, and cognitive function, highlighting the therapeutic potential of quercetin in treating depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Toader C, Dobrin N, Costea D, Glavan LA, Covache-Busuioc RA, Dumitrascu DI, Bratu BG, Costin HP, Ciurea AV. Mind, Mood and Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2024; 25:3340. [PMID: 38542314 PMCID: PMC10970241 DOI: 10.3390/ijms25063340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/30/2025] Open
Abstract
Psychiatric disorders represent a primary source of disability worldwide, manifesting as disturbances in individuals' cognitive processes, emotional regulation, and behavioral patterns. In the quest to discover novel therapies and expand the boundaries of neuropharmacology, studies from the field have highlighted the gut microbiota's role in modulating these disorders. These alterations may influence the brain's processes through the brain-gut axis, a multifaceted bidirectional system that establishes a connection between the enteric and central nervous systems. Thus, probiotic and prebiotic supplements that are meant to influence overall gut health may play an insightful role in alleviating psychiatric symptoms, such as the cognitive templates of major depressive disorder, anxiety, or schizophrenia. Moreover, the administration of psychotropic drugs has been revealed to induce specific changes in a microbiome's diversity, suggesting their potential utility in combating bacterial infections. This review emphasizes the intricate correlations between psychiatric disorders and the gut microbiota, mentioning the promising approaches in regard to the modulation of probiotic and prebiotic treatments, as well as the antimicrobial effects of psychotropic medication.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania;
| | - Daniel Costea
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
28
|
Delanote J, Correa Rojo A, Wells PM, Steves CJ, Ertaylan G. Systematic identification of the role of gut microbiota in mental disorders: a TwinsUK cohort study. Sci Rep 2024; 14:3626. [PMID: 38351227 PMCID: PMC10864280 DOI: 10.1038/s41598-024-53929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Mental disorders are complex disorders influenced by multiple genetic, environmental, and biological factors. Specific microbiota imbalances seem to affect mental health status. However, the mechanisms by which microbiota disturbances impact the presence of depression, stress, anxiety, and eating disorders remain poorly understood. Currently, there are no robust biomarkers identified. We proposed a novel pyramid-layer design to accurately identify microbial/metabolomic signatures underlying mental disorders in the TwinsUK registry. Monozygotic and dizygotic twins discordant for mental disorders were screened, in a pairwise manner, for differentially abundant bacterial genera and circulating metabolites. In addition, multivariate analyses were performed, accounting for individual-level confounders. Our pyramid-layer study design allowed us to overcome the limitations of cross-sectional study designs with significant confounder effects and resulted in an association of the abundance of genus Parabacteroides with the diagnosis of mental disorders. Future research should explore the potential role of Parabacteroides as a mediator of mental health status. Our results indicate the potential role of the microbiome as a modifier in mental disorders that might contribute to the development of novel methodologies to assess personal risk and intervention strategies.
Collapse
Affiliation(s)
- Julie Delanote
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Alejandro Correa Rojo
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Philippa M Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
- Department of Ageing and Health, St Thomas' Hospital, 9th floor, North Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Gökhan Ertaylan
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| |
Collapse
|
29
|
Choudhary D, Kumar B, Kaur R. Nitrogen-containing heterocyclic compounds: A ray of hope in depression? Chem Biol Drug Des 2024; 103:e14479. [PMID: 38361139 DOI: 10.1111/cbdd.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Depression is not similar to daily mood fluctuations and temporary emotional responses to day-to-day activities. Depression is not a passing problem; it is an ongoing problem. It deals with different episodes consisting of several symptoms that last for at least 2 weeks. It can be seen for several weeks, months, or years. At its final stage, or can say, in its worst condition, it can lead to suicide. Antidepressants are used to inhibit the reuptake of the neurotransmitters by some selective receptors, which increase the concentration of specific neurotransmitters around the nerves in the brain. Drugs that are currently being used for the management of various types of depression include selective serotonin reuptake inhibitors, tricyclic antidepressants, atypical antidepressants, serotonin, noradrenaline reuptake inhibitors, etc. In this review, we have outlined different symptoms, causes, and recent advancements in nitrogen-containing heterocyclic drug candidates for the management of depression. This article highlights the various structural features along with the structure-activity relationship (SAR) of nitrogen-containing heterocyclics that play a key role in binding at target sites for potential antidepressant action. The in silico studies were carried out to determine the binding interactions of the target ligands with the receptor site to determine the potential role of substitution patterns at core pharmacophoric features. This article will help medicinal chemists, biochemists, and other interested researchers in identifying the potential pharmacophores as lead compounds for further development of new potent antidepressants.
Collapse
Affiliation(s)
- Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Uttarakhand, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
30
|
Wang XY, He SS, Zhou MM, Li XR, Wang CC, Zhao YC, Xue CH, Che HX. EPA and DHA Alleviated Chronic Dextran Sulfate Sodium Exposure-Induced Depressive-like Behaviors in Mice and Potential Mechanisms Involved. Mar Drugs 2024; 22:76. [PMID: 38393047 PMCID: PMC10890276 DOI: 10.3390/md22020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Patients with ulcerative colitis (UC) have higher rates of depression. However, the mechanism of depression development remains unclear. The improvements of EPA and DHA on dextran sulfate sodium (DSS)-induced UC have been verified. Therefore, the present study mainly focused on the effects of EPA and DHA on UC-induced depression in C57BL/6 mice and the possible mechanisms involved. A forced swimming test and tail suspension experiment showed that EPA and DHA significantly improved DSS-induced depressive-like behavior. Further analysis demonstrated that EPA and DHA could significantly suppress the inflammation response of the gut and brain by regulating the NLRP3/ASC signal pathway. Moreover, intestine and brain barriers were maintained by enhancing ZO-1 and occludin expression. In addition, EPA and DHA also increased the serotonin (5-HT) concentration and synaptic proteins. Interestingly, EPA and DHA treatments increased the proportion of dominant bacteria, alpha diversity, and beta diversity. In conclusion, oral administration of EPA and DHA alleviated UC-induced depressive-like behavior in mice by modulating the inflammation, maintaining the mucosal and brain barriers, suppressing neuronal damage and reverting microbiota changes.
Collapse
Affiliation(s)
- Xi-Yu Wang
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Shu-Sen He
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Miao-Miao Zhou
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Xiao-Ran Li
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| | - Cheng-Cheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China; (C.-C.W.); (Y.-C.Z.)
| | - Ying-Cai Zhao
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China; (C.-C.W.); (Y.-C.Z.)
| | - Chang-Hu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China; (C.-C.W.); (Y.-C.Z.)
| | - Hong-Xia Che
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.-Y.W.); (S.-S.H.); (M.-M.Z.); (X.-R.L.)
| |
Collapse
|
31
|
Mohammadi-Pilehdarboni H, Shenagari M, Joukar F, Naziri H, Mansour-Ghanaei F. Alzheimer's disease and microorganisms: the non-coding RNAs crosstalk. Front Cell Neurosci 2024; 17:1256100. [PMID: 38249527 PMCID: PMC10796784 DOI: 10.3389/fncel.2023.1256100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disorder, influenced by a multitude of variables ranging from genetic factors, age, and head injuries to vascular diseases, infections, and various other environmental and demographic determinants. Among the environmental factors, the role of the microbiome in the genesis of neurodegenerative disorders (NDs) is gaining increased recognition. This paradigm shift is substantiated by an extensive body of scientific literature, which underscores the significant contributions of microorganisms, encompassing viruses and gut-derived bacteria, to the pathogenesis of AD. The mechanism by which microbial infection exerts its influence on AD hinges primarily on inflammation. Neuroinflammation, activated in response to microbial infections, acts as a defense mechanism for the brain but can inadvertently lead to unexpected neuropathological perturbations, ultimately contributing to NDs. Given the ongoing uncertainty surrounding the genetic factors underpinning ND, comprehensive investigations into environmental factors, particularly the microbiome and viral agents, are imperative. Recent advances in neuroscientific research have unveiled the pivotal role of non-coding RNAs (ncRNAs) in orchestrating various pathways integral to neurodegenerative pathologies. While the upstream regulators governing the pathological manifestations of microorganisms remain elusive, an in-depth exploration of the nuanced role of ncRNAs holds promise for the development of prospective therapeutic interventions. This review aims to elucidate the pivotal role of ncRNAs as master modulators in the realm of neurodegenerative conditions, with a specific focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Hanieh Mohammadi-Pilehdarboni
- Faculty of Medicine and Dentistry and the School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Naziri
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
32
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
33
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
34
|
Komorniak N, Kaczmarczyk M, Łoniewski I, Martynova-Van Kley A, Nalian A, Wroński M, Kaseja K, Kowalewski B, Folwarski M, Stachowska E. Analysis of the Efficacy of Diet and Short-Term Probiotic Intervention on Depressive Symptoms in Patients after Bariatric Surgery: A Randomized Double-Blind Placebo Controlled Pilot Study. Nutrients 2023; 15:4905. [PMID: 38068763 PMCID: PMC10707788 DOI: 10.3390/nu15234905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: studies have shown that some patients experience mental deterioration after bariatric surgery. (2) Methods: We examined whether the use of probiotics and improved eating habits can improve the mental health of people who suffered from mood disorders after bariatric surgery. We also analyzed patients' mental states, eating habits and microbiota. (3) Results: Depressive symptoms were observed in 45% of 200 bariatric patients. After 5 weeks, we noted an improvement in patients' mental functioning (reduction in BDI and HRSD), but it was not related to the probiotic used. The consumption of vegetables and whole grain cereals increased (DQI-I adequacy), the consumption of simple sugars and SFA decreased (moderation DQI-I), and the consumption of monounsaturated fatty acids increased it. In the feces of patients after RYGB, there was a significantly higher abundance of two members of the Muribaculaceae family, namely Veillonella and Roseburia, while those after SG had more Christensenellaceae R-7 group, Subdoligranulum, Oscillibacter, and UCG-005. (4) Conclusions: the noted differences in the composition of the gut microbiota (RYGB vs. SG) may be one of the determinants of the proper functioning of the gut-brain microbiota axis, although there is currently a need for further research into this topic using a larger group of patients and different probiotic doses.
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Mariusz Kaczmarczyk
- Sanprobi sp. z o.o. sp. k., Kurza Stopka 5/C, 70-535 Szczecin, Poland; (M.K.); (I.Ł.)
| | - Igor Łoniewski
- Sanprobi sp. z o.o. sp. k., Kurza Stopka 5/C, 70-535 Szczecin, Poland; (M.K.); (I.Ł.)
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | | - Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; (A.M.-V.K.); (A.N.)
| | - Michał Wroński
- Department of Psychiatry, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Krzysztof Kaseja
- Department of General Surgery and Transplantation, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Bartosz Kowalewski
- Independent Provincial Public Hospital Complex in Szczecin-Zdunowo, 70-891 Szczecin, Poland;
| | - Marcin Folwarski
- Division of Clinical Nutrition and Dietetics, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| |
Collapse
|
35
|
Niazi SK. Non-Invasive Drug Delivery across the Blood-Brain Barrier: A Prospective Analysis. Pharmaceutics 2023; 15:2599. [PMID: 38004577 PMCID: PMC10674293 DOI: 10.3390/pharmaceutics15112599] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Non-invasive drug delivery across the blood-brain barrier (BBB) represents a significant advancement in treating neurological diseases. The BBB is a tightly packed layer of endothelial cells that shields the brain from harmful substances in the blood, allowing necessary nutrients to pass through. It is a highly selective barrier, which poses a challenge to delivering therapeutic agents into the brain. Several non-invasive procedures and devices have been developed or are currently being investigated to enhance drug delivery across the BBB. This paper presents a review and a prospective analysis of the art and science that address pharmacology, technology, delivery systems, regulatory approval, ethical concerns, and future possibilities.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Letenneur V, Monnoye M, Philippe C, Holowacz S, Rabot S, Lepage P, Jacouton E, Naudon L. Effects of a Lacticaseibacillus Mix on Behavioural, Biochemical, and Gut Microbial Outcomes of Male Mice following Chronic Restraint Stress. Nutrients 2023; 15:4635. [PMID: 37960288 PMCID: PMC10648220 DOI: 10.3390/nu15214635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The effect of supplementation with Lactobacillus strains to prevent the consequences of chronic stress on anxiety in mouse strains sensitive to stress and the consequences on gut microbiota have been relatively unexplored. Thus, we administered a Lacticaseibacillus casei LA205 and Lacticaseibacillus paracasei LA903 mix to male BALB/cByJrj mice two weeks before and during 21-day chronic restraint stress (CRS) (non-stressed/solvent (NS-PBS), non-stressed/probiotics (NS-Probio), CRS/solvent (S-PBS), CRS/probiotics (S-Probio)). CRS resulted in lower body weight and coat state alteration, which were attenuated by the probiotic mix. S-Probio mice showed less stress-associated anxiety-like behaviours than their NS counterpart, while no difference was seen in PBS mice. Serum corticosterone levels were significantly higher in the S-Probio group than in other groups. In the hippocampus, mRNA expression of dopamine and serotonin transporters was lower in S-Probio than in S-PBS mice. Few differences in bacterial genera proportions were detected, with a lower relative abundance of Alistipes in S-Probio vs. S-PBS. CRS was accompanied by a decrease in the proportion of caecal acetate in S-PBS mice vs. NS-PBS, but not in the intervention groups. These data show that the probiotic mix could contribute to better coping with chronic stress, although the precise bacterial mechanism is still under investigation.
Collapse
Affiliation(s)
- Vivien Letenneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Sophie Holowacz
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Elsa Jacouton
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
37
|
Naufel MF, Truzzi GDM, Ferreira CM, Coelho FMS. The brain-gut-microbiota axis in the treatment of neurologic and psychiatric disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2023. [PMID: 37402401 PMCID: PMC10371417 DOI: 10.1055/s-0043-1767818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The human gut microbiota is a complex ecosystem made of trillions of microorganisms. The composition can be affected by diet, metabolism, age, geography, stress, seasons, temperature, sleep, and medications. The increasing evidence about the existence of a close and bi-directional correlation between the gut microbiota and the brain indicates that intestinal imbalance may play a vital role in the development, function, and disorders of the central nervous system. The mechanisms of interaction between the gut-microbiota on neuronal activity are widely discussed. Several potential pathways are involved with the brain-gut-microbiota axis, including the vagus nerve, endocrine, immune, and biochemical pathways. Gut dysbiosis has been linked to neurological disorders in different ways that involve activation of the hypothalamic-pituitary-adrenal axis, imbalance in neurotransmitter release, systemic inflammation, and increase in the permeability of the intestinal and the blood-brain barrier. Mental and neurological diseases have become more prevalent during the coronavirus disease 2019pandemic and are an essential issue in public health globally. Understanding the importance of diagnosing, preventing, and treating dysbiosis is critical because gut microbial imbalance is a significant risk factor for these disorders. This review summarizes evidence demonstrating the influence of gut dysbiosis on mental and neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Fernando Morgadinho Santos Coelho
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| |
Collapse
|
38
|
Muhamadali H, Winder CL, Dunn WB, Goodacre R. Unlocking the secrets of the microbiome: exploring the dynamic microbial interplay with humans through metabolomics and their manipulation for synthetic biology applications. Biochem J 2023; 480:891-908. [PMID: 37378961 PMCID: PMC10317162 DOI: 10.1042/bcj20210534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Metabolomics is a powerful research discovery tool with the potential to measure hundreds to low thousands of metabolites. In this review, we discuss the application of GC-MS and LC-MS in discovery-based metabolomics research, we define metabolomics workflows and we highlight considerations that need to be addressed in order to generate robust and reproducible data. We stress that metabolomics is now routinely applied across the biological sciences to study microbiomes from relatively simple microbial systems to their complex interactions within consortia in the host and the environment and highlight this in a range of biological species and mammalian systems including humans. However, challenges do still exist that need to be overcome to maximise the potential for metabolomics to help us understanding biological systems. To demonstrate the potential of the approach we discuss the application of metabolomics in two broad research areas: (1) synthetic biology to increase the production of high-value fine chemicals and reduction in secondary by-products and (2) gut microbial interaction with the human host. While burgeoning in importance, the latter is still in its infancy and will benefit from the development of tools to detangle host-gut-microbial interactions and their impact on human health and diseases.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Catherine L. Winder
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Warwick B. Dunn
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
39
|
Sun Y, Wang S, Liu B, Hu W, Zhu Y. Host-Microbiome Interactions: Tryptophan Metabolism and Aromatic Hydrocarbon Receptors after Traumatic Brain Injury. Int J Mol Sci 2023; 24:10820. [PMID: 37445997 DOI: 10.3390/ijms241310820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury refers to the damage caused to intracranial tissues by an external force acting on the head, leading to both immediate and prolonged harmful effects. Neuroinflammatory responses play a critical role in exacerbating the primary injury during the acute and chronic phases of TBI. Research has demonstrated that numerous neuroinflammatory responses are mediated through the "microbiota-gut-brain axis," which signifies the functional connection between the gut microbiota and the brain. The aryl hydrocarbon receptor (AhR) plays a vital role in facilitating communication between the host and microbiota through recognizing specific ligands produced directly or indirectly by the microbiota. Tryptophan (trp), an indispensable amino acid in animals and humans, represents one of the key endogenous ligands for AhR. The metabolites of trp have significant effects on the functioning of the central nervous system (CNS) through activating AHR signalling, thereby establishing bidirectional communication between the gut microbiota and the brain. These interactions are mediated through immune, metabolic, and neural signalling mechanisms. In this review, we emphasize the co-metabolism of tryptophan in the gut microbiota and the signalling pathway mediated by AHR following TBI. Furthermore, we discuss the impact of these mechanisms on the underlying processes involved in traumatic brain injury, while also addressing potential future targets for intervention.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingwei Liu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
40
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
41
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
42
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
43
|
Goodkin K, Evering TH, Anderson AM, Ragin A, Monaco CL, Gavegnano C, Avery RJ, Rourke SB, Cysique LA, Brew BJ. The comorbidity of depression and neurocognitive disorder in persons with HIV infection: call for investigation and treatment. Front Cell Neurosci 2023; 17:1130938. [PMID: 37206666 PMCID: PMC10190964 DOI: 10.3389/fncel.2023.1130938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023] Open
Abstract
Depression and neurocognitive disorder continue to be the major neuropsychiatric disorders affecting persons with HIV (PWH). The prevalence of major depressive disorder is two to fourfold higher among PWH than the general population (∼6.7%). Prevalence estimates of neurocognitive disorder among PWH range from 25 to over 47% - depending upon the definition used (which is currently evolving), the size of the test battery employed, and the demographic and HIV disease characteristics of the participants included, such as age range and sex distribution. Both major depressive disorder and neurocognitive disorder also result in substantial morbidity and premature mortality. However, though anticipated to be relatively common, the comorbidity of these two disorders in PWH has not been formally studied. This is partly due to the clinical overlap of the neurocognitive symptoms of these two disorders. Both also share neurobehavioral aspects - particularly apathy - as well as an increased risk for non-adherence to antiretroviral therapy. Shared pathophysiological mechanisms potentially explain these intersecting phenotypes, including neuroinflammatory, vascular, and microbiomic, as well as neuroendocrine/neurotransmitter dynamic mechanisms. Treatment of either disorder affects the other with respect to symptom reduction as well as medication toxicity. We present a unified model for the comorbidity based upon deficits in dopaminergic transmission that occur in both major depressive disorder and HIV-associated neurocognitive disorder. Specific treatments for the comorbidity that decrease neuroinflammation and/or restore associated deficits in dopaminergic transmission may be indicated and merit study.
Collapse
Affiliation(s)
- Karl Goodkin
- Department of Psychiatry, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
- Institute of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
| | - Teresa H. Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ann Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cynthia L. Monaco
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Christina Gavegnano
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pharmacology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Department of Chemical Biology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
- Atlanta Veteran’s Affairs Medical Center, Atlanta, GA, United States
- Center for Bioethics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Ryan J. Avery
- Division of Nuclear Medicine, Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sean B. Rourke
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Lucette A. Cysique
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Bruce J. Brew
- Department of Neurology, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, Faculty of Medicine, University of Notre Dame, Sydney, NSW, Australia
| |
Collapse
|
44
|
Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, Borowicz-Reutt K, Sieniawska E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023; 28:molecules28073213. [PMID: 37049975 PMCID: PMC10096791 DOI: 10.3390/molecules28073213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Depression is a common and complex mental and emotional disorder that causes disability, morbidity, and quite often mortality around the world. Depression is closely related to several physical and metabolic conditions causing metabolic depression. Studies have indicated that there is a relationship between the intestinal microbiota and the brain, known as the gut–brain axis. While this microbiota–gut–brain connection is disturbed, dysfunctions of the brain, immune system, endocrine system, and gastrointestinal tract occur. Numerous studies show that intestinal dysbiosis characterized by abnormal microbiota and dysfunction of the microbiota–gut–brain axis could be a direct cause of mental and emotional disorders. Traditional treatment of depression includes psychotherapy and pharmacotherapy, and it mainly targets the brain. However, restoration of the intestinal microbiota and functions of the gut–brain axis via using probiotics, their metabolites, prebiotics, and healthy diet may alleviate depressive symptoms. Administration of probiotics labeled as psychobiotics and their metabolites as metabiotics, especially as an adjuvant to antidepressants, improves mental disorders. It is a new approach to the prevention, management, and treatment of mental and emotional illnesses, particularly major depressive disorder and metabolic depression. For the effectiveness of antidepressant therapy, psychobiotics should be administered at a dose higher than 1 billion CFU/day for at least 8 weeks.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Street 1J, 20-708 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Leandro Soares Santos
- Department of Animal and Rural Technology, State University of Southwest Bahia, Itapetinga 45700-000, BA, Brazil
| | - Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
45
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:1496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
46
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
47
|
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl) 2023; 101:201-222. [PMID: 36757399 PMCID: PMC10036442 DOI: 10.1007/s00109-023-02289-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Gut microbiota in interaction with intestinal host tissues influences many brain functions and microbial dysbiosis has been linked with brain disorders, such as neuropsychiatric conditions and Alzheimer's disease (AD). L-tryptophan metabolites and short-chained fatty acids (SCFA) are major messengers in the microbiota-brain axis. Aryl hydrocarbon receptors (AhR) are main targets of tryptophan metabolites in brain microvessels which possess an enriched expression of AhR protein. The Ah receptor is an evolutionarily conserved, ligand-activated transcription factor which is not only a sensor of xenobiotic toxins but also a pleiotropic regulator of both developmental processes and age-related tissue degeneration. Major microbiota-produced tryptophan metabolites involve indole derivatives, e.g., indole 3-pyruvic acid, indole 3-acetaldehyde, and indoxyl sulfate, whereas indoleamine and tryptophan 2,3-dioxygenases (IDO/TDO) of intestine host cells activate the kynurenine (KYN) pathway generating KYN metabolites, many of which are activators of AhR signaling. Chronic kidney disease (CKD) increases the serum level of indoxyl sulfate which promotes AD pathogenesis, e.g., it disrupts integrity of blood-brain barrier (BBB) and impairs cognitive functions. Activation of AhR signaling disturbs vascular homeostasis in brain; (i) it controls blood flow via the renin-angiotensin system, (ii) it inactivates endothelial nitric oxide synthase (eNOS), thus impairing NO production and vasodilatation, and (iii) it induces oxidative stress, stimulates inflammation, promotes cellular senescence, and enhances calcification of vascular walls. All these alterations are evident in cerebral amyloid angiopathy (CAA) in AD pathology. Moreover, AhR signaling can disturb circadian regulation and probably affect glymphatic flow. It seems plausible that dysbiosis of gut microbiota impairs the integrity of BBB via the activation of AhR signaling and thus aggravates AD pathology. KEY MESSAGES: Dysbiosis of gut microbiota is associated with dementia and Alzheimer's disease. Tryptophan metabolites are major messengers from the gut host-microbiota to brain. Tryptophan metabolites activate aryl hydrocarbon receptor (AhR) signaling in brain. The expression of AhR protein is enriched in brain microvessels and blood-brain barrier. Tryptophan metabolites disturb brain vascular integrity via AhR signaling. Dysbiosis of gut microbiota promotes inflammation and AD pathology via AhR signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
48
|
Zhao H, Chen X, Zhang L, Tang C, Meng F, Zhou L, Zhu P, Lu Z, Lu Y. Ingestion of Lacticaseibacillus rhamnosus Fmb14 prevents depression-like behavior and brain neural activity via the microbiota-gut-brain axis in colitis mice. Food Funct 2023; 14:1909-1928. [PMID: 36748225 DOI: 10.1039/d2fo04014j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Large preclinical evidence suggested that colitis was one of the risk factors for depression and probiotics were effective therapeutic agents to prevent the disease. The effect of Lacticaseibacillus rhamnosus Fmb14 on colitis-related depression-like behavior and its possible mechanisms were investigated. One week of DSS exposure led to the following changes in male C57BL/6N mice: a reduction in the movement distance from 2218 to 1299 cm, time in central areas from 23.6 s to 11.5 s, and time in the bright box from 217 s to 103 s, which were restored to 1816 cm, 18.4 s, and 181 s, respectively, with preadministration of Fmb14 for 8 weeks. All improvements provided by Fmb14 indicated a remarkable protective effect on depression-like behavior. Fmb14 first worked to repair intestinal barrier damage and the inflammatory response in the colon through ZO1 and Ocln enhancement and IL-1β, NF-κB and IL-6 reduction, respectively. Second, dysbiosis of the gut microbiota was modulated by Fmb14, including reduction of Akkermansia (18.9% to 5.4%), Mucispirillum (0.6% to 0.1%) and Bifidobacterium (0.32% to 0.03%). Fmb14 supplementation ameliorates the brain inflammatory response via IL-18 and NF-κB reduction and improves the blood-brain barrier via increased levels of ZO1 and Ocln. Moreover, brain activity was facilitated by an increase in BDNF and dopamine and the downregulation of GABA in the Fmb14 group. As a consequence of the modulatory effect on the dysfunction of neurotransmitters and neuroinflammation, Fmb14 prevents neurodegeneration by inhibiting neuronal apoptosis and Nissl edema. In addition, the correlation analysis further demonstrated the preventative effect of Fmb14 on depression-like behavior through the microbiota-gut-brain axis. Together, these findings demonstrated the important role of Fmb14 in biological signal transduction over the microbiota-gut-brain axis to improve mood disorders.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoyu Chen
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li Zhang
- Institute of Vegetable, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fanqiang Meng
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Libang Zhou
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
49
|
Mundula T, Baldi S, Gerace E, Amedei A. Role of the Intestinal Microbiota in the Genesis of Major Depression and the Response to Antidepressant Drug Therapy: A Narrative Review. Biomedicines 2023; 11:550. [PMID: 36831086 PMCID: PMC9953611 DOI: 10.3390/biomedicines11020550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
A major depressive disorder is a serious mental illness characterized by a pervasive low mood that negatively concerns personal life, work life, or education, affecting millions of people worldwide. To date, due to the complexity of the disease, the most common and effective treatments consist of a multi-therapy approach, including psychological, social, and pharmacological support with antidepressant drugs. In general, antidepressants are effective in correcting chemical imbalances of neurotransmitters in the brain, but recent evidence has underlined the pivotal role of gut microbiota (GM) also in the regulation of their pharmacokinetics/pharmacodynamics, through indirect or direct mechanisms. The study of these complex interactions between GM and drugs is currently under the spotlight, and it has been recently named "pharmacomicrobiomics". Hence, the purpose of this review is to summarize the contribution of GM and its metabolites in depression, as well as their role in the metabolism and activity of antidepressant drugs, in order to pave the way for the personalized administration of antidepressant therapies.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
50
|
Leung ELH, Huang J, Zhang J, Zhang J, Wang M, Zhu Y, Meng Z, Yu H, Neher E, Ma L, Yao X. Novel Anticancer Strategy by Targeting the Gut Microbial Neurotransmitter Signaling to Overcome Immunotherapy Resistance. Antioxid Redox Signal 2023; 38:298-315. [PMID: 36017627 DOI: 10.1089/ars.2021.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Microbial neurotransmitters, as potential targets for cancer therapy, are expected to provide a new perspective on the interaction between the gut microbiome and cancer immunotherapy. Recent Advances: Mounting data reveal that most neurotransmitters can be derived from gut microbiota. Furthermore, modulation of neurotransmitter signaling can limit tumor growth and enhance antitumor immunity. Critical Issues: Here, we first present the relationships between microbial neurotransmitters and cancer cells mediated by immune cells. Then, we discuss the microbial neurotransmitters recently associated with cancer immunotherapy. Notably, the review emphasizes that neurotransmitter signaling plays a substantial role in cancer immunotherapy as an emerging cancer treatment target by regulating targeted receptors and interfering with the tumor microenvironment. Future Directions: Future studies are required to uncover the antitumor mechanisms of neurotransmitter signaling to develop novel treatment strategies to overcome cancer immunotherapy resistance. Antioxid. Redox Signal. 38, 298-315.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Taipa, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Science, University of Macau, Taipa, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Juanhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,College of Life Science, Northwest Normal University, Lanzhou, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|