1
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
2
|
Li X, Dolbier WR. Visible-Light-Induced Three-Component Tetrafluoroethyl-heteroarylation of Alkenes with 1,1,2,2-Tetrafluoroethanesulfonyl Chloride and Quinoxalin-2(1H)-ones. Chemistry 2023; 29:e202301814. [PMID: 37467364 DOI: 10.1002/chem.202301814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
1,1,2,2-Tetrafluoroethyl-containing compounds are valuable structures due to their unique physicochemical properties, which have increasing potential application in drug discovery. However, synthetic methods for preparing such compounds are rare. Herein, we report the first use of 1,1,2,2-tetrafluoroethanesulfonyl chloride to introduce the HCF2 CF2 group into organic molecules via a three-component, radical tetrafluoroethyl-heteroarylation of alkenes with readily available quinoxalin-2(1H)-ones. This method provides a new and facile approach for late-stage functionalization of potential biologically active molecules.
Collapse
Affiliation(s)
- Xinjin Li
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, United States
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, United States
| |
Collapse
|
3
|
Peng S, Xie LY, Yang L. A visible-light-mediated cascade reaction of quinoxalin-2(1 H)-ones, alkenes, and sulfinic acids. Org Biomol Chem 2023; 21:4109-4113. [PMID: 37128965 DOI: 10.1039/d3ob00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photocatalytic three-component cascade reaction of quinoxalin-2(1H)-ones, alkenes, and sulfinic acids under metal-, strong oxidant-, and external photocatalyst-free conditions was developed. The reaction was performed at room temperature using air as a green oxidant. Various sulfonated quinoxalin-2(1H)-ones were obtained in satisfactory yields with good functional group compatibility. The preliminary study showed that the current transformation was enabled by the formation of an electron donor-acceptor (EDA) complex between quinoxalin-2(1H)-ones and sulfinic acids.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| |
Collapse
|
4
|
Yang Q, Wang B, Wu M, Lei YZ. Recent Developments in Direct C–H Functionalization of Quinoxalin-2(1H)-Ones via Multi-Component Tandem Reactions. Molecules 2023; 28:molecules28062513. [PMID: 36985484 PMCID: PMC10052782 DOI: 10.3390/molecules28062513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The direct C–H multifunctionalization of quinoxalin-2(1H)-ones via multicomponent reactions has attracted considerable interest due to their diverse biological activities and chemical profile. This review will focus on recent achievements. It mainly covers reaction methods for the simultaneous introduction of C–C bonds and C–RF/C/O/N/Cl/S/D bonds into quinoxalin-2(1H)-ones and their reaction mechanisms. Meanwhile, future developments of multi-component reactions of quinoxalin-2(1H)-ones are envisaged, such as the simultaneous construction of C–C and C–B/SI/P/F/I/SE bonds through multi-component reactions; the construction of fused ring and macrocyclic compounds; asymmetric synthesis; green chemistry; bionic structures and other fields. The aim is to enrich the methods for the reaction of quinoxalin-2(1H)-ones at the C3 position, which have rich applications in materials chemistry and pharmaceutical pharmacology.
Collapse
Affiliation(s)
- Qiming Yang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (Q.Y.); (Y.-Z.L.)
| | - Biao Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Mian Wu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yi-Zhu Lei
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Correspondence: (Q.Y.); (Y.-Z.L.)
| |
Collapse
|
5
|
Yu M, Jiang Q, Liu X, Chen Y, Sun K, Tian M, Wang W. Regiospecificity C(sp 2)-C(sp 3) Bond Construction between Purines and Alkenes to Synthesize C 6-Alkylpurines and Purine Nucleosides Using O 2 as the Oxidant. J Org Chem 2023; 88:1411-1423. [PMID: 36634372 DOI: 10.1021/acs.joc.2c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A highly site-selective and Markovnikov-type radical C6-H alkylation of purines with alkenes is achieved, allowing fast construction of the C(sp2)-C(sp3) bond at the C-6-position of purines and purine nucleosides using O2 as a green oxidant and alkenes as cheap alkylation reagents. The route was also a radical route to synthesize C6-alkyl-N7-substituted purines with potential steric hindrance between C6-alkyl groups and N7-substituted groups. This reaction is easily scaled up and has excellent functional group compatibility and broad substrate scopes. Moreover, the unstable intermediate was also separated, which was the key evidence for the reaction mechanism.
Collapse
Affiliation(s)
- Mingwu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Qingsong Jiang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yiwen Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264025, Shandong, P. R. China
| | - Miao Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264025, Shandong, P. R. China
| | - Weili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
6
|
Zhang L, Zheng K, Zhang P, Jiang M, Shen J, Chen C, Shen C. Visible-light-enabled multicomponent synthesis of trifluoromethylated 3-indolequinoxalin-2(1H)-ones without external photocatalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|