1
|
Yang Z, Duncan-Lowey JK, Roy CR. Identification of a Coxiella burnetii outer membrane porin required for intracellular replication. Infect Immun 2025; 93:e0044824. [PMID: 40071978 PMCID: PMC11977307 DOI: 10.1128/iai.00448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/03/2025] [Indexed: 04/09/2025] Open
Abstract
Coxiella burnetii is a gram-negative, obligate intracellular pathogen that causes human Q fever. Within host cells, C. burnetii proliferates in a spacious, acidic, lysosome-derived Coxiella-containing vacuole (CCV) by a process that requires the Dot/Icm type IVB secretion system to deliver effectors that manipulate host cell functions. A previous transposon mutagenesis screen identified the gene cbu0937 as being important for intracellular replication of C. burnetii. Here, the function of Cbu0937 was investigated. The cbu0937::Tn mutant had no detectable defect replicating in the axenic acidified citrate cysteine medium 2. Additionally, intracellular replication of the cbu0937::Tn mutant was not restored by co-infection of host cells with an isogenic wild-type strain of C. burnetii. Thus, the cbu0937::Tn mutant has a cell-intrinsic intracellular replication defect. Intracellular replication of the cbu0937::Tn mutant was restored by complementing the gene in trans with a plasmid encoding either untagged or an epitope-tagged version of Cbu0937. Analysis of the predicted structure of the Cbu0937 protein using AlphaFold revealed high similarity between Cbu0937 and several bacterial porins. Fractionation studies and surface labeling of C. burnetii producing a functional epitope-tagged protein indicated the localization of Cbu0937 to the bacterial outer membrane. From these data, we conclude that cbu0937 encodes a porin that plays an essential role in supporting C. burnetii intracellular replication, which likely involves the acquisition of an important metabolite in the CCV lumen.
Collapse
Affiliation(s)
- Zi Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey K. Duncan-Lowey
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Sobotta K, Schulze-Luehrmann J, Ölke M, Boden K, Lührmann A. Acid Tolerance of Coxiella burnetii Is Strain-Specific and Might Depend on Stomach Content. Pathogens 2025; 14:272. [PMID: 40137758 PMCID: PMC11945843 DOI: 10.3390/pathogens14030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Q fever is a zoonotic disease caused by the obligate intracellular bacterium Coxiella (C.) burnetii. Human infections occur mainly via inhalation, but infections via the oral route have been observed. Gastric acidic conditions (pH 2-4) are the first defense mechanism to limit food-associated infections. In this study, we tested the ability of C. burnetii to survive extremely acidic conditions (pH 2-3) to assess the risk of oral infection in humans. We treated different C. burnetii strains with different pH values and calculated the recovery rate by counting colony-forming units. The analysis of an additional eight C. burnetii strains showed that some strains are acid-resistant, while others are not. Importantly, the presence of pepsin, an endopeptidase and the main digestive enzyme in the gastrointestinal tract, increases the survival rate of C. burnetii. Similarly, the presence of milk might also increase the survival rate. These results suggest that oral infections by C. burnetii are possible and depend on the bacterial strain and the stomach microenvironment. Consequently, the digestive infection route of C. burnetii could play a role in the transmission of the pathogen.
Collapse
Affiliation(s)
- Katharina Sobotta
- Institute of Medical Microbiology, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina Boden
- Institute of Medical Microbiology, Am Klinikum 1, 07747 Jena, Germany
- Synlab MVZ Weiden GmbH, MVZ Thuringia, Ernst-Ruska-Ring 15, 07745 Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Palanisamy R, Zhang Y, Zhang G. Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens 2024; 13:405. [PMID: 38787259 PMCID: PMC11123719 DOI: 10.3390/pathogens13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host-C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1β, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1β, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Zhao S, Miao C, Gao X, Li Z, Eriksson JE, Jiu Y. Vimentin cage - A double-edged sword in host anti-infection defense. Curr Opin Cell Biol 2024; 86:102317. [PMID: 38171142 DOI: 10.1016/j.ceb.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Vimentin, a type III intermediate filament, reorganizes into what is termed the 'vimentin cage' in response to various pathogenic infections. This cage-like structure provides an envelope to key components of the pathogen's life cycle. In viral infections, the vimentin cage primarily serves as a scaffold and organizer for the replication factory, promoting viral replication. However, it also occasionally contributes to antiviral functions. For bacterial infections, the cage mainly supports bacterial proliferation in most observed cases. These consistent structural alterations in vimentin, induced by a range of viruses and bacteria, highlight the vimentin cage's crucial role. Pathogen-specific factors add complexity to this interaction. In this review, we provide a thorough overview of the functions and mechanisms of the vimentin cage and speculate on vimentin's potential as a novel target for anti-pathogen strategies.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenglin Miao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuedi Gao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zhifang Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland.
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
5
|
Cheng Y, Zhu W, Han S, Yang J, Wu G, Zhao G, He X. Roseomonas populi sp. nov., an acetate-degrading bacteria isolated from the stem of Populus tomentosa. Antonie Van Leeuwenhoek 2023; 117:2. [PMID: 38147266 DOI: 10.1007/s10482-023-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 12/27/2023]
Abstract
Strain CN29T, isolated from the stem of 5- to 6-year-old Populus tomentosa in Shandong, China, was characterized using a polyphasic taxonomic approach. Cells of CN29T were Gram-stain negative, aerobic, nonspore-forming, and nonmotile coccoid. Growth occurred at 20-37 °C, pH 4.0-9.0 (optimum, pH 6.0), and with 0-1% NaCl (optimum, 1%). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CN29T was closely related to members of the genus Roseomonas and closest to Roseomonas pecuniae N75T (96.6%). This classification was further supported by phylogenetic analysis using additional core genes. The average nucleotide identity and digital DNA‒DNA hybridization values between strain CN29T and Roseomonas populi CN29T were 82.7% and 27.8%, respectively. The genome size of strain CN29T was 5.87 Mb, with a G + C content of 70.9%. The major cellular fatty acids included summed feature 8 (C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c and C16:0. The major respiratory quinone was Q-10. The polar lipids were phosphatidylcholine, aminolipid, phosphatidylglycerol, and diphosphatidylglycerol. Strain CN29T can utilize acetate as a carbon source for growth and metabolism. Additionally, it contains acid phosphatase (2-naphthyl phosphate), which catalyzes the hydrolysis of phosphoric monoesters. The CN29T strain contains several genes, including maeB, gdhB, and cysJ, involved in carbon, nitrogen, and sulfur cycling. These findings suggest that the strain may actively participate in ecosystem cycling, leading to soil improvement and promoting the growth of poplar trees. Based on the phylogenetic, phenotypic, and genotypic characteristics, strain CN29T is concluded to represent a novel species of the genus Roseomonas, for which the name Roseomonas populi sp. nov. is proposed. The type strain is CN29T (= JCM 35579T = GDMCC 1.3267T).
Collapse
Affiliation(s)
- Yao Cheng
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wen Zhu
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuo Han
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Yang
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guanqi Wu
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guozhu Zhao
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangwei He
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Bauer BU, Knittler MR, Andrack J, Berens C, Campe A, Christiansen B, Fasemore AM, Fischer SF, Ganter M, Körner S, Makert GR, Matthiesen S, Mertens-Scholz K, Rinkel S, Runge M, Schulze-Luehrmann J, Ulbert S, Winter F, Frangoulidis D, Lührmann A. Interdisciplinary studies on Coxiella burnetii: From molecular to cellular, to host, to one health research. Int J Med Microbiol 2023; 313:151590. [PMID: 38056089 DOI: 10.1016/j.ijmm.2023.151590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The Q-GAPS (Q fever GermAn interdisciplinary Program for reSearch) consortium was launched in 2017 as a German consortium of more than 20 scientists with exceptional expertise, competence, and substantial knowledge in the field of the Q fever pathogen Coxiella (C.) burnetii. C. burnetii exemplifies as a zoonotic pathogen the challenges of zoonotic disease control and prophylaxis in human, animal, and environmental settings in a One Health approach. An interdisciplinary approach to studying the pathogen is essential to address unresolved questions about the epidemiology, immunology, pathogenesis, surveillance, and control of C. burnetii. In more than five years, Q-GAPS has provided new insights into pathogenicity and interaction with host defense mechanisms. The consortium has also investigated vaccine efficacy and application in animal reservoirs and identified expanded phenotypic and genotypic characteristics of C. burnetii and their epidemiological significance. In addition, conceptual principles for controlling, surveilling, and preventing zoonotic Q fever infections were developed and prepared for specific target groups. All findings have been continuously integrated into a Web-based, interactive, freely accessible knowledge and information platform (www.q-gaps.de), which also contains Q fever guidelines to support public health institutions in controlling and preventing Q fever. In this review, we will summarize our results and show an example of how an interdisciplinary consortium provides knowledge and better tools to control a zoonotic pathogen at the national level.
Collapse
Affiliation(s)
- Benjamin U Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Jennifer Andrack
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bahne Christiansen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Akinyemi M Fasemore
- Bundeswehr Institute of Microbiology, Munich, Germany; University of Würzburg, Würzburg, Germany; ZB MED - Information Centre for Life Science, Cologne, Germany
| | - Silke F Fischer
- Landesgesundheitsamt Baden-Württemberg, Ministerium für Soziales, Gesundheit und Integration, Stuttgart, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophia Körner
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany; Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Svea Matthiesen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Katja Mertens-Scholz
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Sven Rinkel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| | - Jan Schulze-Luehrmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Fenja Winter
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, Munich, Germany; Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information, Munich, Germany
| | - Anja Lührmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| |
Collapse
|
7
|
Clemente TM, Angara RK, Gilk SD. Establishing the intracellular niche of obligate intracellular vacuolar pathogens. Front Cell Infect Microbiol 2023; 13:1206037. [PMID: 37645379 PMCID: PMC10461009 DOI: 10.3389/fcimb.2023.1206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Obligate intracellular pathogens occupy one of two niches - free in the host cell cytoplasm or confined in a membrane-bound vacuole. Pathogens occupying membrane-bound vacuoles are sequestered from the innate immune system and have an extra layer of protection from antimicrobial drugs. However, this lifestyle presents several challenges. First, the bacteria must obtain membrane or membrane components to support vacuole expansion and provide space for the increasing bacteria numbers during the log phase of replication. Second, the vacuole microenvironment must be suitable for the unique metabolic needs of the pathogen. Third, as most obligate intracellular bacterial pathogens have undergone genomic reduction and are not capable of full metabolic independence, the bacteria must have mechanisms to obtain essential nutrients and resources from the host cell. Finally, because they are separated from the host cell by the vacuole membrane, the bacteria must possess mechanisms to manipulate the host cell, typically through a specialized secretion system which crosses the vacuole membrane. While there are common themes, each bacterial pathogen utilizes unique approach to establishing and maintaining their intracellular niches. In this review, we focus on the vacuole-bound intracellular niches of Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, and Coxiella burnetii.
Collapse
Affiliation(s)
| | | | - Stacey D. Gilk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Osman IO, Caputo A, Pinault L, Mege JL, Levasseur A, Devaux CA. Identification and Characterization of an HtrA Sheddase Produced by Coxiella burnetii. Int J Mol Sci 2023; 24:10904. [PMID: 37446087 PMCID: PMC10342153 DOI: 10.3390/ijms241310904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/β-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Aurelia Caputo
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Lucile Pinault
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Laboratory of Immunology, Assitance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Anthony Levasseur
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Christian A. Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| |
Collapse
|
9
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
10
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative Transcriptomics and Genomics from Continuous Axenic Media Growth Identifies Coxiella burnetii Intracellular Survival Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527305. [PMID: 36798183 PMCID: PMC9934583 DOI: 10.1101/2023.02.06.527305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a "Reverse evolution" approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
| | - Melissa N. Brewer
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
- Biological Sciences. Southeastern Oklahoma State University. Durant, OK. USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
| | - Edward I. Shaw
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
- Department of Biomedical Sciences. Philadelphia College of Osteopathic Medicine. Moultrie, GA. USA
| |
Collapse
|
11
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative transcriptomics and genomics from continuous axenic media growth identifies Coxiella burnetii intracellular survival strategies. Pathog Dis 2023; 81:ftad009. [PMID: 37193663 PMCID: PMC10237335 DOI: 10.1093/femspd/ftad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a 'reverse evolution' approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Melissa N Brewer
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Biological Sciences, Southeastern Oklahoma State University, 74078 Durant, OK, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Edward I Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 74078 Moultrie, GA, United States
| |
Collapse
|
12
|
Wachter S, Cockrell DC, Miller HE, Virtaneva K, Kanakabandi K, Darwitz B, Heinzen RA, Beare PA. The endogenous Coxiella burnetii plasmid encodes a functional toxin-antitoxin system. Mol Microbiol 2022; 118:744-764. [PMID: 36385554 PMCID: PMC10098735 DOI: 10.1111/mmi.15001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Diane C Cockrell
- Vector-Pathogen-Host Interaction unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Kimmo Virtaneva
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
13
|
Wen J, Lyu P, Stolzer I, Xu J, Gießl A, Lin Z, Andreev D, Kachler K, Song R, Meng X, Cao S, Guggino G, Ciccia F, Günther C, Schett G, Bozec A. Epithelial HIF2α expression induces intestinal barrier dysfunction and exacerbation of arthritis. Ann Rheum Dis 2022; 81:1119-1130. [PMID: 35710307 DOI: 10.1136/annrheumdis-2021-222035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate how the mucosal barrier in the intestine influences the development of arthritis, considering that metabolic changes in the intestinal epithelium influence its barrier function. METHODS Intestinal hypoxia inducible factor (HIF)-2α expression was assessed before, at onset and during experimental arthritis and human rheumatoid arthritis (RA). Intestinal epithelial cell-specific HIF2α conditional knock-out mice were generated (HIF2α∆IEC) and subjected to collagen-induced arthritis. Clinical and histological courses of arthritis were recorded; T-cell and B-cell subsets were analysed in the gut and secondary lymphatic organs; and intestinal epithelial cells were subjected to molecular mRNA sequencing in HIF2α∆IEC and littermate control mice. The gut intestinal HIF2α target genes were delineated by chromatin immunoprecipitation and luciferase experiments. Furthermore, pharmacological HIF2α inhibitor PT2977 was used for inhibition of arthritis. RESULTS Intestinal HIF2α expression peaked at onset of experimental arthritis and RA. Conditionally, deletion of HIF2α in gut epithelial cells inhibited arthritis and was associated with improved intestinal barrier function and less intestinal and lymphatic Th1 and Th17 activation. Mechanistically, HIF2α induced the transcription of the pore-forming claudin (CLDN)-15, which inhibits intestinal barrier integrity. Furthermore, treatment with HIF2α inhibitor decreased claudin-15 expression in epithelial cells and inhibited arthritis. CONCLUSION These findings show that the HIF2α-CLDN15 axis is critical for the breakdown of intestinal barrier function at onset of arthritis, highlighting the functional link between intestinal homeostasis and arthritis.
Collapse
Affiliation(s)
- Jinming Wen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pang Lyu
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Iris Stolzer
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jin Xu
- Department of Orthopaedic Surgery, Sun Yat-Sen University, Guangzhou, China
| | - Andreas Gießl
- Department of Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhen Lin
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rui Song
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Shan Cao
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital P. Giaccone, Palermo, Italy
| | - Francesco Ciccia
- Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Claudia Günther
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Zhang Y, Fu J, Liu S, Wang L, Qiu J, van Schaik EJ, Samuel JE, Song L, Luo ZQ. Coxiella burnetii inhibits host immunity by a protein phosphatase adapted from glycolysis. Proc Natl Acad Sci U S A 2022; 119:e2110877119. [PMID: 34930823 PMCID: PMC8740755 DOI: 10.1073/pnas.2110877119] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Coxiella burnetii is a bacterial pathogen that replicates within host cells by establishing a membrane-bound niche called the Coxiella-containing vacuole. Biogenesis of this compartment requires effectors of its Dot/Icm type IV secretion system. A large cohort of such effectors has been identified, but the function of most of them remain elusive. Here, by a cell-based functional screening, we identified the effector Cbu0513 (designated as CinF) as an inhibitor of NF-κB signaling. CinF is highly similar to a fructose-1,6-bisphosphate (FBP) aldolase/phosphatase present in diverse bacteria. Further study reveals that unlike its ortholog from Sulfolobus tokodaii, CinF does not exhibit FBP phosphatase activity. Instead, it functions as a protein phosphatase that specifically dephosphorylates and stabilizes IκBα. The IκBα phosphatase activity is essential for the role of CinF in C. burnetii virulence. Our results establish that C. burnetii utilizes a protein adapted from sugar metabolism to subvert host immunity.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiaqi Fu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Shuxin Liu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiazhang Qiu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Erin J van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX 77807
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX 77807
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun 130021, China;
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907;
| |
Collapse
|
15
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
16
|
Loterio RK, Zamboni DS, Newton HJ. Keeping the host alive - lessons from obligate intracellular bacterial pathogens. Pathog Dis 2021; 79:6424899. [PMID: 34755855 DOI: 10.1093/femspd/ftab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 01/20/2023] Open
Abstract
Mammals have evolved sophisticated host cell death signaling pathways as an important immune mechanism to recognize and eliminate cell intruders before they establish their replicative niche. However, intracellular bacterial pathogens that have co-evolved with their host have developed a multitude of tactics to counteract this defense strategy to facilitate their survival and replication. This requires manipulation of pro-death and pro-survival host signaling pathways during infection. Obligate intracellular bacterial pathogens are organisms that absolutely require an eukaryotic host to survive and replicate, and therefore they have developed virulence factors to prevent diverse forms of host cell death and conserve their replicative niche. This review encapsulates our current understanding of these host-pathogen interactions by exploring the most relevant findings of Anaplasma spp., Chlamydia spp., Rickettsia spp. and Coxiella burnetii modulating host cell death pathways. A detailed comprehension of the molecular mechanisms through which these obligate intracellular pathogens manipulate regulated host cell death will not only increase the current understanding of these difficult-to-study pathogens but also provide insights into new tools to study regulated cell death and the development of new therapeutic approaches to control infection.
Collapse
Affiliation(s)
- Robson Kriiger Loterio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| |
Collapse
|
17
|
Zhu W, Zhou J, Lu S, Yang J, Lai XH, Jin D, Pu J, Huang Y, Liu L, Li Z, Xu J. Isolation and characterization of tick-borne Roseomonas haemaphysalidis sp. nov. and rodent-borne Roseomonas marmotae sp. nov. J Microbiol 2021; 60:137-146. [PMID: 34826100 PMCID: PMC8622105 DOI: 10.1007/s12275-022-1428-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022]
Abstract
Four novel Gram-negative, mesophilic, aerobic, motile, and cocci-shaped strains were isolated from tick samples (strains 546T and 573) and respiratory tracts of marmots (strains 1318T and 1311). The 16S rRNA gene sequencing revealed that strains 546T and 573 were 97.8% identical to Roseomonas wenyumeiae Z23T, whereas strains 1311 and 1318T were 98.3% identical to Roseomonas ludipueritiae DSM 14915T. In addition, a 98.0% identity was observed between strains 546T and 1318T. Phylogenetic and phylogenomic analyses revealed that strains 546T and 573 clustered with R. wenyumeiae Z23T, whereas strains 1311 and 1318T grouped with R. ludipueritiae DSM 14915T. The average nucleotide identity between our isolates and members of the genus Roseomonas was below 95%. The genomic G+C content of strains 546T and 1318T was 70.9% and 69.3%, respectively. Diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE) were the major polar lipids, with Q-10 as the predominant respiratory quinone. According to all genotypic, phenotypic, phylogenetic, and phylogenomic analyses, the four strains represent two novel species of the genus Roseomonas, for which the names Roseomonas haemaphysalidis sp. nov. and Roseomonas marmotae sp. nov. are proposed, with 546T (= GDMCC 1.1780T = JCM 34187T) and 1318T (= GDMCC 1.1781T = JCM 34188T) as type strains, respectively.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, P. R. China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, P. R. China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, P. R. China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, 102206, P. R. China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, P. R. China. .,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.
| |
Collapse
|
18
|
Abstract
Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires’ pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.
Collapse
|
19
|
Fisher JR, Chroust ZD, Onyoni F, Soong L. Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10. [PMID: 35282331 PMCID: PMC8909792 DOI: 10.15212/zoonoses-2021-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Host pattern recognition receptors (PRRs) are crucial for sensing pathogenic microorganisms, launching innate responses, and shaping pathogen-specific adaptive immunity during infection. Rickettsia spp., Orientia tsutsugamushi, Anaplasma spp., Ehrlichia spp., and Coxiella burnetii are obligate intracellular bacteria, which can only replicate within host cells and must evade immune detection to successfully propagate. These five bacterial species are zoonotic pathogens of clinical or agricultural importance, yet, uncovering how immune recognition occurs has remained challenging. Recent evidence from in-vitro studies and animal models has offered new insights into the types and kinetics of PRR activation during infection with Rickettsia spp., A. phagocytophilum, E. chaffeensis, and C. burnetii, respectively. However, much less is known in these regards for O. tsutsugamushi infection, until the recent discovery for the role of the C-type lectin receptor Mincle during lethal infection in mice and in primary macrophage cultures. This review gives a brief summary for clinical and epidemiologic features of these five bacterial infections, focuses on fundamental biologic facets of infection, and recent advances in host recognition. In addition, we discuss knowledge gaps for innate recognition of these bacteria in the context of disease pathogenesis.
Collapse
Affiliation(s)
- James R. Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zachary D. Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Florence Onyoni
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Corresponding author: Lynn Soong, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. MRB 3.142, Galveston, Texas 77555-1070,
| |
Collapse
|