1
|
Diao MN, Lv YJ, Xin H, Zhang YF, Zhang R. A comprehensive review of m6 A methylation in coronary heart disease. J Mol Med (Berl) 2025:10.1007/s00109-025-02540-1. [PMID: 40208302 DOI: 10.1007/s00109-025-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The morbidity and mortality rates of coronary heart disease (CHD) are high worldwide. The primary pathological changes in CHD involve stenosis and ischemia caused by coronary atherosclerosis (AS). Extensive research on the pathogenesis of AS has revealed chronic immunoinflammatory processes and cell proliferation in all layers of coronary vessels, including endothelial cells (ECs), vascular smooth muscle cells, and macrophages. m6 A methylation is a common posttranscriptional modification of RNA that is coordinated by a variety of regulators (writers, readers, erasers) to maintain the functional stability of modified mRNAs and ncRNAs. In recent years, there has been increasing focus on the involvement of m6 A methylation in the incidence and progression of CHD, which starts with atherosclerotic plaque formation, leads to myocardial ischemia, and ultimately results in the occurrence of myocardial infarction (MI). m6 A regulators modulate relevant signaling pathways to participate in the inflammatory response, programmed death of cardiomyocytes, and fibrosis. Therefore, diagnostic models based on m6 A profiling are helpful for the early detection of CHD, and m6 A methylation shows promise as a sensitive target for new drugs to treat CHD in the future.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Yi-Jv Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China.
| |
Collapse
|
2
|
Li P, Xiang Y, Wei J, Xu X, Wang J, Yu H, Li X, Lin H, Fu X. Follicle-stimulating hormone promotes EndMT in endothelial cells by upregulating ALKBH5 expression. Cell Mol Biol Lett 2025; 30:41. [PMID: 40186131 PMCID: PMC11969750 DOI: 10.1186/s11658-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The incidence of atherosclerosis markedly rises following menopause. Our previous findings demonstrated that elevated follicle-stimulating hormone (FSH) levels in postmenopausal women accelerate atherosclerosis progression. Plaque instability, the fundamental pathological factor in acute coronary syndrome, primarily results from vascular embolism due to plaque rupture. Recent evidence highlights that endothelial-to-mesenchymal transition (EndMT) exacerbates plaque instability, although the link between FSH and EndMT has not been fully established. This investigation sought to explore the possible influence of FSH in modulating EndMT. METHODS In this study, apolipoprotein E-deficient (ApoE-/-) mice served as an atherosclerosis model, while human umbilical vascular endothelial cells (HUVECs) were used as cellular models. Protein levels were assessed through immunochemical techniques, gene expression was quantified via RT-qPCR, and nucleic acid-protein interactions were evaluated using immunoprecipitation. The m6A modification status was determined by MeRIP, and cellular behaviors were analyzed through standard biochemical assays. RESULTS Our results indicate that FSH induces EndMT both in vitro and in vivo. Additional investigation suggested that FSH upregulates the transcription factor Forkhead box protein M1 (FOXM1) at both protein and mRNA levels by enhancing the expression of AlkB homolog 5, RNA demethylase (ALKBH5). FSH reduces m6A modifications on FOXM1 through ALKBH5, leading to increased nascent transcript levels and mRNA stability of FOXM1. Dual-luciferase reporter assays highlighted cAMP-response element binding protein (CREB)'s essential function in facilitating the FSH-induced upregulation of ALKBH5. CONCLUSIONS These findings suggest that FSH promotes ALKBH5 expression, facilitates N6-methyladenosine (m6A) demethylation on FOXM1, and consequently, induces EndMT. This study elucidates the impact of FSH on plaque instability and provides insights into potential strategies to prevent acute coronary syndrome in postmenopausal women.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Yixiao Xiang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jinzhi Wei
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xingyan Xu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jiale Wang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Haowei Yu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Huiping Lin
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Xiaodong Fu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China.
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Wang H, Han J, Kong H, Ma C, Zhang XA. The Emerging Role of m6A and Programmed Cell Death in Cardiovascular Diseases. Biomolecules 2025; 15:247. [PMID: 40001550 PMCID: PMC11853213 DOI: 10.3390/biom15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death (PCD), a tightly controlled process encompassing apoptosis, pyroptosis, ferroptosis, autophagy, and necroptosis, plays a crucial role in maintaining cellular homeostasis, tissue development, and function. Recently, m6A modification has emerged as a significant research area due to its role in regulating PCD and its implications in cardiovascular diseases (CVDs). In this review, we delve into the intricate relationship between various PCD types and m6A modification, emphasizing their pivotal roles in the initiation and progression of CVDs such as myocardial ischemia-reperfusion (I/R), atherosclerosis (AS), pulmonary hypertension (PH), cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity (DIC), heart failure (HF), and myocardial infarction (MI). Our findings underscore the potential of elucidating the roles of m6A and PCD in CVD to pave new pathways for prevention and treatment strategies.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
- College of Exercise and Health, Shanghai Sport University, Shanghai 200438, China
| | - Ce Ma
- Sports Training Teaching and Research Office, Shenyang Sport University, Shenyang 110102, China;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| |
Collapse
|
4
|
Xu G, Li Q, Zhu L, Yang T, Yang Y, Yang H. Exosomal ALKBH5 Alleviates Vascular Calcification by Suppressing Cell Apoptosis via m6A-Modified GSDME. Drug Dev Res 2025; 86:e70065. [PMID: 39950329 DOI: 10.1002/ddr.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 05/09/2025]
Abstract
This study aimed to explore the function and regulatory mechanism of ALKBH5 in the progression of coronary artery calcification. Human aortic vascular smooth muscle cells (HA-VSMCs) were treated with inorganic phosphate (Pi) and exosomes derived from bone marrow mesenchymal stem cell (BMSC) carrying ALKBH5, a GSDME overexpression vector or si-GSDME. The morphology and size of the exosomes were assessed using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Calcium deposition was measured using Alizarin red staining and cell pyroptosis was evaluated using Hoechst 33342/PI staining. The association between ALKBH5 and m6A modifications was confirmed by methylated-RNA immunoprecipitation assay (MeRIP) and dot blot assays. The expression levels of ALKBH5 and GSDME were quantified by quantitative real-time polymerase chain reaction (qRT-PCR), and protein levels were quantified by western blot. BMSCs-derived exosomes reduced calcium deposition and cell pyroptosis in Pi-treated HA-VSMCs. Exosomes containing ALKBH5 overexpression inhibited high mobility group box 1 (HMGB1) and cell apoptosis, thereby promoting vascular calcification, whereas ALKBH5 knockdown in exosomes exerted the opposite effect on calcification development. Additionally, ALKBH5 was found to regulate the m6A modification of GSDME. Overexpression of GSDME reversed the effects of ALKBH5 in exosomes on HMGB1 expression and cell apoptosis. Exosomal ALKBH5 mitigated HMGB1 expression and cell pyroptosis by modulating the m6A modification of GSDME, thus influencing the progression of coronary artery calcification.
Collapse
Affiliation(s)
- Guian Xu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China
| | - Qingman Li
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China
| | - Lijie Zhu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China
| | - Tingjie Yang
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China
| | - Yapan Yang
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China
| | - Honghui Yang
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang H, Lu W, Tang H, Chen A, Gao X, Zhu C, Zhang J. Novel Insight of N6-Methyladenosine in Cardiovascular System. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:222. [PMID: 40005339 PMCID: PMC11857502 DOI: 10.3390/medicina61020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
N6-methyladenosine (m6A) is the most common and abundant internal co-transcriptional modification in eukaryotic RNAs. This modification is catalyzed by m6A methyltransferases, known as "writers", including METTL3/14 and WTAP, and removed by demethylases, or "erasers", such as FTO and ALKBH5. It is recognized by m6A-binding proteins, or "readers", such as YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, and HNRNPA2B1. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Recent studies indicate that m6A RNA modification plays a critical role in both the physiological and pathological processes involved in the initiation and progression of CVDs. In this review, we will explore how m6A RNA methylation impacts both the normal and disease states of the cardiovascular system. Our focus will be on recent advancements in understanding the biological functions, molecular mechanisms, and regulatory factors of m6A RNA methylation, along with its downstream target genes in various CVDs, such as atherosclerosis, ischemic diseases, metabolic disorders, and heart failure. We propose that the m6A RNA methylation pathway holds promise as a potential therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Wei Lu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Haoyue Tang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Aiqun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Congfei Zhu
- Department of Cardiology, Lianshui County People’s Hospital, Affiliated Hospital of Kangda College, Nanjing Medical University, Huaian 223400, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| |
Collapse
|
6
|
Zhang D, Gou Z, Qu Y, Su X. Mechanistic insights into vascular biology via methyltransferase-like 3-driven N 6-adenosine methylation of RNA. Front Cell Dev Biol 2025; 12:1482753. [PMID: 39834386 PMCID: PMC11743479 DOI: 10.3389/fcell.2024.1482753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Recent advancements in the mechanistic comprehension of vascular biology have concentrated on METTL3-mediated N6-methyladenosine modification of RNA, which modulates a spectrum of RNA functionalities with precision. Despite extensive investigations into the roles and mechanisms of METTL3 within vascular biology, a holistic review elucidating their interconnections remains absent. This analysis endeavors to meticulously scrutinize the involvement of METTL3 in both the physiological and pathological paradigms of vascular biology. The findings of this review indicate that METTL3 is indispensable for vascular development and functionality, predominantly through its regulatory influence on pericytes, endothelial cells, vascular smooth muscle cells, and hematopoietic stem cells. Conversely, aberrant METTL3 activity is implicated as a risk factor, diagnostic biomarker, and therapeutic target for vascular pathologies. This comprehensive review offers an exhaustive synthesis of METTL3's role in vascular biology, addressing existing knowledge gaps and serving as an essential reference for future research and potential clinical applications.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Su
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Liu S, Cao Y, Zhang Y. Regulatory roles of RNA methylation in vascular lesions in ocular and cardiopulmonary diseases. Crit Rev Clin Lab Sci 2024; 61:726-740. [PMID: 38957015 DOI: 10.1080/10408363.2024.2370267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
RNA methylation is a widespread regulatory mechanism that controls gene expression in physiological processes. In recent years, the mechanisms and functions of RNA methylation under diseased conditions have been increasingly unveiled by RNA sequencing technologies with large scale and high resolution. In this review, the fundamental concept of RNA methylation is introduced, and the common types of transcript methylation and their machineries are described. Then, the regulatory roles of RNA methylation, particularly N6-methyladenosine and 5-methylcytosine, in the vascular lesions of ocular and cardiopulmonary diseases are discussed and compared. The ocular diseases include corneal neovascularization, retinopathy of prematurity, diabetic retinopathy, and pathologic myopia; whereas the cardiopulmonary ailments involve atherosclerosis and pulmonary hypertension. This review hopes to shed light on the common regulatory mechanisms underlying the vascular lesions in these ocular and cardiopulmonary diseases, which may be conducive to developing therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Siyi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
8
|
Wang W, Li H, Qian Y, Li M, Deng M, Bi D, Zou J. ALKBH5 Regulates Corneal Neovascularization by Mediating FOXM1 M6A Demethylation. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39441582 PMCID: PMC11512564 DOI: 10.1167/iovs.65.12.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose This study aims to explore the regulatory role and potential mechanisms of ALKBH5-mediated N6-methyladenosine (m6A) demethylation modification in corneal neovascularization (CNV). Methods A mouse CNV model was established through corneal alkali burns. Total m6A levels were measured using an m6A RNA methylation quantification kit. The mRNA expression of candidate m6A-related enzymes was quantified by quantitative RT-PCR. Small interfering RNA targeting ALKBH5 was injected subconjunctivally into alkali-burned mice. The CNV area, corneal epithelial thickness, and pathological changes were evaluated. Protein expression was detected by western blot and immunofluorescence. Human umbilical vein endothelial cells (HUVECs) were treated with IL-6. Plasmid transfection knocked down ALKBH5 or overexpressed FOXM1 in IL-6-induced HUVECs. The assays of CCK8, wound healing, and tube formation evaluated the cell proliferation, migration, and tube formation abilities, respectively. The dual-luciferase assay examined the binding between ALKBH5 and FOXM1. Methylated RNA immunoprecipitation-qPCR detected the m6A levels of FOXM1. Results Significant CNV was observed on the seventh day. Total m6A levels were reduced, and ALKBH5 expression was increased in CNV corneas and IL-6-induced HUVECs. ALKBH5 knockdown alleviated corneal neovascularization and inflammation and countered IL-6-induced promotion of cell proliferation, migration, and tube formation in HUVECs. ALKBH5 depletion increased m6A levels and decreased VEGFA and CD31 expression both in vivo and in vitro. This knockdown in HUVECs elevated m6A levels on FOXM1 mRNA while reducing its mRNA and protein expression. Notably, FOXM1 overexpression can reverse ALKBH5 depletion effects. Conclusions ALKBH5 modulates FOXM1 m6A demethylation, influencing CNV progression and highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Chen H, Jiao Y, Lin C, Fan W, Li L, Li B, Li L, Zeng X, Li Z, Wei H, Zhang Y, Zhou B, Chen C, Ye J, Yang M. Thrombopoietin improves the functions of bone marrow endothelial progenitor cells via METTL16/Akt signalling of haematological patients with chemotherapy-induced thrombocytopenia. Br J Haematol 2024; 205:1532-1545. [PMID: 39189039 DOI: 10.1111/bjh.19722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments. Endothelial cells were transfected with METTL16 lentivirus, followed by methylated RNA immunoprecipitation sequencing. Zebrafish with vascular defect was used as the in vivo model. TPO significantly improved the quantity and functions of BM EPCs from CIT patients in vitro and restored the subintestinal vein area of zebrafish with vascular defect in vivo. Mechanically, TPO enhanced the BM EPC functions through Akt signal mediated by METTL16, which was downregulated in BM EPCs of CIT patients and involved in the regulation of endothelial functions. The present study demonstrates that TPO improves the recovery of BM EPCs from CIT patients with haematological malignancies via METTL16/Akt signalling, which provides new insights into the role of TPO in treating CIT in addition to direct megakaryopoiesis.
Collapse
Affiliation(s)
- Hui Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
| | - Yingying Jiao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Chao Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Wenxuan Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Lindi Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Bo Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Shenzhen, Guangdong, P.R. China
| | - Liang Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
| | - Xiaoyuan Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zongpeng Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Hongfa Wei
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Yuming Zhang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China
| | - Benjie Zhou
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
| | - Chun Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mo Yang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China
| |
Collapse
|
10
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
12
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Shen C, Chen X, Lin Y, Yang Y. Hypoxia triggers cardiomyocyte apoptosis via regulating the m 6A methylation-mediated LncMIAT/miR-708-5p/p53 axis. Heliyon 2024; 10:e32455. [PMID: 38961902 PMCID: PMC11219354 DOI: 10.1016/j.heliyon.2024.e32455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Long-time hypoxia induced cardiomyocyte apoptosis is an important mechanism of myocardial ischemia (MI) injury. Interestingly, long noncoding RNA myocardial infarction-associated transcript (LncMIAT) has been involved in the regulation of MI injury; however, the underlying mechanism by which LncMIAT affects the progression of hypoxia-induced cardiomyocyte apoptosis remains unclear. In the present study, hypoxia was found to promote cardiomyocyte apoptosis through an increased expression of LncMIAT in vitro. Biological investigations and dual-luciferase gene reporter assay further revealed that LncMIAT was able to bind with miR-708-5p to upregulate the p53-mediated cell death of the cardiomyocytes. Silencing of LncMIAT or overexpression of miR-708-5p led to a significant reduction in p53-mediated cardiomyocyte apoptosis. The methylated RNA immunoprecipitation (MeRIP)-qPCR results showed that hypoxia exerted its effects on LncMIAT through AKLBH5-N6-methyladenosine (m6A) methylation and therefore hypoxia was shown to trigger HL-1 cardiomyocyte apoptosis via the m6A methylation-mediated LncMIAT/miR-708-5p/p53 axis. Silencing of AKLBH5 significantly alleviated the m6A methylation-mediated LncMIAT upregulation and p53-mediated cardiomyocyte apoptosis, while promoted miR-708-5p expression. Taken together, the present study highlighted that LncMIAT could act as a key biological target during hypoxia-induced cardiomyocyte apoptosis. In addition, it was shown that hypoxia could promote cardiomyocyte apoptosis through regulation of the m6A methylation-mediated LncMIAT/miR-708-5p/p53 signaling axis.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230012, PR China
| | - Xiaoqi Chen
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Yixuan Lin
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230012, PR China
| |
Collapse
|
14
|
Han F. N6-methyladenosine modification in ischemic stroke: Functions, regulation, and therapeutic potential. Heliyon 2024; 10:e25192. [PMID: 38317953 PMCID: PMC10840115 DOI: 10.1016/j.heliyon.2024.e25192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
N6-methyladenosine (m6A) modification is the most frequently occurring internal modification in eukaryotic RNAs. By modulating various aspects of the RNA life cycle, it has been implicated in a wide range of pathological and physiological processes associated with human diseases. Ischemic stroke is a major cause of death and disability worldwide with few treatment options and a narrow therapeutic window, and accumulating evidence has indicated the involvement of m6A modifications in the development and progression of this type of stroke. In this review, which provides insights for the prevention and clinical treatment of stroke, we present an overview of the roles played by m6A modification in ischemic stroke from three main perspectives: (1) the association of m6A modification with established risk factors for stroke, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and heart disease; (2) the roles of m6A modification regulators and their functional regulation in the pathophysiological injury mechanisms of stroke, namely oxidative stress, mitochondrial dysfunction, endothelial dysfunction, neuroinflammation, and cell death processes; and (3) the diagnostic and therapeutic potential of m6A regulators in the treatment of stroke.
Collapse
Affiliation(s)
- Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
15
|
Li D, Li L, Dong S, Yu Y, Zhang L, Jiang S. Alkylation Repair Homolog 5 Regulates N(6)-methyladenosine (m6A) Methylation of Mitsugumin 53 to Attenuate Myocardial Infarction by Inhibiting Apoptosis and Oxidative Stress. J Cardiovasc Pharmacol 2024; 83:183-192. [PMID: 37989146 DOI: 10.1097/fjc.0000000000001515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT N(6)-methyladenosine (m6A) methylation modification is involved in the progression of myocardial infarction (MI). In this study, we investigated the effects of demethylase alkylation repair homolog 5 (ALKBH5) on cell apoptosis and oxidative stress in MI. The ischemia/reperfusion (I/R) injury mouse model and hypoxia/reoxygenation (H/R) cell model were established. The levels of ALKBH5 and mitsugumin 53 (MG53) were measured by quantitative real-time polymerase chain reaction, immunohistochemical, and immunofluorescence analysis. Apoptosis was evaluated by TUNEL assay, flow cytometry, and western blot. Oxidative stress was assessed by antioxidant index kits. Methylation was analyzed by RNA binding protein immunoprecipitation (RIP), MeRIP, and dual-luciferase reporter assay. We observed that ALKBH5 and MG53 were highly expressed in MI. Overexpression of ALKBH5 inhibited H/R-induced cardiomyocyte apoptosis and oxidative stress in vitro, and it inhibited I/R-induced collagen deposition, cardiac function, and apoptosis in vivo. ALKBH5 could bind to MG53, inhibit m6A methylation of MG53, and increase its mRNA stability. Silencing of MG53 counteracted the inhibition of apoptosis and oxidative stress induced by ALKBH5. In conclusion, ALKBH5 suppressed m6A methylation of MG53 and inhibited MG53 degradation to inhibit apoptosis and oxidative stress of cardiomyocytes, thereby attenuating MI. The results provided a theoretical basis that ALKBH5 is a potential target for MI treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
16
|
Fan Y, Yan D, Ma L, Liu X, Luo G, Hu Y, Kou X. ALKBH5 is a prognostic factor and promotes the angiogenesis of glioblastoma. Sci Rep 2024; 14:1303. [PMID: 38221546 PMCID: PMC10788339 DOI: 10.1038/s41598-024-51994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024] Open
Abstract
Despite numerous reports indicating the significant impact of RNA modification on malignant glioblastoma (GBM) cell behaviors such as proliferation, invasion and therapy efficacy, its specific involvement in glioblastoma (GBM) angiogenesis is remains unclear and is currently under investigation. In this study, we aimed to investigate the relevance between RNA modification regulators and GBM angiogenesis. Our study employed bioinformatic analyses, including Gene Set Enrichment Analysis (GSEA), differential expression analysis, and Kaplan-Meier survival analysis, to identify regulators of angiogenesis-associated RNA modification (RM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to identify the enrichment of angiogenesis associated signatures in ALKBH5-high expression GBMs. We also utilized Western blot to verify the upregulation of ALKBH5 in clinical GBM samples. By a series of in vitro and in vivo assays, including plasmid transfection, wound healing, transwell invasion test, tube formation, RT-qPCR, ELISA assays and xenograft mice model, we validated the angiogenesis regulation ability of ALKBH5 in GBM. The N6-methyladenosine (m6A) modification "erase" ALKBH5 emerged as a candidate regulator associated with angiogenesis, demonstrating elevated expression and robust prognostic predictive ability in GBM patients. We also revealed enrichment of vasculature development biological process in GBMs with high ALKBH5 expression. Subsequently, we validated the elevated the expression of ALKBH5 in clinical GBM and paired adjacent tissues through western blot. Additionally, we knocked down the expression of ALKBH5 using sh-RNAs in U87 GBM cells to access the angiogenesis induction ability in U87 cells. In vitro experiments, Human Umbilical Vein Endothelial Cells (HUVECs) were used to perform wound healing, transwell migration and tube formation analysis, results indicated that ALKBH5 knock-down of U87 cells could decrease the pro-angiogenesis ability of U87 GBM cells. Further validation of our bioinformatic findings confirmed that ALKBH5 knockdown impaired VEGFA secretion in both in vitro and in vivo settings in U87 cells. These results comprehensively affirm the crucial role of ALKBH5 in regulating GBM-induced angiogenesis, both in vitro and in vivo. ALKBH5 not only emerges as a promising prognostic factor for GBM patients, but also plays a pivotal role in sustaining GBM progression by promoting angiogenesis.
Collapse
Affiliation(s)
- Yugeng Fan
- Department of Neurosurgery, Yan'an People's Hospital, Yan'an, China
| | - Dujuan Yan
- Xi'an New District Maternal and Child Health Care Institute, Xi'an, China
| | - Lijun Ma
- The Affiliated Cardiovascular and Cerebrovascular Disease Hospital of Yan'an University, Yan'an, China
| | - Xiaoxi Liu
- Department of Neurosurgery, Yan'an People's Hospital, Yan'an, China
| | - Guoqiang Luo
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.
| | - Xin Kou
- Department of Neurosurgery, Yan'an People's Hospital, Yan'an, China.
| |
Collapse
|
17
|
Yang J, Shangguan Q, Xie G, Yang M, Sheng G. M6A regulator methylation patterns and characteristics of immunity in acute ST-segment elevation myocardial infarction. Sci Rep 2023; 13:15688. [PMID: 37735234 PMCID: PMC10514189 DOI: 10.1038/s41598-023-42959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023] Open
Abstract
M6A methylation is the most prevalent and abundant RNA modification in mammals. Although there are many studies on the regulatory role of m6A methylation in the immune response, the m6A regulators in the pathogenesis of acute ST-segment elevation myocardial infarction (STEMI) remain unclear. We comprehensively analysed the role of m6A regulators in STEMI and built a predictive model, revealing the relationship between m6A methylations and the immune microenvironment. Differential analysis revealed that 18 of 24 m6A regulators were significantly differentially expressed, and there were substantial interactions between the m6A regulator. Then, we established a classifier and nomogram model based on 6 m6A regulators, which can easily distinguish the STEMI and control samples. Finally, two distinct m6A subtypes were obtained and significantly differentially expressed in terms of infiltrating immunocyte abundance, immune reaction activity and human leukocyte antigen genes. Three hub m6A phenotype related genes (RAC2, RELA, and WAS) in the midnightblue module were identified by weighted gene coexpression network analysis, and were associated with immunity. These findings suggest that m6A modification and the immune microenvironment play a key role in the pathogenesis of STEMI.
Collapse
Affiliation(s)
- Jingqi Yang
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, China
| | - Qing Shangguan
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, China
| | - Guobo Xie
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, China
| | - Ming Yang
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, China.
| | - Guotai Sheng
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, China
| |
Collapse
|
18
|
Chen H, Luo S, Chen H, Zhang C. ATF3 regulates SPHK1 in cardiomyocyte injury via endoplasmic reticulum stress. Immun Inflamm Dis 2023; 11:e998. [PMID: 37773702 PMCID: PMC10540145 DOI: 10.1002/iid3.998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Accepted: 08/19/2023] [Indexed: 10/01/2023] Open
Abstract
AIM Endoplasmic reticulum (ER) stress is common in different human pathologies, including cardiac diseases. Sphingosine kinase-1 (SPHK1) represents an important player in cardiac growth and function. Nevertheless, its function in cardiomyocyte ER stress remains vague. This study sought to evaluate the mechanism through which SPHK1 might influence ER stress during myocardial infarction (MI). METHODS MI-related GEO data sets were queried to screen differentially expressed genes. Murine HL-1 cells exposed to oxygen-glucose deprivation (OGD) and mice with MI were induced, followed by gene expression manipulation using short hairpin RNAs and overexpression vectors. The activating transcription factor 3 (ATF3) and SPHK1 expression was examined in cells and tissues. Cell counting kit-8, TUNEL, DHE, HE, and Masson's staining were conducted in vitro and in vivo. The inflammatory factor concentrations in mouse serum were measured using ELISA. Finally, the transcriptional regulation of SPHK1 by ATF3 was validated. RESULTS ATF3 and SPHK1 were upregulated in vivo and in vitro. ATF3 downregulation reduced the SPHK1 transcription. ATF3 and SPHK1 downregulation increased the viability of OGD-treated HL-1 cells and decreased apoptosis, oxidative stress, and ER stress. ATF3 and SPHK1 downregulation narrowed the infarction area and attenuated myocardial fibrosis in mice, along with reduced inflammation in the serum and ER stress in the myocardium. In contrast, SPHK1 reduced the protective effect of ATF3 downregulation in vitro and in vivo. CONCLUSIONS ATF3 downregulation reduced SPHK1 expression to attenuate cardiomyocyte injury in MI.
Collapse
Affiliation(s)
- Huiling Chen
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP.R. China
| | - Suxin Luo
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP.R. China
| | - Huamei Chen
- Division of CardiologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanP.R. China
| | - Cong Zhang
- Department of EmergencyThe People's Hospital of ChuXiong YiZu Autonomous PrefectureChuxiongYunnanP.R. China
| |
Collapse
|
19
|
Li S, Hu W, Gong S, Zhang P, Cheng J, Wang S, Wang Y, Shi W, Li Q, Wang F, Yuan Z. The Role of PRRC2B in Cerebral Vascular Remodeling Under Acute Hypoxia in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300892. [PMID: 37395402 PMCID: PMC10477837 DOI: 10.1002/advs.202300892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/13/2023] [Indexed: 07/04/2023]
Abstract
High altitude exposure leads to various cognitive impairments. The cerebral vasculature system plays an integral role in hypoxia-induced cognitive defects by reducing oxygen and nutrition supply to the brain. RNA N6-methyladenosine (m6A) is susceptible to modification and regulates gene expression in response to environmental changes, including hypoxia. However, the biological significance of m6A in endothelial cell performance under hypoxic conditions is unknown. Using m6A-seq, RNA immunoprcipitation-seq, and transcriptomic co-analysis, the molecular mechanism of vascular system remodeling under acute hypoxia is investigated. A novel m6A reader protein, proline-rich coiled-coil 2B (PRRC2B), exists in endothelial cells. PRRC2B knockdown promoted hypoxia-induced endothelial cell migration by regulating alternative splicing of the alpha 1 chain of collagen type XII in an m6A-dependent manner and the decay of matrix metallopeptidase domain 14 and ADAM metallopeptidase domain 19 mRNA in an m6A-independent manner. In addition, conditional knockout of PRRC2B in endothelial cells promotes hypoxia-induced vascular remodeling and cerebral blood flow redistribution, thus alleviating hypoxia-induced cognitive decline. Therefore, PRRC2B is integral in the hypoxia-induced vascular remodeling process as a novel RNA-binding protein. These findings provide a new potential therapeutic target for hypoxia-induced cognitive decline.
Collapse
Affiliation(s)
- Shuoshuo Li
- School of Life ScienceBeijing University of Chinese MedicineBeijing100029China
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Wenyu Hu
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- School of MedicineUniversity of South ChinaHengyang421001China
| | - Shenghui Gong
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Ping Zhang
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- School of MedicineUniversity of South ChinaHengyang421001China
| | - Jinbo Cheng
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- Center on Translational NeuroscienceCollege of Life & Environmental ScienceMinzu University of ChinaBeijing100081China
| | - Shukun Wang
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Yingyi Wang
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Wenjun Shi
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- Center on Translational NeuroscienceCollege of Life & Environmental ScienceMinzu University of ChinaBeijing100081China
| | - Qianqian Li
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Fengchao Wang
- National Institute of Biological SciencesBeijing102206China
| | - Zengqiang Yuan
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| |
Collapse
|
20
|
Sun RX, Zhu HJ, Zhang YR, Wang JN, Wang Y, Cao QC, Ji JD, Jiang C, Yuan ST, Chen X, Liu QH. ALKBH5 causes retinal pigment epithelium anomalies and choroidal neovascularization in age-related macular degeneration via the AKT/mTOR pathway. Cell Rep 2023; 42:112779. [PMID: 37436898 DOI: 10.1016/j.celrep.2023.112779] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.
Collapse
Affiliation(s)
- Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiu-Chen Cao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
21
|
Chen ZB, He M, Li JYS, Shyy JYJ, Chien S. Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annu Rev Biomed Eng 2023; 25:157-184. [PMID: 36913673 DOI: 10.1146/annurev-bioeng-081922-021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The central dogma of gene expression involves DNA transcription to RNA and RNA translation into protein. As key intermediaries and modifiers, RNAs undergo various forms of modifications such as methylation, pseudouridylation, deamination, and hydroxylation. These modifications, termed epitranscriptional regulations, lead to functional changes in RNAs. Recent studies have demonstrated crucial roles for RNA modifications in gene translation, DNA damage response, and cell fate regulation. Epitranscriptional modifications play an essential role in development, mechanosensing, atherogenesis, and regeneration in the cardiovascular (CV) system, and their elucidation is critically important to understanding the molecular mechanisms underlying CV physiology and pathophysiology. This review aims at providing biomedical engineers with an overview of the epitranscriptome landscape, related key concepts, recent findings in epitranscriptional regulations, and tools for epitranscriptome analysis. The potential applications of this important field in biomedical engineering research are discussed.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Julie Yi-Shuan Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Shu Chien
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
22
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. Fluids Barriers CNS 2023; 20:14. [PMID: 36855111 PMCID: PMC9972738 DOI: 10.1186/s12987-023-00414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana M Stamatovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA. .,Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| |
Collapse
|
23
|
The Epigenetic Regulation of RNA N6-Methyladenosine Methylation in Glycolipid Metabolism. Biomolecules 2023; 13:biom13020273. [PMID: 36830642 PMCID: PMC9953413 DOI: 10.3390/biom13020273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The highly conserved and dynamically reversible N6-methyladenine (m6A) modification has emerged as a critical gene expression regulator by affecting RNA splicing, translation efficiency, and stability at the post-transcriptional level, which has been established to be involved in various physiological and pathological processes, including glycolipid metabolism and the development of glycolipid metabolic disease (GLMD). Hence, accumulating studies have focused on the effects and regulatory mechanisms of m6A modification on glucose metabolism, lipid metabolism, and GLMD. This review summarizes the underlying mechanism of how m6A modification regulates glucose and lipid metabolism-related enzymes, transcription factors, and signaling pathways and the advances of m6A regulatory mechanisms in GLMD in order to deepen the understanding of the association of m6A modification with glycolipid metabolism and GLMD.
Collapse
|
24
|
Phillips C, Stamatovic S, Keep R, Andjelkovic A. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. RESEARCH SQUARE 2023:rs.3.rs-2444060. [PMID: 36711725 PMCID: PMC9882686 DOI: 10.21203/rs.3.rs-2444060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox17 , Snail1 ), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
|
25
|
m6A 'writer' KIAA1429 regulates the proliferation and migration of endothelial cells in atherosclerosis. Mol Biotechnol 2022:10.1007/s12033-022-00614-w. [PMID: 36463391 PMCID: PMC9734602 DOI: 10.1007/s12033-022-00614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Increasing evidences have illustrated the important role of N6-methyladenosine (m6A) in atherosclerosis (AS). However, the role of m6A modification in AS pathophysiological process is still unknown. Here, the present work tried to investigate the expression and function of m6A methyltransferase KIAA1429 in AS pathology and explored its undergoing m6A-dependent molecular mechanism. Results indicated that KIAA1429 remarkedly up-regulated in oxidative low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). KIAA1429 over-expression inhibited the proliferation/migration in ox-LDL-treated HUVECs, while, KIAA1429 knockdown up-regulated the proliferation and migration. Mechanistically, via m6A modification sites binding, ROCK2 mRNA was post-transcriptionally upregulated by KIAA1429 in response to Actinomycin D. Collectively, our study demonstrated the regulation of KIAA1429 on ox-LDL-induced HUVECs via m6A/ROCK2 pathway. These findings provide new insights for m6A-mediated epigenetics in AS.
Collapse
|
26
|
Liu S, Wang T, Cheng Z, Liu J. N6-methyladenosine (m6A) RNA modification in the pathophysiology of heart failure: a narrative review. Cardiovasc Diagn Ther 2022; 12:908-925. [PMID: 36605077 PMCID: PMC9808110 DOI: 10.21037/cdt-22-277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective Heart failure is the end-stage of various cardiovascular diseases. Recent progress in molecular biology has facilitated the understanding of the mechanisms of heart failure development at the molecular level. N6-adenosine methylation (m6A) is a post-transcriptional modification of RNA. Recent research work reported that m6A regulates gene expression and subsequently affects the activation of cell signaling pathways related to heart failure. Moreover, m6A regulators like methyltransferase-like 3 (METTL3) were reported to participate in myocardium hypertrophy. However, the current research work related to the role of m6A participating in the occurrence of heart failure is rare in some aspects like immune cell infiltration and diabetic heart diseases. Thus, it is reasonable to review the current achievements and provide further study orientation. Methods We searched related literature using the keywords: m6A AND heart failure in PubMed, Web of Science and Medline. The language was confined to English. The published year of searched literature ranged from 2012 to 2022. The searched results were put into Endnote software for management. Two authors investigated the searching terms and reviewed the full text of selected terms. Key Content and Findings m6A and its regulators are involved in the metabolism of various types of RNAs. m6A modification can regulate various types of cell signaling pathways related to the heart failure via interaction with m6A regulators. m6A and its regulators broadly participate in the myocardium fibrosis, myocardium hypertrophy, myocardial cell apoptosis, and ischemic reperfusion injury. Specifically, m6A participates in the cell apoptosis via regulation of autophagy flux. However, the current research work does not have enough evidence to prove that m6A regulator played its specific effect on the target transcript via regulating the m6A level. Conclusions m6A and its regulators participates in the progression of heart failure via modifying the RNA level. Future investigation of m6A should focus on the interaction between the m6A regulators and targeted transcript. Besides, the regulation role of m6A in immune cell infiltration and diabetic heart diseases should also be focused.
Collapse
Affiliation(s)
- Sihan Liu
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongyu Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zeyi Cheng
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Liu
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Shen W, Pu J, Zuo Z, Gu S, Sun J, Tan B, Wang L, Cheng J, Zuo Y. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the LncRNA PVT1. Cancer Cell Int 2022; 22:353. [PMID: 36376862 PMCID: PMC9664734 DOI: 10.1186/s12935-022-02770-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common posttranscriptional modification of RNA and plays critical roles in human cancer progression. However, the biological function of m6A methylation requires further studied in cancer, especially in tumor angiogenesis. Methods A public database was used to analyze the expression and overall survival of ALKBH5 and PVT1 in lung cancer patients. CCK-8 and colony formation assays were performed to detect cell proliferation, a transwell assay was used to assess cell migration, and a tube formation assay was performed to assess angiogenic potential in vitro. A zebrafish lung cancer xenograft model was used to verify the function of ALKBH5 and PVT1 in vivo. Western blot assays were used to measure the relative protein expression in lung cancer cells. SRAMP predictor analysis and RNA stability experiments were used to examine the potential m6A modification. Results Bioinformatics analysis showed that the expression levels of m6A-related genes were changed significantly in lung cancer tissues compared with normal lung tissues. We then identified that ALKBH5 was upregulated in lung cancer tissues and associated with poor prognosis of lung cancer patients by analyzing a public database. Knockdown of ALKBH5 inhibited the proliferation and migration of cultured lung cancer cell lines. Zebrafish lung cancer xenografts showed that ALKBH5 silencing also suppressed the growth and metastasis of lung cancer cells. Moreover, knockdown of ALKBH5 inhibited the angiogenesis of lung cancer in vitro and in vivo. Mechanistic studies showed that knockdown of ALKBH5 decreased the expression and stability of PVT1 in lung cancer cells. We next observed that PVT1 promoted the progression of lung cancer cells in vitro and in vivo and regulated the expression of VEGFA and angiogenesis in lung cancer. Finally, rescue experiments revealed that ALKBH5 regulated the proliferation, migration and angiogenesis of lung cancer cells, partially through PVT1. Conclusion Our results demonstrate that ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the expression and stability of PVT1, which provides a potential prognostic and therapeutic target for lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02770-0.
Collapse
|
28
|
Tan Q, He S, Leng X, Zheng D, Mao F, Hao J, Chen K, Jiang H, Lin Y, Yang J. The Mechanism and Role of N6-Methyladenosine (m 6A) Modification in Atherosclerosis and Atherosclerotic Diseases. J Cardiovasc Dev Dis 2022; 9:367. [PMID: 36354766 PMCID: PMC9697759 DOI: 10.3390/jcdd9110367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/27/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a newly discovered regulatory mechanism in eukaryotes. As one of the most common epigenetic mechanisms, m6A's role in the development of atherosclerosis (AS) and atherosclerotic diseases (AD) has also received increasing attention. Herein, we elucidate the effect of m6A on major risk factors for AS, including lipid metabolism disorders, hypertension, and hyperglycemia. We also describe how m6A methylation contributes to endothelial cell injury, macrophage response, inflammation, and smooth muscle cell response in AS and AD. Subsequently, we illustrate the m6A-mediated aberrant biological role in the pathogenesis of AS and AD, and analyze the levels of m6A methylation in peripheral blood or local tissues of AS and AD, which helps to further discuss the diagnostic and therapeutic potential of m6A regulation for AS and AD. In summary, studies on m6A methylation provide new insights into the pathophysiologic mechanisms of AS and AD, and m6A methylation could be a novel diagnostic biomarker and therapeutic target for AS and AD.
Collapse
Affiliation(s)
- Quandan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Xinyi Leng
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Danni Zheng
- Biomedical Informatics and Digital Health, School of Medical Sciences, University of Sydney, Sydney NSW 2050, Australia
| | - Fengkai Mao
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Junli Hao
- School of Biomedical Sciences and Technology, Chengdu Medical College, Chengdu 610072, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu 610072, China
| | - Haisong Jiang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yapeng Lin
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
- International Clinical Research Center, Chengdu Medical College, Chengdu 610072, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
29
|
Sikorski V, Vento A, Kankuri E, IHD-EPITRAN Consortium. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
30
|
Gu YY, Tan XH, Song WP, Song WD, Yuan YM, Xin ZC, Wang JD, Fang D, Guan RL. Icariside Ⅱ Attenuates Palmitic Acid-Induced Endothelial Dysfunction Through SRPK1-Akt-eNOS Signaling Pathway. Front Pharmacol 2022; 13:920601. [PMID: 35846993 PMCID: PMC9280058 DOI: 10.3389/fphar.2022.920601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Endothelial dysfunction is commonly accompanied by a reduced capacity for nitric oxide (NO) production and decreased NO sensitivity, playing a central role in numerous vascular diseases. Saturated free fatty acids are known to reduce NO production and then induce endothelial dysfunction. Alternative splicing participates in the regulation of cellular and tissular homeostasis and is highly regulated by serine-arginine protein kinase (SRPK1). The role of SRPK1 in the biology of endothelial cells remains elusive. Icariside Ⅱ (ICA Ⅱ) has been reported to have protective effects on endothelial function. However, the specific molecular mechanisms are still unknown. The purpose of this study is to explore the role of SRPK1 in the biology of endothelial cells and the underlying mechanism of ICA Ⅱ on palmitic acid (PA) induced endothelial dysfunction. Methods: Endothelial dysfunction was induced using PA in human umbilical vein endothelial cells (HUVECs). The expression and phosphorylation of related proteins in the SRPK1-Akt-eNOS signaling pathway were detected by Western Blot. Cell Counting Kit-8 assay and Ki-67 immunofluorescence were used to estimate cell viability. Endothelial cell function was assessed by detecting NO production using DAF-FM DA. Interaction between ICA Ⅱ and SRPK1 was demonstrated by a biotinylated protein interaction pull-down assay. Results: The expressions of eNOS, Akt, and SRPK1 were down-regulated in the endothelial dysfunction stimulated by PA. SRPK1 inhibitor SPHINX31 restrained endothelial cell viability in a dose-dependent manner. Moreover, inhibition of SRPK1 using SPHINX31 and knockdown of SRPK1 by shRNA also showed a down-regulation of the proteins associated with the SRPK1-Akt-eNOS signaling pathway. Biotinylated protein interaction pull-down assay revealed that ICA Ⅱ could be directly bound with SRPK1. On the other hand, ICA Ⅱ could attenuate the PA-induced endothelial dysfunction and restore cell viability through the SRPK1-Akt-eNOS pathway. Conclusions: ICA Ⅱ, bound with SRPK1, could attenuate the endothelial dysfunction induced by the PA in HUVECs via the SRPK1-Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Yang-Yang Gu
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Wen-Peng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yi-Ming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhong-Cheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Jia-Dong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|