1
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Luo K, Wu Q, Li Z, Wu Y, Su Z, Zhou F, Li Q, Ren B, Li Y, Li J, Peng X. Cyclic di-AMP alleviates periodontitis by activating PI3K/Akt/Nrf2 pathways. Front Cell Infect Microbiol 2025; 15:1560155. [PMID: 40160469 PMCID: PMC11949975 DOI: 10.3389/fcimb.2025.1560155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Emerging research demonstrates the regulatory effects of c-di-AMP, a bacterial-derived small molecule secondary messenger, on host immune responses and promoting resistance against infection-related diseases. This study aims to elucidate the role of c-di-AMP in the occurrence and development of periodontitis. Using model of ligation-induced periodontitis, we observed that c-di-AMP effectively alleviated alveolar bone resorption. Transcriptomic sequencing in mice gingival tissues demonstrated that treatment with c-di-AMP led to a significant upregulation of the PI3K/Akt signaling pathway and its key components, including Akt3. Concurrently, we observed an upregulation of the cGMP/PKG signaling pathway. To validate our findings, we treated gingival epithelial cells with c-di-AMP and confirmed the activation of the PI3K/Akt pathway by c-di-AMP in gingival epithelial cells. Under LPS-induced inflammation, c-di-AMP significantly suppressed the release of inflammatory factors (such as IL-6 and TNF-α) from gingival epithelial cells. Moreover, key components of the PI3K/Akt pathway, including Akt, and downstream inflammation regulatory gene Nrf2, were upregulated, which were also confirmed at the protein level. Collectively, this study demonstrates that c-di-AMP definitely plays a role in alleviating periodontitis. Our findings highlight the mechanisms by which c-di-AMP modulates periodontitis, including activating the PI3K/Akt pathway and potentially involving the cGMP/PKG pathway, ultimately contributing to improved immune defense and maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Kaihua Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yajie Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qinyang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Hongjun P, Mukanhaire L, Zhen L, Ting W, Hongye L, Xiaotian Z, Guangling L, Xianguo R. LncRNA UCA1 regulates immune micro-environment in cisplatin-induced AKI by miRNA-4498/AKT3 pathway. PLoS One 2025; 20:e0314654. [PMID: 39937792 PMCID: PMC11819503 DOI: 10.1371/journal.pone.0314654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 02/14/2025] Open
Abstract
An increasing number of studies highlight the significance of long non-coding RNAs (lncRNAs) in the biological process of acute kidney injury (AKI). This study investigates the role and the mechanism of lncRNA UCA1 in cisplatin-induced AKI. Real-time quantitative PCR was used to measure lncRNA UCA1 expression in cisplatin-induced AKI mouse model, showing that lncRNA UCA1 was overexpressed. Knockdown of lncRNA UCA1 by shRNA significantly reduced inflammation caused by cisplatin treatment. A co-culture system demonstrated that lncRNA UCA1 upregulation in T cells induced apoptosis of tubular epithelial cells (TECs). A dual-luciferase reporter assay confirmed that lncRNA UCA1 acts as a miR-4498 sponge, binding to the 3'UTR of AKT3. Flow cytometry and ELISA results showed that reduced inflammation effect induced by lncRNA UCA1 knockdown was reversed by miR-4498 inhibition or AKT3 overexpression. Our findings suggest that lncRNA UCA1 functions as a miR-4498 sponge, upregulating AKT3 expression, and promoting inflammation in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Peng Hongjun
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lydia Mukanhaire
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Liu Zhen
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wang Ting
- Department of Pediatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Hongye
- Department of Pediatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhang Xiaotian
- Department of Pediatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Guangling
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ren Xianguo
- Department of Pediatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Rabou YKA, Zayed AA, Fahim SA, Abdelgwad M, Fiki AE, Fayed NN. Exploring New and Promising Genetic Biomarkers for Evaluating Traumatic Brain Injuries: A Case-Control Study. Neurochem Res 2024; 50:48. [PMID: 39641810 PMCID: PMC11624226 DOI: 10.1007/s11064-024-04292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) is a common cause of morbidity and death in all age groups, with an estimated 50 million people having brain injury due to trauma each year. Accurate blood-based biomarkers are needed to assist with diagnosis of patients across the spectrum of time and severity. Our objectives were to explore the diagnostic precision of time- and severity- related four blood-based biomarkers: AKT3, GSK-3β, hsa-miR-16-5p, and MALAT-1 for TBI for the purpose of diagnosis, prognosis, and follow-up. 40 samples were recruited as the following: 30 TBI patients and 10 healthy volunteers as controls with matched age and sex. They were divided according to the Glasgow Coma Scale into mild (mTBI), moderate (modTBI), and severe(sTBI) TBI. Blood samples were withdrawn at entry, and after 5 and 30 days, RT-PCR was used for measuring the expression level. The results showed upregulated expression levels of AKT3, hsa-miR-16-5p and significantly downregulated expression levels of GSK-3β in TBI patients compared to controls at all timings measured. mTBI patients showed a higher expression level of hsa-miR-16-5p compared with modTBI, and sTBI patients. MALAT-1 level showed a significant increase in severe cases only. We concluded that AKT3, hsa-miR-16-5p, and GSK-3β are excellent diagnostic biomarkers in TBI patients at initial assessment, as well as at 5 and 30 days following the injury. Moreover, MALAT-1 had good diagnostic value in sTBI patients, and its prognostic value extends to 30 days. GSK-3β was an excellent biomarker for detecting mTBI.
Collapse
Affiliation(s)
- Yasmin Kamal Abd Rabou
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Abeer Ahmed Zayed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, New Giza University (NGU), New Giza, Km 22 Cairo- Alexandria Desert Road, P.O. Box 12577, Giza, Egypt.
| | - Marwa Abdelgwad
- Department of Biochemistry, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Ahmed El Fiki
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| | - Nermin Nabil Fayed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Liu Y, Li W, Lei L, Zhou Y, Huang M, Li Y, Zhang X, Jiang Y, Wu H, Zheng Z, Ma K, Tang C. Effects of PGK1 on immunoinfiltration by integrated single-cell and bulk RNA-sequencing analysis in sepsis. Front Immunol 2024; 15:1449975. [PMID: 39712033 PMCID: PMC11659135 DOI: 10.3389/fimmu.2024.1449975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sepsis, a life-threatening organ dysfunction caused by a dysregulated immune response to infection, remains a significant global health challenge. Phosphoglycerate kinase 1 (PGK1) has been implicated in regulating inflammation and immune cell infiltration in inflammatory conditions. However, the role of PGK1 in sepsis remains largely unexplored. Methods Four microarray datasets and a high throughput sequencing dataset were acquired from GEO database to reveal the PGK1 expression in patients of sepsis. Quantitative real-time PCR and western blotting was then used to validate the PGK1 level. Additionally, microarray and single-cell RNA sequencing data integration, including gene set enrichment analysis (GSEA), KEGG and GO functional enrichment analysis, immune infiltration analysis, and single-cell sequencing analysis, were performed to elucidate the role of PGK1 in sepsis. Results Our results revealed a significant upregulation of PGK1 in sepsis patients, with the area under the ROC curve (AUC) exceeding 0.9 across multiple datasets, indicating PGK1's strong potential as a diagnostic biomarker. Notably, PGK1 was enriched in key immune-related pathways, including the TNF signaling pathways, and leukocyte transendothelial migration, suggesting its involvement in immune regulation. Furthermore, PGK1 expression showed a positive correlation with the levels of inflammatory mediators CXCL1, CXCL16, and the chemokine receptor CCR1. In terms of immune cell infiltration, PGK1 was positively correlated with naive B cells, resting memory CD4 T cell, gamma delta T cells, M0 macrophages, eosinophils and negatively correlated with plasma cells, CD8 T cells, activated memory CD4 T cell, Tregs, activated dendritic cells. Conclusions This study concluded that PGK1 served as a novel diagnostic biomarker for sepsis, with potential implications for prognosis and immune regulation. The significant upregulation of PGK1 in sepsis patients and its association with immune-related pathways and cell types highlight its potential role in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Li
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaoliang Zhou
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yide Li
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingyu Jiang
- Department of Renal Rheumatology and Immunology, The People’s Hospital of Hezhou, Hezhou, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Hao Q, Gao W, Zhang P, Yan P. Identification of PANoptosis-Related Genes in Community-Acquired Pneumonia Diagnosis. J Inflamm Res 2024; 17:10289-10304. [PMID: 39649423 PMCID: PMC11625439 DOI: 10.2147/jir.s491315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024] Open
Abstract
Background This study aimed to identify and characterize novel PANoptosis biomarkers for community-acquired pneumonia (CAP) diagnosis. Methods Transcriptomic data from training set GSE196399 and validation sets GSE94916 and GSE202947 were utilized. A PANoptosis gene set was identified by intersecting DEGs linked to CAP, WGCNA hub genes, and PANoptosis-related genes. GO and KEGG analyses were conducted for enrichment analysis. PANoptosis scores were calculated via ssGSEA. Feature genes were identified using SVM-RFE, LASSO regression, and RF methods. Diagnostic performance was assessed via ROC analysis. Immune cell infiltration was evaluated using CIBERSORT. A PPI network was constructed, and a nomogram was developed for CAP prediction. Drug-gene interactions were investigated. qRT-PCR was conducted to confirm feature gene alterations in clinical samples. Results We identified 7555 DEGs associated with CAP from the GSE196399 dataset. Through WGCNA, a PANoptosis gene set of 39 genes was found, showing significant enrichment in pathways related to apoptosis and inflammation. CAP patients exhibited significantly reduced PANoptosis scores compared to healthy controls, with a marked upregulation in the majority of the PANoptosis gene set in high-score individuals. Four feature genes (ZNF304, AKT3, MAPK8, and ARHGAP10) were identified as potential biomarkers, exhibiting high diagnostic accuracy with AUCs generally above 0.8. These genes also showed significant correlations with M0 macrophages and neutrophils. Drug-gene interaction analysis revealed potential therapeutic agents targeting MAPK8 and AKT3. Validation in clinical samples confirmed gene expression alterations in CAP patients. Conclusion The identified PANoptosis feature genes demonstrate high diagnostic accuracy for CAP, serving as potential biomarkers and therapeutic targets for CAP.
Collapse
Affiliation(s)
- Qiaoxin Hao
- Department of Clinical Laboratory, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| | - Wei Gao
- Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| | - Pei Zhang
- Department of Clinical Laboratory, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| | - Peng Yan
- Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| |
Collapse
|
7
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
8
|
Bakhtiarizade MR, Heidari M, Ghanatghestani AHM. Comprehensive circular RNA profiling in various sheep tissues. Sci Rep 2024; 14:26238. [PMID: 39482374 PMCID: PMC11527890 DOI: 10.1038/s41598-024-76940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehensive analysis that profile circRNA expression patterns across the tissues not yet investigated. In this study, 61 public RNA sequencing datasets from 12 different tissues were uniformly analyzed to identify circRNAs, profile their expression and investigate their various characteristics. We reported for the first time a circRNA expression landscape with functional annotation in sheep tissues not yet investigated including hippocampus, BonMarrowMacrophage, left-ventricle, thymus, ileum, reticulum and 23-day-embryo. A stringent computational pipeline was employed and 8919 exon-derived circRNAs with high confidence were identified, including 88 novel circRNAs. Tissue-specificity analysis revealed that 3059 circRNAs were tissue-specific, which were also more specific to the tissues than linear RNAs. The highest number of tissue-specific circRNAs was found in kidney, hippocampus and thymus, respectively. Co-expression analysis revealed that expression of circRNAs may not be affected by their host genes. While most of the host genes produced more than one isoform, only one isoform had dominant expression across the tissues. The host genes of the tissue-specific circRNAs were significantly enriched in biological/pathways terms linked to the important functions of their corresponding tissues, suggesting potential roles of circRNAs in modulating physiological activity of those tissues. Interestingly, functional terms related to the regulation and various signaling pathways were significantly enriched in all tissues, suggesting some common regulatory mechanisms of circRNAs to modulate the physiological functions of tissues. Finding of the present study provide a valuable resource for depicting the complexity of circRNAs expression across tissues of sheep, which can be useful for the field of sheep genomic and veterinary research.
Collapse
Affiliation(s)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
9
|
Zhong HA, Goodwin DT. Selectivity Studies and Free Energy Calculations of AKT Inhibitors. Molecules 2024; 29:1233. [PMID: 38542870 PMCID: PMC10975562 DOI: 10.3390/molecules29061233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/03/2025] Open
Abstract
Protein kinase B (PKB) or AKT protein is an important target for cancer treatment. Significant advances have been made in developing ATP-competitive inhibitors and allosteric binders targeting AKT1. However, adverse effects or toxicities have been found, and the cutaneous toxicity was found to be linked to the inhibition of AKT2. Thus, selective inhibition of AKT inhibitors is of significance. Our work, using the Schrödinger Covalent Dock (CovDock) program and the Movable Type (MT)-based free energy calculation (ΔG), yielded small mean errors for the experimentally derived binding free energy (ΔG). The docking data suggested that AKT1 binding may require residues Asn54, Trp80, Tyr272, Asp274, and Asp292, whereas AKT2 binding would expect residues Phe163 and Glu279, and AKT3 binding would favor residues Glu17, Trp79, Phe306, and Glu295. These findings may help guide AKT1-selective or AKT3-selective molecular design while sparing the inhibition of AKT2 to minimize the cutaneous toxicity.
Collapse
Affiliation(s)
- Haizhen A. Zhong
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | | |
Collapse
|
10
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Li P, Hao X, Liu J, Zhang Q, Liang Z, Li X, Liu H. miR-29a-3p Regulates Autophagy by Targeting Akt3-Mediated mTOR in SiO 2-Induced Lung Fibrosis. Int J Mol Sci 2023; 24:11440. [PMID: 37511199 PMCID: PMC10380316 DOI: 10.3390/ijms241411440] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Silicosis is a refractory pneumoconiosis of unknown etiology that is characterized by diffuse lung fibrosis, and microRNA (miRNA) dysregulation is connected to silicosis. Emerging evidence suggests that miRNAs modulate pulmonary fibrosis through autophagy; however, its underlying molecular mechanism remains unclear. In agreement with miRNA microarray analysis, the qRT-PCR results showed that miR-29a-3p was significantly decreased in the pulmonary fibrosis model both in vitro and in vivo. Increased autophagosome was observed via transmission electron microscopy in lung epithelial cell models and lung tissue of silicosis mice. The expression of autophagy-related proteins LC3α/β and Beclin1 were upregulated. The results from using 3-methyladenine, an autophagy inhibitor, or rapamycin, an autophagy inducer, together with TGF-β1, indicated that autophagy attenuates fibrosis by protecting lung epithelial cells. In TGF-β1-treated TC-1 cells, transfection with miR-29a-3p mimics activated protective autophagy and reduced alpha-smooth muscle actin and collagen I expression. miRNA TargetScan predicted, and dual-luciferase reporter experiments identified Akt3 as a direct target of miR-29a-3p. Furthermore, Akt3 expression was significantly elevated in the silicosis mouse model and TGF-β1-treated TC-1 cells. The mammalian target of rapamycin (mTOR) is a central regulator of the autophagy process. Silencing Akt3 inhibited the transduction of the mTOR signaling pathway and activated autophagy in TGF-β1-treated TC-1 cells. These results show that miR-29a-3p overexpression can partially reverse the fibrotic effects by activating autophagy of the pulmonary epithelial cells regulated by the Akt3/mTOR pathway. Therefore, targeting miR-29a-3p may provide a new therapeutic strategy for silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Peiyuan Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, China
| | - Jiaxin Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Qinxin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Zixuan Liang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Xinran Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
12
|
Shafit-Zagardo B, Sidoli S, Goldman JE, DuBois JC, Corboy JR, Strittmatter SM, Guzik H, Edema U, Arackal AG, Botbol YM, Merheb E, Nagra RM, Graff S. TMEM106B Puncta Is Increased in Multiple Sclerosis Plaques, and Reduced Protein in Mice Results in Delayed Lipid Clearance Following CNS Injury. Cells 2023; 12:1734. [PMID: 37443768 PMCID: PMC10340176 DOI: 10.3390/cells12131734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During inflammatory, demyelinating diseases such as multiple sclerosis (MS), inflammation and axonal damage are prevalent early in the course. Axonal damage includes swelling, defects in transport, and failure to clear damaged intracellular proteins, all of which affect recovery and compromise neuronal integrity. The clearance of damaged cell components is important to maintain normal turnover and restore homeostasis. In this study, we used mass spectrometry to identify insoluble proteins within high-speed/mercaptoethanol/sarcosyl-insoluble pellets from purified white matter plaques isolated from the brains of individuals with relapsing-remitting MS (RRMS). We determined that the transmembrane protein 106B (TMEM106B), normally lysosome-associated, is insoluble in RRMS plaques relative to normal-appearing white matter from individuals with Alzheimer's disease and non-neurologic controls. Relative to wild-type mice, hypomorphic mice with a reduction in TMEM106B have increased axonal damage and lipid droplet accumulation in the spinal cord following myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis. Additionally, the corpora callosa from cuprizone-challenged hypomorphic mice fail to clear lipid droplets efficiently during remyelination, suggesting that when TMEM106B is compromised, protein and lipid clearance by the lysosome is delayed. As TMEM106B contains putative lipid- and LC3-binding sites, further exploration of these sites is warranted.
Collapse
Affiliation(s)
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Juwen C DuBois
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - John R Corboy
- Rocky Mountain MS Brain Bank, Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen M Strittmatter
- Departments of Neurology and Neuroscience, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06510, USA
| | - Hillary Guzik
- Analytic Imaging Facility, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ukuemi Edema
- Department of Anatomic and Clinical Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Anita G Arackal
- Department of Anatomic and Clinical Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Yair M Botbol
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Emilio Merheb
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rashed M Nagra
- UCLA Brain Bank, VA Healthcare System, Los Angeles, CA 90073, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
13
|
Payne A, Taka E, Adinew GM, Soliman KFA. Molecular Mechanisms of the Anti-Inflammatory Effects of Epigallocatechin 3-Gallate (EGCG) in LPS-Activated BV-2 Microglia Cells. Brain Sci 2023; 13:632. [PMID: 37190597 PMCID: PMC10137201 DOI: 10.3390/brainsci13040632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic neuroinflammation is associated with many neurodegenerative diseases, such as Alzheimer's. Microglia are the brain's primary immune cells, and when activated, they release various proinflammatory cytokines. Several natural compounds with anti-inflammatory and antioxidant properties, such as epigallocatechin 3-gallate (EGCG), may provide a promising strategy for inflammation-related neurodegenerative diseases involving activated microglia cells. The objective of the current study was to examine the molecular targets underlying the anti-inflammatory effects of EGCG in activated microglia cells. BV-2 microglia cells were grown, stimulated, and treated with EGCG. Cytotoxicity and nitric oxide (NO) production were evaluated. Immunoassay, PCR array, and WES™ Technology were utilized to evaluate inflammatory, neuroprotective modulators as well as signaling pathways involved in the mechanistic action of neuroinflammation. Our findings showed that EGCG significantly inhibited proinflammatory mediator NO production in LPS-stimulated BV-2 microglia cells. In addition, ELISA analysis revealed that EGCG significantly decreases the release of proinflammatory cytokine IL-6 while it increases the release of TNF-α. PCR array analysis showed that EGCG downregulated MIF, CCL-2, and CSF2. It also upregulated IL-3, IL-11, and TNFS10. Furthermore, the analysis of inflammatory signaling pathways showed that EGCG significantly downregulated mRNA expression of mTOR, NF-κB2, STAT1, Akt3, CCL5, and SMAD3 while significantly upregulating the expression of mRNA of Ins2, Pld2, A20/TNFAIP3, and GAB1. Additionally, EGCG reduced the relative protein expression of NF-κB2, mTOR, and Akt3. These findings suggest that EGCG may be used for its anti-inflammatory effects to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health (COPPS, IPH), Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
14
|
Brady K, Liu HC, Hicks J, Long JA, Porter TE. Global gene expression analysis of the turkey hen hypothalamo-pituitary-gonadal axis during the preovulatory hormonal surge. Poult Sci 2023; 102:102547. [PMID: 36878099 PMCID: PMC10006860 DOI: 10.1016/j.psj.2023.102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The preovulatory hormonal surge (PS) consists of elevated circulating luteinizing hormone (LH) and progesterone levels and serves as the primary trigger for ovarian follicle ovulation. Increased LH and progesterone, produced by the pituitary and the granulosa layer of the largest ovarian follicle (F1), respectively, result from hypothalamic stimulation and steroid hormone feedback on the hypothalamo-pituitary-gonadal (HPG) axis. The hypothalamus, pituitary, F1 granulosa, and granulosa layer of the fifth largest follicle (F5) were isolated from converter turkey hens outside and during the PS and subjected to RNA sequencing (n = 6 per tissue). Differentially expressed genes were subjected to functional annotation using DAVID and IPA. A total of 12, 250, 1235, and 1938 DEGs were identified in the hypothalamus, pituitary, F1 granulosa, and F5 granulosa respectively (q<0.05, |fold change|>1.5, FPKM>1). Gene Ontology (GO) analysis revealed key roles for metabolic processes, steroid hormone feedback, and hypoxia induced gene expression changes. Upstream analysis identified a total of 4, 42, 126, and 393 potential regulators of downstream gene expression in the hypothalamus, pituitary, F1G, and F5G respectively, with a total of 63 potential regulators exhibiting differential expression between samples collected outside and during the PS (|z-score|>2). The results from this study serve to increase the current knowledge base surrounding the regulation of the PS in turkey hens. Through GO analysis, downstream processes and functions associated with the PS were linked to identified DEGs, and through upstream analysis, potential regulators of DEGs were identified for further analysis. Linking upstream regulators to the downstream PS and ovulation events could allow for genetic selection or manipulation of ovulation frequencies in turkey hens.
Collapse
Affiliation(s)
- Kristen Brady
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States.
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Julie Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
15
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
16
|
Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3676685. [PMID: 36593867 PMCID: PMC9805391 DOI: 10.1155/2022/3676685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/09/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
Background There are several previous studies suggesting that circular RNAs (circRNAs) are involved in tumorigenesis of non-small cell lung cancer (NSCLC). Nevertheless, the role of circRNA_0000520 (circ_0000520) in this disease has not yet been studied. Methods circ_0000520, microRNA (miR)-1258, and AKT serine/threonine kinase 3 (AKT3) mRNA expression levels were detected by qPCR. CCK-8, EdU, and Transwell assays were utilized to detect NSCLC cells' malignant biological behaviors. The targeted relationship between miR-1258 and AKT3 3'-UTR or circ_0000520 was verified through the dual-luciferase reporter gene assay. Western blotting was utilized to measure the AKT3 expression after circ_0000520 and miR-1258 were selectively regulated. Results circ_0000520 was upregulated in NSCLC. Highly expressed circ_0000520 is linked to the NSCLC patient's advanced TNM stage and lymph node metastasis. circ_0000520 overexpression facilitated NSCLC cell growth, migration, and invasion. miR-1258 was identified as the downstream target of circ_0000520. miR-1258 overexpression weakened the effect of circ_0000520 overexpression on NSCLC cells. miR-1258 targeted and inhibited AKT3. circ_0000520 positively regulated the AKT3 expression in NSCLC cells by sponging miR-1258. Conclusion circ_0000520 upregulates AKT3 by competitively binding with miR-1258 to facilitate NSCLC progression.
Collapse
|
17
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
19
|
Chen S, Ma B, Li X, Zhang K, Wei Y, Du B, Liu X, Wei R, Li X, Nian H. MYC-mediated silencing of miR-181a-5p promotes pathogenic Th17 responses by modulating AKT3-FOXO3 signaling. iScience 2022; 25:105176. [PMID: 36248732 PMCID: PMC9557906 DOI: 10.1016/j.isci.2022.105176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Pathogenic Th17 cells drive autoimmune pathology, but the molecular mechanisms underlying Th17 pathogenicity remain poorly understood. Here, we have shown that miR-181a-5p was significantly decreased in pathogenic Th17 cells, and it negatively regulated pathogenic Th17 cell responses in vitro and in vivo. Th17 cells overexpressing miR-181a-5p exhibited impaired ability to induce pathogenesis in an adoptive transfer model of experimental autoimmune uveitis (EAU). Mechanistically, miR-181a-5p directly targeted AKT3, diminishing AKT3-mediated phosphorylation of FOXO3, and thereby activating FOXO3, a transcriptional repressor of pathogenic Th17 cell program. Supporting this, decreasing miR-181a-5p and up-regulated AKT3 expression were found in uveitis patients. Furthermore, intravitreal administration of miR-181a-5p mimics in mice effectively attenuated clinical and pathological signs of established EAU. Collectively, our results reveal a previously unappreciated T cell-intrinsic role of miR-181a-5p in restraining autoimmunity and may provide a potential therapeutic target for uveitis treatment.
Collapse
Affiliation(s)
- Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Xue Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
20
|
Wang Y, Zhang R, Li J, Han X, Lu H, Su J, Liu Y, Tian X, Wang M, Xiong Y, Lan T, Zhang G, Liu Z. MiR-22-3p and miR-29a-3p synergistically inhibit hepatic stellate cell activation by targeting AKT3. Exp Biol Med (Maywood) 2022; 247:1712-1731. [PMID: 35833537 PMCID: PMC9638961 DOI: 10.1177/15353702221108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatic fibrosis (HF) is a worldwide health problem for which there is no medically effective drug treatment at present, and which is characterized by activation of hepatic stellate cells (HSCs) and excessive extracellular matrix (ECM) deposition. The HF model in cholestatic rats by ligating the common bile duct was induced and the differentially expressed miRNAs in the liver tissues were analyzed by microarray, which showed that miR-22-3p and miR-29a-3p were significantly downregulated in bile-duct ligation (BDL) rat liver compared with the sham control. The synergistic anti-HF activity and molecular mechanism of miR-22-3p and miR-29a-3p by targeting AKT serine/threonine kinase 3 (AKT3) in HSCs were explored. The expression levels of miR-22-3p and miR-29a-3p were downregulated in activated LX-2 and human primary normal hepatic fibroblasts (NFs), whereas AKT3 was found to be upregulated in BDL rat liver and activated LX-2 cells. The proliferation, colony-forming, and migration ability of LX-2 were inhibited synergistically by miR-22-3p and miR-29a-3p. In addition, cellular senescence was induced and the expressions of the LX-2 fibrosis markers COL1A1 and α-SMA were inhibited by miR-22-3p and miR-29a-3p synergistically. Subsequently, these two miRNAs binding to the 3'UTR of AKT3 mRNA was predicted and evidenced by the luciferase reporter assay. Furthermore, the proliferation, migration, colony-forming ability, and the expression levels of COL1A1 and α-SMA were promoted and cellular senescence was inhibited by AKT3 in LX-2 cells. Thus, miR-22-3p/miR-29a-3p/AKT3 regulates the activation of HSCs, providing a new avenue in the study and treatment of HF.
Collapse
Affiliation(s)
- Yitong Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Ronghua Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jingwu Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People’s Hospital, Tangshan 063001, China
| | - Xiangyang Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Hongjian Lu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jinghui Su
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yutan Liu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaoli Tian
- Paraplegia Sanatorium of Tangshan, Tangshan 063000, China
| | - Meimei Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanan Xiong
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tao Lan
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People’s Hospital, Cangzhou 061000, China
| | - Guangling Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063210, China,Guangling Zhang.
| | - Zhiyong Liu
- Health Science Center, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
21
|
Guerau-de-Arellano M, Piedra-Quintero ZL, Tsichlis PN. Akt isoforms in the immune system. Front Immunol 2022; 13:990874. [PMID: 36081513 PMCID: PMC9445622 DOI: 10.3389/fimmu.2022.990874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Akt is a PI3K-activated serine-threonine kinase that exists in three distinct isoforms. Akt's expression in most immune cells, either at baseline or upon activation, reflects its importance in the immune system. While Akt is most highly expressed in innate immune cells, it plays crucial roles in both innate and adaptive immune cell development and/or effector functions. In this review, we explore what's known about the role of Akt in innate and adaptive immune cells. Wherever possible, we discuss the overlapping and distinct role of the three Akt isoforms, namely Akt1, Akt2, and Akt3, in immune cells.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States,Department of Neuroscience, The Ohio State University, Columbus, OH, United States,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,*Correspondence: Mireia Guerau-de-Arellano,
| | - Zayda L. Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Philip N. Tsichlis
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Zhou C, Sun P, Xu Y, Chen Y, Huang Y, Hamblin MH, Foley L, Hitchens TK, Li S, Yin K. Genetic Deficiency of MicroRNA-15a/16-1 Confers Resistance to Neuropathological Damage and Cognitive Dysfunction in Experimental Vascular Cognitive Impairment and Dementia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104986. [PMID: 35403823 PMCID: PMC9189640 DOI: 10.1002/advs.202104986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/22/2022] [Indexed: 05/24/2023]
Abstract
Chronic cerebral hypoperfusion-derived brain damage contributes to the progression of vascular cognitive impairment and dementia (VCID). Cumulative evidence has shown that microRNAs (miRs) are emerging as novel therapeutic targets for CNS disorders. In this study, it is sought to determine the regulatory role of miR-15a/16-1 in VCID. It is found that miR-15a/16-1 knockout (KO) mice exhibit less cognitive and sensorimotor deficits following VCID. Genetic deficiency of miR-15a/16-1 in VCID mice also mitigate myelin degeneration, axonal injury, and neuronal loss. Mechanistically, miR-15a/16-1 binds to the 3'-UTR of AKT3 and IL-10RA. Genetic deletion of miR-15a/16-1 increases AKT3 and IL-10RA expression in VCID brains, and intranasal delivery of AKT3 and IL-10RA siRNA-loaded nanoparticles partially reduce brain protection and cognitive recovery in miR-15a/16-1 KO mice after VCID. In conclusion, the miR-15a/16-1-IL/10RA/AKT3 axis plays a critical role in regulating vascular brain damage and cognitive decline after VCID. Targeting miR-15a/16-1 is a novel therapeutic approach for the treatment of VCID.
Collapse
Affiliation(s)
- Chao Zhou
- Pittsburgh Institute of Brain Disorders & RecoveryDepartment of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Ping Sun
- Pittsburgh Institute of Brain Disorders & RecoveryDepartment of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Yang Xu
- Pittsburgh Institute of Brain Disorders & RecoveryDepartment of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Yuang Chen
- Center for PharmacogeneticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Yixian Huang
- Center for PharmacogeneticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Milton H. Hamblin
- Tulane University Health Sciences CenterTulane UniversityNew OrleansLA70112USA
| | - Lesley Foley
- Animal Imaging CenterDepartment of NeurobiologyUniversity of Pittsburgh School of MedicinePittsburghPA15203USA
| | - T. Kevin Hitchens
- Animal Imaging CenterDepartment of NeurobiologyUniversity of Pittsburgh School of MedicinePittsburghPA15203USA
| | - Song Li
- Center for PharmacogeneticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Ke‐Jie Yin
- Pittsburgh Institute of Brain Disorders & RecoveryDepartment of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
- Geriatric ResearchEducation and Clinical CenterVeterans Affairs Pittsburgh Healthcare SystemPittsburghPA15240USA
| |
Collapse
|
23
|
Bao X, Liu X, Yu B, Li Y, Cui M, Wang W, Feng Y, Xu X, Sun G, Li B, Li Z, Yang J. Transcriptome Profiling Based on Larvae at Different Time Points After Hatching Provides a Core Set of Gene Resource for Understanding the Metabolic Mechanisms of the Brood-Care Behavior in Octopus ocellatus. Front Physiol 2022; 12:762681. [PMID: 35069236 PMCID: PMC8777255 DOI: 10.3389/fphys.2021.762681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
The metabolic processes of organisms are very complex. Each process is crucial and affects the growth, development, and reproduction of organisms. Metabolism-related mechanisms in Octopus ocellatus behaviors have not been widely studied. Brood-care is a common behavior in most organisms, which can improve the survival rate and constitution of larvae. Octopus ocellatus carried out this behavior, but it was rarely noticed by researchers before. In our study, 3,486 differentially expressed genes (DEGs) were identified based on transcriptome analysis of O. ocellatus. We identify metabolism-related DEGs using GO and KEGG enrichment analyses. Then, we construct protein-protein interaction networks to search the functional relationships between metabolism-related DEGs. Finally, we identified 10 hub genes related to multiple gene functions or involved in multiple signal pathways and verified them using quantitative real-time polymerase chain reaction (qRT-PCR). Protein-protein interaction networks were first used to study the effects of brood-care behavior on metabolism in the process of growing of O. ocellatus larvae, and the results provide us valuable genetic resources for understanding the metabolic processes of invertebrate larvae. The data lay a foundation for further study the brood-care behavior and metabolic mechanisms of invertebrates.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Benshu Yu
- Shandong Fisheries Development and Resources Conservation Center, Yantai, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Mingxian Cui
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, China
- Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
24
|
Gao X, Yu M, Sun W, Han Y, Yang J, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces autophagy in primary cultured rat cortical neurons through Akt/mTOR and AMPK/mTOR signaling pathways. Food Chem Toxicol 2021; 158:112632. [PMID: 34688703 DOI: 10.1016/j.fct.2021.112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Autophagy is a lysosome dependent degradation pathway occurring in eukaryotic cells. Autophagy ensures balance and survival mechanism of cells during harmful stress. Excessive or weak autophagy leads to abnormal function and death in some cases. Lanthanum (La), a rare earth element (REE), damages the central nervous system (CNS) and promotes learning and memory dysfunction. However, underlying mechanism has not been fully elucidated. La induces oxidative stress, inhibits Nrf2/ARE and Akt/mTOR signaling pathways, and activates JNK/c-Jun and JNK/Foxo signaling pathways, resulting in abnormal induction of autophagy in rat hippocampus. In addition, La activates PINK1- Parkin signaling pathway and induces mitochondrial autophagy. However, the relationship between La and autophagy in rat neurons at the cellular level has not been explored previously. The aim of this study was to explore adverse effects of La. Primary culture of rat neurons were exposed to 0 mmol/L, 0.025 mmol/L, 0.05 mmol/L and 0.1 mmol/L lanthanum chloride (LaCl3). The results showed that La upregulates p-AMPK, inhibits levels of p-Akt and p-mTOR, increases levels of autophagy related proteins (Beclin1 and LC3B-II), and downregulates expression of p-Bcl-2 and p62. Upstream and downstream intervention agents of autophagy were used to detect autophagy flux to verify accuracy of our results. Electron microscopy results showed significant increase in the number of autophagosomes in LaCl3 exposed groups. These findings imply that LaCl3 inhibits Akt/mTOR signaling pathway and activates AMPK/mTOR signaling pathway, resulting in abnormal autophagy in primary cultured rat cortical neurons. In addition, LaCl3 induces neuronal damage through excessive autophagy.
Collapse
Affiliation(s)
- Xiang Gao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China; Department of Biostatistics, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| | - Miao Yu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yarao Han
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
25
|
Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG 35-55-Induced EAE. Int J Mol Sci 2021; 22:ijms22179495. [PMID: 34502405 PMCID: PMC8431355 DOI: 10.3390/ijms22179495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS). MS commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs significantly contribute to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are difficult to treat. Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in demyelinating pathologies such as MS. In autopsy tissue from patients with MS, increased expression of FGF1, FGF2, FGF9, and FGFR1 was found in lesion areas. Recent research using mouse models has focused on regions such as the spinal cord, and data on the expression of FGF/FGFR in the cerebellum are not available. In recent EAE studies, we detected that oligodendrocyte-specific deletion of FGFRs results in a milder disease course, less cellular infiltrates, and reduced neurodegeneration in the spinal cord. The objective of this study was to characterize the role of FGFR1 in oligodendrocytes in the cerebellum. Conditional deletion of FGFR1 in oligodendrocytes (Fgfr1ind−/−) was achieved by tamoxifen application, EAE was induced using the MOG35-55 peptide. The cerebellum was analyzed by histology, immunohistochemistry, and western blot. At day 62 p.i., Fgfr1ind−/− mice showed less myelin and axonal degeneration compared to FGFR1-competent mice. Infiltration of CD3(+) T cells, Mac3(+) cells, B220(+) B cells and IgG(+) plasma cells in cerebellar white matter lesions (WML) was less in Fgfr1ind−/−mice. There were no effects on the number of OPC or mature oligodendrocytes in white matter lesion (WML). Expression of FGF2 and FGF9 associated with less myelin and axonal degeneration, and of the pro-inflammatory cytokines IL-1β, IL-6, and CD200 was downregulated in Fgfr1ind−/− mice. The FGF/FGFR signaling protein pAkt, BDNF, and TrkB were increased in Fgfr1ind−/− mice. These data suggest that cell-specific deletion of FGFR1 in oligodendrocytes has anti-inflammatory and neuroprotective effects in the cerebellum in the EAE disease model of MS.
Collapse
|
26
|
Alrashed MM, Alshehry AS, Ahmad M, He J, Wang Y, Xu Y. miRNA Let-7a-5p targets RNA KCNQ1OT1 and Participates in Osteoblast Differentiation to Improve the Development of Osteoporosis. Biochem Genet 2021; 60:370-381. [PMID: 34228237 DOI: 10.1007/s10528-021-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
It is known that miRNA mediates the formation of osteogenesis, but the mechanism by which miRNA let-7a-5p regulates osteogenesis in osteoporosis (OP) is not yet understood. This paper aims to probe into the regulatory mechanism of miRNA let-7a-5p in the development of OP. Fresh femoral trabecular bones of patients with osteoporotic fracture (OP group, n = 25) and non-OP osteoarthritis (Non-OP group, n = 23) who underwent hip replacement in our hospital from December 2016 to December 2019 were collected. The expression and protein levels of miRNA let-7a-5p and V-AKT murine thymoma viral oncogene homolog 3 (RNA KCNQ1OT1) were detected. C2C12 cells were purchased and osteogenic differentiation model was constructed by BMP2 induction. After miRNA let-7a-5p up-regulation or down-regulation by transfection of corresponding mimics and inhibitors, the impacts of miRNA let-7a-5p and RNA KCNQ1OT1 on osteogenic differentiation-related factors (OC, ALP, COL1A1) in C2C12 cells were analyzed. The determination of targeting correlation of miRNA let-7a-5p with RNA KCNQ1OT1 was performed by dual-luciferase reporter (DLR). In OP samples, miRNA let-7a-5p was notably declined while RNA KCNQ1OT1 were remarkably up-regulated. MiRNA let-7a-5p reduced in C2C12 cells as BMP2 treatment proceeded. MiRNA let-7a-5p up-regulation or RNA KCNQ1OT1 down-regulation increased OC, ALP, COL1A1 levels and ALP activity. RNA KCNQ1OT1 was directly targeted to miR-497-5p. RNA KCNQ1OT1 up-regulation weakened the promoting effect of miRNA let-7a-5p up-regulation on osteoblast differentiation. MiRNA let-7a-5p up-regulation can target to reduce RNA KCNQ1OT1 and promote osteoblast differentiation, thereby improving the development of osteoporosis.
Collapse
Affiliation(s)
- May Mohammed Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Ahmad
- Department of Medical Surgical, College of Nursing, King Saud University, Riyadh, Saudi Arabia
| | - Jian He
- Soochow University, Suzhou, China
| | | | | |
Collapse
|
27
|
Yao Y, Wang H, Xi X, Sun W, Ge J, Li P. miR-150 and SRPK1 regulate AKT3 expression to participate in LPS-induced inflammatory response. Innate Immun 2021; 27:343-350. [PMID: 34092081 PMCID: PMC8186154 DOI: 10.1177/17534259211018800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
miR-150 was found to target the 3'-untranslated regions of AKT3, and the AKT pathway was affected by SR protein kinase 1 (SRPK1). However, the expression and significance of miR-150, AKT3 and SRPK1 in acute lung injury (ALI) were not clear. Here, we found that the expression of miR-150 was significantly reduced, while the expression of AKT3 and SRPK1 were markedly increased in LPS-treated A549, THP-1 and RAW 264.7 cells. miR-150 significantly decreased levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, reduced the expression of AKT3, but had no impact on SRPK1 expression compared with the control group in LPS-treated A549, THP-1 and RAW 264.7 cells. AKT3 silencing only reduced the production of pro-inflammatory cytokines and showed no effect on miR-150 and SRPK1 expression. Finally, we observed that miR-150 mimics and/or silencing of SRPK1 decreased the expression of AKT3 mRNA. Besides, over-expression of miR-150 or silencing of SRPK1 also reduced the expression of AKT3 protein, which exhibited the lowest level in the miR-150 mimics plus si-SRPK1 group. However, si-SRPK1 had no effect on miR-150 level. In conclusion, miR-150 and SRPK1 separately and cooperatively participate into inflammatory responses in ALI through regulating AKT3 pathway. Increased miR-150 and silenced SRPK1 may be a novel potential factor for preventing and treating more inflammatory lung diseases.
Collapse
Affiliation(s)
- Yanfen Yao
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Hong Wang
- Department of General Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Xueqin Xi
- Department of Pediatrics, Maternal and Child Health Hospital of Shandong Province, China
| | - Wei Sun
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Junke Ge
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Pibao Li
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, China
| |
Collapse
|
28
|
Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer CA. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun 2021; 2:tgab036. [PMID: 34296180 PMCID: PMC8223503 DOI: 10.1093/texcom/tgab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under Akt deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.
Collapse
Affiliation(s)
- Josien Levenga
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA.,Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Key Disease Mechanisms Linked to Alzheimer's Disease in the Entorhinal Cortex. Int J Mol Sci 2021; 22:ijms22083915. [PMID: 33920138 PMCID: PMC8069371 DOI: 10.3390/ijms22083915] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain’s entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical–protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.
Collapse
|
30
|
Mroweh M, Roth G, Decaens T, Marche PN, Lerat H, Macek Jílková Z. Targeting Akt in Hepatocellular Carcinoma and Its Tumor Microenvironment. Int J Mol Sci 2021; 22:1794. [PMID: 33670268 PMCID: PMC7917860 DOI: 10.3390/ijms22041794] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide, and its incidence is rising. HCC develops almost exclusively on the background of chronic liver inflammation, which can be caused by chronic alcohol consumption, viral hepatitis, or an unhealthy diet. The key role of chronic inflammation in the process of hepatocarcinogenesis, including in the deregulation of innate and adaptive immune responses, has been demonstrated. The inhibition of Akt (also known as Protein Kinase B) directly affects cancer cells, but this therapeutic strategy also exhibits indirect anti-tumor activity mediated by the modulation of the tumor microenvironment, as demonstrated by using Akt inhibitors AZD5363, MK-2206, or ARQ 092. Moreover, the isoforms of Akt converge and diverge in their designated roles, but the currently available Akt inhibitors fail to display an isoform specificity. Thus, selective Akt inhibition needs to be better explored in the context of HCC and its possible combination with immunotherapy. This review presents a compact overview of the current knowledge concerning the role of Akt in HCC and the effect of Akt inhibition on the HCC and liver tumor microenvironment.
Collapse
Affiliation(s)
- Mariam Mroweh
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath Beirut 6573-14, Lebanon
| | - Gaël Roth
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
| | - Hervé Lerat
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
| | - Zuzana Macek Jílková
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (G.R.); (T.D.); (P.N.M.); (H.L.)
- Université Grenoble-Alpes, 38000 Grenoble, France
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| |
Collapse
|
31
|
Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C, Milstead R, Ehringer M, Hoeffer C. Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. eLife 2020; 9:e56630. [PMID: 33325370 PMCID: PMC7787664 DOI: 10.7554/elife.56630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
AKT is implicated in neurological disorders. AKT has three isoforms, AKT1/AKT2/AKT3, with brain cell type-specific expression that may differentially influence behavior. Therefore, we examined single Akt isoform, conditional brain-specific Akt1, and double Akt1/3 mutant mice in behaviors relevant to neuropsychiatric disorders. Because sex is a determinant of these disorders but poorly understood, sex was an experimental variable in our design. Our studies revealed AKT isoform- and sex-specific effects on anxiety, spatial and contextual memory, and fear extinction. In Akt1 mutant males, viral-mediated AKT1 restoration in the prefrontal cortex rescued extinction phenotypes. We identified a novel role for AKT2 and overlapping roles for AKT1 and AKT3 in long-term memory. Finally, we found that sex-specific behavior effects were not mediated by AKT expression or activation differences between sexes. These results highlight sex as a biological variable and isoform- or cell type-specific AKT signaling as potential targets for improving treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Josien Levenga
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Bailey Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | | | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Ryan Milstead
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Marissa Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
32
|
Yu L, Li H, Liu W, Zhang L, Tian Q, Li H, Li M. MiR-485-3p serves as a biomarker and therapeutic target of Alzheimer's disease via regulating neuronal cell viability and neuroinflammation by targeting AKT3. Mol Genet Genomic Med 2020; 9:e1548. [PMID: 33220166 PMCID: PMC7963426 DOI: 10.1002/mgg3.1548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Numerous microRNAs (miRNAs) have been identified as functional molecules in Alzheimer's disease (AD) pathogenesis. This study aimed to investigate the diagnostic value of microRNA-485-3p (miR-485-3p) in AD patients, evaluate the effect of miR-485-3p on neuronal viability and neuroinflammation, as well as the underlying molecular mechanisms. METHODS Quantitative Real-Time PCR was used to estimate expression of miR-485-3p and AKT3. A ROC analysis was used to evaluate the diagnostic value of miR-485-3p. The correlation of miR-485-3p with patients' MMSE score and inflammatory response was analyzed. Using Aβ-treated SH-SY5Y and BV2 cells models, the effects of miR-485-3p on neuronal proliferation, apoptosis, and neuroinflammation were explored. A luciferase reporter assay was used to confirm the target gene of miR-485-3p in both SH-SY5Y and BV2 cells. RESULTS Serum miR-485-3p expression was significantly upregulated in AD patients and cell models, which had a high diagnostic accuracy and correlated with MMSE score and inflammatory response in AD patients. The knockdown of miR-485-3p in SH-SY5Y and BV2 cells was found to significantly reverse the effect of Aβ treatment on neuronal viability and neuroinflammation. AKT3 was determined as a target of miR-485-3p, which might mediate the biological function of miR-485-3p in AD pathogenesis. CONCLUSION All the data indicated that increased serum miR-485-3p serves as a diagnostic biomarker in AD patients, and knockdown of miR-485-3p exerts a neuroprotective role by improving neuronal viability and weakening neuroinflammation, which may be mediated by AKT3. This study may provide a novel biomarker and therapeutic target for AD therapy.
Collapse
Affiliation(s)
- Ling Yu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Haiting Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Wenhu Liu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ligong Zhang
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Qun Tian
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Hairong Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Min Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
33
|
Cui H, Xu Z, Qu C. Tetramethylpyrazine ameliorates isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation via miR-150 in rats. Exp Ther Med 2020; 20:3878-3887. [PMID: 32855738 DOI: 10.3892/etm.2020.9110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tetramethylpyrazine (TMP) has neuroprotective effects in the pathogenesis of some human diseases, such as Parkinson's disease. The present study aimed to investigate the role of TMP in isoflurane-induced cognitive dysfunction in rats, and further identify the mechanisms involved in the protective effects of TMP. The Morris water maze test was used to evaluate the cognitive function of rats exposed to isoflurane or treated with TMP. ELISA was conducted to evaluate the effects of isoflurane or TMP on neuroinflammation. The expression of microRNA-150 (miR-150) was measured using reverse transcription-quantitative PCR, and the potential target genes of miR-150 were predicted and verified. The impaired cognitive function induced by isoflurane in the rats was significantly ameliorated by treatment with TMP. In addition, TMP treatment in rats attenuated neuroinflammation caused by isoflurane. The expression of miR-150 was inhibited by isoflurane exposure, but was enhanced by TMP treatment in rats. Furthermore, the overexpression of miR-150 alleviated the isoflurane-induced cognitive dysfunction and neuroinflammation, while the neuroprotective effects of TMP were significantly abrogated by the knockdown of miR-150. AKT3 was a direct target of miR-150, and its mRNA expression was significantly decreased by the overexpression of miR-150 in isoflurane- and TMP-treated rats. These results demonstrated the protective effects of TMP against isoflurane-induced cognitive dysfunction, which were achieved by attenuating neuroinflammation via the regulation of the miR-150/AKT3 pathway. In addition, miR-150 may serve as a novel therapeutic target for the alleviation of cognitive dysfunction induced by anesthetics.
Collapse
Affiliation(s)
- Huaqing Cui
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Zhonghui Xu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Chunshan Qu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| |
Collapse
|