1
|
Dumontet T, Basham KJ, Foster MC, Silverman E, Heard KA, Johnson D, Lee C, Plaska SW, Breault DT, Penton D, Beuschlein F, Turcu AF, LaPensee CR, Marcondes Lerario A, Hammer GD. The transcription factor HHEX maintains glucocorticoid levels and protects adrenals from androgen-induced lipid depletion. RESEARCH SQUARE 2025:rs.3.rs-6248794. [PMID: 40321776 PMCID: PMC12047992 DOI: 10.21203/rs.3.rs-6248794/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Glucocorticoid-producing cells of the adrenal cortex (i.e. zona fasciculata, zF) constitute the critical effectors of the hypothalamic-pituitary-adrenal axis, mediating the mammalian stress response. With glucocorticoids being essential for life, it is not surprising that zF dysfunction perturbs multiple organs that participate in optimizing cardiometabolic fitness. The zF forms a dynamic and heterogenous cell population endowed with the capacity to remodel through the engagement of both proliferative and differentiation programs that enable the adrenal to adapt and respond to diverse stressors. However, the mechanisms that sustain such differential responsiveness remain poorly understood. In this study, we resolved the transcriptome of the steroidogenic lineage by scRNA-seq using Sf1-Cre; Rosa mT/mG reporter mice. We identified HHEX, a homeodomain protein, as the most enriched transcription factor in glucocorticoid-producing cells. We developed new genetic mouse models to demonstrate that HHEX deletion causes glucocorticoid insufficiency in male animals. Molecularly, we demonstrated that HHEX is an androgen receptor (AR) target gene, shaping the sexual dimorphism of the adrenal gland by repressing the female transcriptional program at puberty, while also maintaining zF cholesterol ester content by protecting lipid droplets from androgen-induced-lipophagy. Moreover, our study revealed that, in both sexes, HHEX is crucial for maintaining the identity of the innermost adrenocortical cell subpopulation. Specifically, loss of HHEX impairs the expression of Abcb1b (P-glycoprotein/MDR1), an efflux pump regulating steroid export and cellular levels of xenobiotics. Together, these data demonstrate that HHEX serves as a multi-functional regulator of post-natal adrenal maturation that is potentiated by androgens.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaitlin J. Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Micah C. Foster
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Silverman
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A. Heard
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Dominque Johnson
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Chaelin Lee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel W. Plaska
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - David Penton
- Electrophysiology Facility, University of Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Adina F. Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher R. LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Jiang N, Li G, Luo S, Kong X, Yin S, Peng J, Jiang Y, Tao W, Li C, Xie H, Deng H, Xie B. Single-cell transcriptomics reveals liver developmental trajectory during lineage reprogramming of human induced hepatocyte-like cells. Cell Mol Life Sci 2025; 82:139. [PMID: 40188417 PMCID: PMC11973031 DOI: 10.1007/s00018-025-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/08/2025]
Abstract
Hepatocytes are crucial for drug screening, disease modeling, and clinical transplantation, yet generating functional hepatocytes in vitro is challenging due to the difficulty of establishing their authentic gene regulatory networks (GRNs). We have previously developed a two-step lineage reprogramming strategy to generate functionally competent human induced hepatocytes (hiHeps), providing an effective model for studying the establishment of hepatocyte-specific GRNs. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to explore the cell-fate transition and the establishment of hepatocyte-specific GRNs involved in the two-step reprogramming process. Our findings revealed that the late stage of the reprogramming process mimics the natural trajectory of liver development, exhibiting similar transcriptional waves of developmental genes. CD24 and DLK1 were identified as surface markers enriching two distinct hepatic progenitor populations respectively. Lipid metabolism emerged as a key enhancer of hiHeps maturation. Furthermore, transcription factors HNF4A and HHEX were identified as pivotal gatekeepers directing cell fate decisions between hepatocytes and intestinal cells. Collectively, this study provides valuable insights into the establishment of hepatocyte-specific GRNs during hiHeps induction at single-cell resolution, facilitating more efficient production of functional hepatocytes for therapeutic applications.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Guangya Li
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sen Luo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Li H, Liu J, Lai J, Su X, Wang X, Cao J, Mao S, Zhang T, Gu Q. The HHEX-ABI2/SLC17A9 axis induces cancer stem cell-like properties and tumorigenesis in HCC. J Transl Med 2024; 22:537. [PMID: 38844969 PMCID: PMC11155165 DOI: 10.1186/s12967-024-05324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Accumulating evidence indicated that HHEX participated in the initiation and development of several cancers, but the potential roles and mechanisms of HHEX in hepatocellular carcinoma (HCC) were largely unclear. Cancer stem cells (CSCs) are responsible for cancer progression owing to their stemness characteristics. We reported that HHEX was a novel CSCs target for HCC. We found that HHEX was overexpressed in HCC tissues and high expression of HHEX was associated with poor survival. Subsequently, we found that HHEX promoted HCC cell proliferation, migration, and invasion. Moreover, bioinformatics analysis and experiments verified that HHEX promoted stem cell-like properties in HCC. Mechanistically, ABI2 serving as a co-activator of transcriptional factor HHEX upregulated SLC17A9 to promote HCC cancer stem cell-like properties and tumorigenesis. Collectively, the HHEX-mediated ABI2/SLC17A9 axis contributes to HCC growth and metastasis by maintaining the CSC population, suggesting that HHEX serves as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Huizi Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jin Liu
- Department of Radiology, University of California, San Diego, The, USA
| | - Jie Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinyao Su
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengxun Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Tong Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Actuated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
- Department of General Surgery, School of Medicine, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China.
- Department of Organ Transplantation, School of Medicine, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Qiuping Gu
- Department of Gastroenterology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, People's Republic of China.
| |
Collapse
|
4
|
Verma D, Kapoor S, Kumari S, Sharma D, Singh J, Benjamin M, Bakhshi S, Seth R, Nayak B, Sharma A, Pramanik R, Palanichamy JK, Sivasubbu S, Scaria V, Arora M, Kumar R, Chopra A. Decoding the genetic symphony: Profiling protein-coding and long noncoding RNA expression in T-acute lymphoblastic leukemia for clinical insights. PNAS NEXUS 2024; 3:pgae011. [PMID: 38328782 PMCID: PMC10847906 DOI: 10.1093/pnasnexus/pgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy characterized by the abnormal proliferation of immature T-cell precursors. Despite advances in immunophenotypic classification, understanding the molecular landscape and its impact on patient prognosis remains challenging. In this study, we conducted comprehensive RNA sequencing in a cohort of 35 patients with T-ALL to unravel the intricate transcriptomic profile. Subsequently, we validated the prognostic relevance of 23 targets, encompassing (i) protein-coding genes-BAALC, HHEX, MEF2C, FAT1, LYL1, LMO2, LYN, and TAL1; (ii) epigenetic modifiers-DOT1L, EP300, EML4, RAG1, EZH2, and KDM6A; and (iii) long noncoding RNAs (lncRNAs)-XIST, PCAT18, PCAT14, LINC00202, LINC00461, LINC00648, ST20, MEF2C-AS1, and MALAT1 in an independent cohort of 99 patients with T-ALL. Principal component analysis revealed distinct clusters aligning with immunophenotypic subtypes, providing insights into the molecular heterogeneity of T-ALL. The identified signature genes exhibited associations with clinicopathologic features. Survival analysis uncovered several independent predictors of patient outcomes. Higher expression of MEF2C, BAALC, HHEX, and LYL1 genes emerged as robust indicators of poor overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). Higher LMO2 expression was correlated with adverse EFS and RFS outcomes. Intriguingly, increased expression of lncRNA ST20 coupled with RAG1 demonstrated a favorable prognostic impact on OS, EFS, and RFS. Conclusively, several hitherto unreported associations of gene expression patterns with clinicopathologic features and prognosis were identified, which may help understand T-ALL's molecular pathogenesis and provide prognostic markers.
Collapse
Affiliation(s)
- Deepak Verma
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Sarita Kumari
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Jay Singh
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mercilena Benjamin
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi-110029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Raja Pramanik
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rajive Kumar
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anita Chopra
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
5
|
Yue S, Pei L, Lai F, Xiao H, Li Z, Zeng R, Chen L, Chen W, Liu H, Li Y, Xiao H, Cao X. Genome-wide analysis study of gestational diabetes mellitus and related pathogenic factors in a Chinese Han population. BMC Pregnancy Childbirth 2023; 23:856. [PMID: 38087213 PMCID: PMC10714520 DOI: 10.1186/s12884-023-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) affects the metabolism of both the mother and fetus during and after pregnancy. Genetic factors are important in the pathogenesis of GDM, and associations vary by ethnicity. However, related studies about the relationship between the susceptibility genes and glucose traits remain limited in China. This study aimed to identify genes associated with GDM susceptibility in Chinese Han women and validate those findings using clinical data during pregnancy and postpartum period. METHODS A genome-wide association study (GWAS) of 398 Chinese Han women (199 each with and without GDM) was conducted and associations between single nucleotide polymorphisms (SNPs) and glucose metabolism were identified by searching public databases. Relationships between filtered differential SNPs and glucose metabolism were verified using clinical data during pregnancy. The GDM group were followed up postpartum to evaluate the progression of glucose metabolism. RESULTS We identified five novel SNPs with genome-wide significant associations with GDM: rs62069863 in TRPV3 gene and rs2232016 in PRMT6 gene were positive correlated with 1 h plasma glucose (1hPG) and 2 h plasma glucose (2hPG), rs1112718 in HHEX/EXOC6 gene and rs10460009 in LPIN2 gene were positive associated with fasting plasma glucose, 1hPG and 2hPG, rs927316 in GLIS3 gene was negative correlated with 2hPG. Of the 166 GDM women followed up postpartum, rs62069863 in TRPV3 gene was positively associated with fasting insulin, homoeostasis model assessment of insulin resistance. CONCLUSIONS The variants of rs62069863 in TRPV3 gene, rs2232016 in PRMT6 gene, rs1112718 in HHEX/EXOC6 gene, rs927316 in GLIS3 gene, and rs10460009 in LPIN2 gene were newly-identified susceptibility loci for GDM in the Chinese Han population. TRPV3 was associated with worse insulin resistance postpartum. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry. TRIAL REGISTRATION NUMBER ChiCTR2100043762. Date of first registration: 28/02/2021.
Collapse
Affiliation(s)
- Shufan Yue
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ling Pei
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Fenghua Lai
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Huangmeng Xiao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zeting Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Rui Zeng
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Li Chen
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Wenzhan Chen
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Huiling Liu
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yanbing Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Haipeng Xiao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xiaopei Cao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|