1
|
Frew JW. Unravelling the complex pathogenesis of hidradenitis suppurativa. Br J Dermatol 2025; 192:i3-i14. [PMID: 39895594 DOI: 10.1093/bjd/ljae238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 02/04/2025]
Abstract
Hidradenitis suppurativa (HS) is a complex inflammatory disease, with rapid advances being made in our understanding of the complex immunological pathogenesis of the condition. New insights into the genomic landscape of HS have identified a number of genes that contribute to the development of HS in a polygenic manner, contributing to inflammatory dysregulation and alterations in epidermal stem cell fate in the follicular unit. These genomic variations can explain unique aspects of the disease such as the development and presence of epithelialized tunnels and abnormalities in wound healing. From genetic and translational studies, it is likely that these genetic alterations predispose to an innate immune dysregulation that can be triggered through sex hormone-responsive transcription factors with hormonal changes such as puberty, pregnancy and the menstrual cycle. The role of sex hormones in HS also has direct effects upon the development and maturation of inflammatory cells such as monocytes, which has the potential to explain differential patient response to treatments such as interleukin-23 antagonism. The role of adipose tissue as an active immunological organ also plays a role in the immune dysregulation seen in the disease. Fibrotic tissue and immunologically active fibroblasts play a significant role in the perpetuation of inflammation and development of adaptive immune dysfunction in the disease. The cutaneous and gut microbiomes play significant roles in the activation of innate immunity, although conflicting data exist as to their central or peripheral role in disease pathogenesis. Overall, our understanding of disease pathogenesis in HS is moving toward a more nuanced, complex paradigm in which patient heterogeneity in presentation and immunological characteristics are moving closer to the identification of therapeutic biomarkers to guide therapeutic modalities in the management of this burdensome condition.
Collapse
Affiliation(s)
- John W Frew
- The Skin Hospital, Darlinghurst, Sydney, Australia
- University of New South Wales, Sydney, Australia
- Laboratory of Translational Cutaneous Medicine, Ingham Institute, Sydney, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, Australia
| |
Collapse
|
2
|
Stabell SH, Renzi A, Nilsen HR, Antonsen OH, Fosse JH, Haraldsen G, Sundnes O. Detection of native, activated Notch receptors in normal human apocrine-bearing skin and in hidradenitis suppurativa. Exp Dermatol 2024; 33:e14977. [PMID: 38060347 DOI: 10.1111/exd.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 01/30/2024]
Abstract
Notch signalling has generated considerable interest as a pathogenetic factor and a drug target in a range of human diseases. The gamma-secretase complex is crucial in the activation of Notch receptors by cleaving the intracellular domain allowing nuclear translocation. In recent years several mutations in gamma-secretase components have been discovered in patients with familial hidradenitis suppurativa (HS). This has led to hypotheses that impaired Notch signalling could be an important driver for HS in general, not only in the monogenic variants. However, no study has examined in situ Notch activation per se in HS, and some reports with conflicting results have instead been based on expression of Notch receptors or indirect measures of Notch target gene expression. In this study we established immunostaining protocols to identify native, activated Notch receptors in human skin tissue. The ability to detect changes in Notch activation was confirmed with an ex vivo skin organ model in which signal was reduced or obliterated in tissue exposed to a gamma-secretase inhibitor. Using these methods on skin biopsies from healthy volunteers and a general HS cohort we demonstrated for the first time the distribution of active Notch signalling in human apocrine-bearing skin. Quantification of activated NOTCH1 & NOTCH2 revealed similar levels in non-lesional and peri-lesional HS to that of healthy controls, thus ruling out a general defect in Notch activation in HS patients. We did find a variable but significant reduction of activated Notch in epidermis of lesional HS with a distribution that appeared related to the extent of surrounding tissue inflammation.
Collapse
Affiliation(s)
- Siri Hansen Stabell
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Anastasia Renzi
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Guttorm Haraldsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Olav Sundnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Montero-Cosme TG, Pascual-Mathey LI, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Aranda-Abreu GE. Potential drugs for the treatment of Alzheimer's disease. Pharmacol Rep 2023; 75:544-559. [PMID: 37005970 DOI: 10.1007/s43440-023-00481-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
It is well known that amyloid precursor protein (APP), the enzyme β-secretase 1 (BACE1), cyclooxygenase 2 (COX-2), nicastrin (NCT), and hyperphosphorylated tau protein (p-tau) are closely related to the development of Alzheimer's disease (AD). In addition, recent evidence shows that neuroinflammation also contributes to the pathogenesis of AD. Although the mechanism is not clearly known, such inflammation could alter the activity of the aforementioned molecules. Therefore, the use of anti-inflammatory agents could slow the progression of the disease. Nimesulide, resveratrol, and citalopram are three anti-inflammatory agents that could contribute to a decrease in neuroinflammation and consequently to a decrease in the overexpression of APP, BACE1, COX-2, NCT, and p-Tau, as they possess anti-inflammatory effects that could regulate the expression of APP, BACE1, COX-2, NCT, and p-Tau of potent pro-inflammatory markers indirectly involved in the expression of APP, BACE1, NCT, COX-2, and p-Tau; therefore, their use could be beneficial as preventive treatment as well as in the early stages of AD.
Collapse
Affiliation(s)
| | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | | |
Collapse
|
4
|
Croitoru DO, Piguet V. Methylglyoxal Autoimmunity: A Hidden Link in HS and Associated Diseases? J Invest Dermatol 2023; 143:183-185. [PMID: 36681420 DOI: 10.1016/j.jid.2022.09.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Affiliation(s)
- David O Croitoru
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Canada.
| |
Collapse
|
5
|
Zheng SY, Hu XM, Huang K, Li ZH, Chen QN, Yang RH, Xiong K. Proteomics as a tool to improve novel insights into skin diseases: what we know and where we should be going. Front Surg 2022; 9:1025557. [PMID: 36338621 PMCID: PMC9633964 DOI: 10.3389/fsurg.2022.1025557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Biochemical processes involved in complex skin diseases (skin cancers, psoriasis, and wound) can be identified by combining proteomics analysis and bioinformatics tools, which gain a next-level insight into their pathogenesis, diagnosis, and therapeutic targets. METHODS Articles were identified through a search of PubMed, Embase, and MEDLINE references dated to May 2022, to perform system data mining, and a search of the Web of Science (WoS) Core Collection was utilized to conduct a visual bibliometric analysis. RESULTS An increased trend line revealed that the number of publications related to proteomics utilized in skin diseases has sharply increased recent years, reaching a peak in 2021. The hottest fields focused on are skin cancer (melanoma), inflammation skin disorder (psoriasis), and skin wounds. After deduplication and title, abstract, and full-text screening, a total of 486 of the 7,822 outcomes met the inclusion/exclusion criteria for detailed data mining in the field of skin disease tooling with proteomics, with regard to skin cancer. According to the data, cell death, metabolism, skeleton, immune, and inflammation enrichment pathways are likely the major part and hotspots of proteomic analysis found in skin diseases. Also, the focuses of proteomics in skin disease are from superficial presumption to depth mechanism exploration within more comprehensive validation, from basic study to a combination or guideline for clinical applications. Furthermore, we chose skin cancer as a typical example, compared with other skin disorders. In addition to finding key pathogenic proteins and differences between diseases, proteomic analysis is also used for therapeutic evaluation or can further obtain in-depth mechanisms in the field of skin diseases. CONCLUSION Proteomics has been regarded as an irreplaceable technology in the study of pathophysiological mechanism and/or therapeutic targets of skin diseases, which could provide candidate key proteins for the insight into the biological information after gene transcription. However, depth pathogenesis and potential clinical applications need further studies with stronger evidence within a wider range of skin diseases.
Collapse
Affiliation(s)
- Sheng-yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xi-min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kun Huang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zi-han Li
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qing-ning Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Rong-hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of 173 Medicine, South China University of Technology, Guangzhou, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| |
Collapse
|
6
|
Mintoff D, Pace NP, Borg I. Interpreting the spectrum of gamma-secretase complex missense variation in the context of hidradenitis suppurativa—An in-silico study. Front Genet 2022; 13:962449. [PMID: 36118898 PMCID: PMC9478468 DOI: 10.3389/fgene.2022.962449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a disease of the pilosebaceous unit characterized by recurrent nodules, abscesses and draining tunnels with a predilection to intertriginous skin. The pathophysiology of HS is complex. However, it is known that inflammation and hyperkeratinization at the hair follicle play crucial roles in disease manifestation. Genetic and environmental factors are considered the main drivers of these two pathophysiological processes. Despite a considerable proportion of patients having a positive family history of disease, only a minority of patients suffering from HS have been found to harbor monogenic variants which segregate to affected kindreds. Most of these variants are in the ɣ secretase complex (GSC) protein-coding genes. In this manuscript, we set out to characterize the burden of missense pathogenic variants in healthy reference population using large scale genomic dataset thereby providing a standard for comparing genomic variation in GSC protein-coding genes in the HS patient cohort.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Nikolai P. Pace
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- *Correspondence: Nikolai P. Pace,
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
7
|
Zhang H, Zhang D, Tang K, Sun Q. The Relationship Between Alzheimer's Disease and Skin Diseases: A Review. Clin Cosmet Investig Dermatol 2021; 14:1551-1560. [PMID: 34729018 PMCID: PMC8554316 DOI: 10.2147/ccid.s322530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common type of dementia placing a heavy burden on the healthcare system worldwide. Skin diseases are also one of the most common health problems. Several skin diseases are associated with Alzheimer's disease through different mechanisms. This review summarizes the relationship between Alzheimer's disease and several types of skin diseases, including bullous pemphigoid, hidradenitis suppurativa, psoriasis, skin cancer, and cutaneous amyloidosis, and provides suggestions based on these associations. Neurologists, dermatologists, and general practitioners should be aware of the relationship between Alzheimer's disease and skin diseases. Dermatology/neurology consultation or referral is necessary when needed.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Dingyue Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Keyun Tang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qiuning Sun
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
8
|
Vellaichamy G, Dimitrion P, Zhou L, Ozog D, Lim HW, Liao W, Hamzavi IH, Mi QS. Insights from γ-Secretase: Functional Genetics of Hidradenitis Suppurativa. J Invest Dermatol 2021; 141:1888-1896. [PMID: 33836848 PMCID: PMC8316262 DOI: 10.1016/j.jid.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 01/09/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, relapsing, and remitting inflammatory disease of the skin with significant heritability and racial disposition. The pathogenesis of HS remains enigmatic, but occlusion of the terminal hair follicle and dysregulation of the local innate immune response may contribute to pathogenesis. Genetic predisposition might also contribute to disease susceptibility and phenotypic heterogeneity because mutations in γ-secretase have been found to underlie a minor but characteristic subset of patients with HS. In this review, we synthesized the current data on γ-secretase in HS, evaluated its importance in the context of disease pathobiology, and discussed avenues of future studies.
Collapse
Affiliation(s)
- Gautham Vellaichamy
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | - David Ozog
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Henry W Lim
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Iltefat H Hamzavi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA.
| |
Collapse
|
9
|
Frew JW. Differential profiles of gamma secretase Notch signalling in hidradenitis suppurativa: the need for genotype-endotype-phenotype analysis. Br J Dermatol 2021; 185:636-637. [PMID: 33421094 DOI: 10.1111/bjd.19805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Affiliation(s)
- J W Frew
- Department of Dermatology, Liverpool Hospital, Sydney, Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Brandao L, Moura R, Tricarico PM, Gratton R, Genovese G, Moltrasio C, Garcovich S, Boniotto M, Crovella S, Marzano AV. Altered keratinization and vitamin D metabolism may be key pathogenetic pathways in syndromic hidradenitis suppurativa: a novel whole exome sequencing approach. J Dermatol Sci 2020; 99:17-22. [PMID: 32518053 DOI: 10.1016/j.jdermsci.2020.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Diagnosis of pyoderma gangrenosum, acne and hidradenitis suppurativa (PASH) and pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH) patients, in spite of recently identified genetic variations, is just clinical, since most patients do not share the same mutations, and the mutations themselves are not informative of the biological pathways commonly disrupted in these patients. OBJECTIVE To reveal genetic changes more closely related to PASH and PAPASH etiopathogenesis, identifying novel common pathways involved in these diseases. METHODS Cohort study on PASH (n = 4) and PAPASH (n = 1) patients conducted using whole exome sequencing (WES) approach and a novel bioinformatic pipeline aimed at discovering potentially candidate genes selected from density mutations and involved in pathways relevant to the disease. RESULTS WES results showed that patients presented 90 genes carrying mutations with deleterious and/or damage impact: 12 genes were in common among the 5 patients and bared 237 ns ExonVar (54 and 183 in homozygosis and heterozygosis, respectively). In the pathway enrichment analysis, only 10 genes were included, allowing us to retrieve 4 pathways shared by all patients: (1) Vitamin D metabolism, (2) keratinization, (3) formation of the cornified envelope and (4) steroid metabolism. Interestingly, all patients had vitamin D levels lower than normal, with a mean value of 10 ng/mL. CONCLUSION Our findings, through a novel strategy for analysing the genetic background of syndromic HS patients, suggested that vitamin D metabolism dysfunctions seem to be crucial in PASH and PAPASH pathogenesis. Based on low vitamin D serum levels, its supplementation is envisaged.
Collapse
Affiliation(s)
- Lucas Brandao
- Department of Pathology, Federal University of Pernambuco, Recife, Brazil
| | - Ronald Moura
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | | - Rossella Gratton
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Physiopathology and Transplantation, Università degli Studi di Milano Via Pace 9, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Physiopathology and Transplantation, Università degli Studi di Milano Via Pace 9, Milan, Italy
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Boniotto
- INSERM U955 Eq. 16, Faculté de Médecine, Institut Mondor de Recherche Biomédicale and Université Paris Est- Créteil (UPEC), Créteil, France
| | - Sergio Crovella
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Physiopathology and Transplantation, Università degli Studi di Milano Via Pace 9, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Frew JW. Hidradenitis suppurativa is an autoinflammatory keratinization disease: A review of the clinical, histologic, and molecular evidence. JAAD Int 2020; 1:62-72. [PMID: 34409324 PMCID: PMC8361883 DOI: 10.1016/j.jdin.2020.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenic model of hidradenitis suppurativa is in the midst of a paradigm shift away from a disorder of primary follicular occlusion to an autoinflammatory keratinization disease. Observational, experimental, and therapeutic evidence supports the concept of hidradenitis suppurativa as a primarily inflammatory disorder, a disorder of autoimmunity, or both, in contrast to the current prevailing paradigm of primary follicular occlusion. The lack of reliable and high-fidelity disease models has limited the available experimental and mechanistic evidence to support or refute one pathogenic model over another. This scholarly review synthesizes the existing clinical, histologic, and molecular data to evaluate the extant evidence supporting the autoinflammatory paradigm and further informing the molecular mechanisms of hidradenitis suppurativa pathogenesis. Follicular hyperkeratosis/occlusion and perifollicular inflammation coexist in histologic specimens, with interleukin 1α demonstrated to stimulate comedogenesis in the infundibulum. pH elevation in occluded body sites alters the microbiome and amplifies existing T-helper cell type 17 immunoresponses. Known metabolic comorbidities and smoking are known to upregulate interleukin 1α in follicular keratinocytes. Identified genetic variants may alter epidermal growth factor receptor signaling, leading to upregulated keratinocyte inflammatory responses. The process of follicular rupture and dermal tunnel formation can be explained as secondary responses to inflammatory activation of fibroblasts and epithelial-mesenchymal transition, with antibody production associated with inflammatory amplification in advanced disease. This review aims to reevaluate and integrate the current clinical, histologic, and molecular data into a pathogenic model of hidradenitis suppurativa. This is essential to advance our understanding of the disease and identify novel therapeutic targets and approaches.
Collapse
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, Rockefeller University, New York, New York
| |
Collapse
|