1
|
Han L, Liu Z, Jing Z, Liu Y, Peng Y, Chang H, Lei J, Wang K, Xu Y, Liu W, Wu Z, Li Q, Shi X, Zheng M, Wang H, Deng J, Zhong Y, Pan H, Lin J, Zhang R, Chen Y, Wu J, Xu M, Ren B, Cheng M, Yu Q, Song X, Lu Y, Tang Y, Yuan N, Sun S, An Y, Ding W, Sun X, Wei Y, Zhang S, Dou Y, Zhao Y, Han L, Zhu Q, Xu J, Wang S, Wang D, Bai Y, Liang Y, Liu Y, Chen M, Xie C, Bo B, Li M, Zhang X, Ting W, Chen Z, Fang J, Li S, Jiang Y, Tan X, Zuo G, Xie Y, Li H, Tao Q, Li Y, Liu J, Liu Y, Hao M, Wang J, Wen H, Liu J, Yan Y, Zhang H, Sheng Y, Yu S, Liao X, Jiang X, Wang G, Liu H, Wang C, Feng N, Liu X, Ma K, Xu X, Han T, Cao H, Zheng H, Chen Y, Lu H, Yu Z, Zhang J, Wang B, Wang Z, Xie Q, Pan S, Liu C, Xu C, Cui L, Li Y, Liu S, Liao S, Chen A, Wu QF, et alHan L, Liu Z, Jing Z, Liu Y, Peng Y, Chang H, Lei J, Wang K, Xu Y, Liu W, Wu Z, Li Q, Shi X, Zheng M, Wang H, Deng J, Zhong Y, Pan H, Lin J, Zhang R, Chen Y, Wu J, Xu M, Ren B, Cheng M, Yu Q, Song X, Lu Y, Tang Y, Yuan N, Sun S, An Y, Ding W, Sun X, Wei Y, Zhang S, Dou Y, Zhao Y, Han L, Zhu Q, Xu J, Wang S, Wang D, Bai Y, Liang Y, Liu Y, Chen M, Xie C, Bo B, Li M, Zhang X, Ting W, Chen Z, Fang J, Li S, Jiang Y, Tan X, Zuo G, Xie Y, Li H, Tao Q, Li Y, Liu J, Liu Y, Hao M, Wang J, Wen H, Liu J, Yan Y, Zhang H, Sheng Y, Yu S, Liao X, Jiang X, Wang G, Liu H, Wang C, Feng N, Liu X, Ma K, Xu X, Han T, Cao H, Zheng H, Chen Y, Lu H, Yu Z, Zhang J, Wang B, Wang Z, Xie Q, Pan S, Liu C, Xu C, Cui L, Li Y, Liu S, Liao S, Chen A, Wu QF, Wang J, Liu Z, Sun Y, Mulder J, Yang H, Wang X, Li C, Yao J, Xu X, Liu L, Shen Z, Wei W, Sun YG. Single-cell spatial transcriptomic atlas of the whole mouse brain. Neuron 2025:S0896-6273(25)00133-3. [PMID: 40132589 DOI: 10.1016/j.neuron.2025.02.015] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
A comprehensive atlas of genes, cell types, and their spatial distribution across a whole mammalian brain is fundamental for understanding the function of the brain. Here, using single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq techniques, we generated a mouse brain atlas with spatial information for 308 cell clusters at single-cell resolution, involving over 4 million cells, as well as for 29,655 genes. We have identified cell clusters exhibiting preference for cortical subregions and explored their associations with brain-related diseases. Additionally, we pinpointed 155 genes with distinct regional expression patterns within the brainstem and unveiled 513 long non-coding RNAs showing region-enriched expression in the adult brain. Parcellation of brain regions based on spatial transcriptomic information revealed fine structure for several brain areas. Furthermore, we have uncovered 411 transcription factor regulons showing distinct spatiotemporal dynamics during neurodevelopment. Thus, we have constructed a single-cell-resolution spatial transcriptomic atlas of the mouse brain with genome-wide coverage.
Collapse
Affiliation(s)
- Lei Han
- BGI Research, Hangzhou 310030, China
| | - Zhen Liu
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zehua Jing
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | - Junjie Lei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanfang Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Liu
- Lingang Laboratory, Shanghai 200031, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyuan Zheng
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yanqing Zhong
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Junkai Lin
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiyi Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhua Wu
- Lingang Laboratory, Shanghai 200031, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Qian Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxiang Song
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanbing Lu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanchun Tang
- BGI Research, Hangzhou 310030, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Nini Yuan
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingjie An
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqun Ding
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Sun
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanrong Wei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yannong Dou
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luyao Han
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Junfeng Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwen Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Yikai Liang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengni Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Xie
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Binshi Bo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Li
- BGI Research, Shenzhen 518083, China
| | - Xinyan Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wang Ting
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Fang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xing Tan
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guolong Zuo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Xie
- BGI Research, Shenzhen 518083, China
| | - Huanhuan Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quyuan Tao
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuyang Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Hao
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Wen
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiabing Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Sheng
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shui Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xuyin Jiang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangling Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Congcong Wang
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning Feng
- BGI Research, Shenzhen 518083, China
| | - Xin Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xiangjie Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Huateng Cao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Haorong Lu
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zixian Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Qing Xie
- BGI Research, Shenzhen 518083, China
| | | | - Chuanyu Liu
- BGI Research, Shenzhen 518083, China; Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Chan Xu
- BGI Research, Qingdao 266555, China
| | - Luman Cui
- BGI Research, Shenzhen 518083, China
| | - Yuxiang Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Sha Liao
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Ao Chen
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Wang
- BGI Research, Shenzhen 518083, China; China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jan Mulder
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | | | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | - Xun Xu
- BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China.
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Zhiming Shen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| | - Wu Wei
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Kaur R, Pandey S, Gupta S, Singh J. Harnessing the potential of long non-coding RNAs in the pathophysiology of Alzheimer's disease. Exp Neurol 2025; 385:115134. [PMID: 39740737 DOI: 10.1016/j.expneurol.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs). Among these, long non-coding RNAs (lncRNAs)-long transcripts that don't seem to be able to code for proteins-have drawn attention because they function as regulatory agents in a variety of biological processes. Recent research suggests that lncRNAs play a role in the pathogenesis of Alzheimer's disease by modulating tau hyperphosphorylation, amyloid production, synaptic impairment, neuroinflammation, mitochondrial dysfunction, and oxidative stress, though their precise effects on the disorder are unknown. The biology and modes of action of the best-characterized lncRNAs in AD will be outlined here, with an emphasis on their possible involvement in the pathophysiology of the disease. As lncRNAs may offer prospective prognostic/diagnostic biomarkers and therapeutic targets for the treatment of AD, a greater comprehension of the molecular processes and the intricate network of interactions in which they are implicated could pave the way for future research.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India.
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS)Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| |
Collapse
|
3
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
5
|
Banerjee D, Sultana S, Banerjee S. Gas5 regulates early-life stress-induced anxiety and spatial memory. J Neurochem 2024; 168:2999-3018. [PMID: 38960403 DOI: 10.1111/jnc.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Early-life stress (ES) induced by maternal separation (MS) remains a proven causality of anxiety and memory deficits at later stages of life. Emerging studies have shown that MS-induced gene expression in the hippocampus is operated at the level of transcription. However, the extent of involvement of non-coding RNAs in MS-induced behavioural deficits remains unexplored. Here, we have investigated the role of synapse-enriched long non-coding RNAs (lncRNAs) in anxiety and memory upon MS. We observed that MS led to an enhancement of expression of the lncRNA growth arrest specific 5 (Gas5) in the hippocampus; accompanied by increased levels of anxiety and deficits in spatial memory. Gas5 knockdown in early life was able to reduce anxiety and partially rescue the spatial memory deficits of maternally separated adult mice. However, the reversal of MS-induced anxiety and memory deficits is not attributed to Gas5 activity during neuronal development as Gas5 RNAi did not influence spine development. Gene Ontology analysis revealed that Gas5 exerts its function by regulating RNA metabolism and translation. Our study highlights the importance of MS-regulated lncRNA in anxiety and spatial memory.
Collapse
Affiliation(s)
| | - Sania Sultana
- National Brain Research Centre, Gurugram, Haryana, India
| | | |
Collapse
|
6
|
Klimenko A, Nagibin V, Horlova A, Dobropolska Y, Bogovik R, Stroy D, Isaev D, Dosenko V. Downregulation of lncRNAs Gomafu, NONMMUT033604.2, and NONMMUT064397.2 in the hippocampus of mice with model of post-traumatic stress disorder. World J Biol Psychiatry 2024; 25:283-290. [PMID: 38629762 DOI: 10.1080/15622975.2024.2342849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/07/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVES Molecular mechanisms of post-traumatic stress disorder (PTSD) development have been analysed by evaluati-ng changes in the expression level of long non-coding RNA (lncRNA) as a potential biomarker of the disease and as one of the molecular aspects associated with the disease development. METHODS In our study, we used quantitative polymerase chain reaction (qPCR) to evaluate changes in the expression level of long non-coding RNA - Gomafu, NONMMUT033604.2, and NONMMUT064397.2 - in the hippocampus of mice that were subjected to an artificially induced middle single prolonged stress (mSPS) model of post-traumatic stress disorder. RESULTS We found a significant reduction in the expression levels of each of the three lncRNAs tested: Gomafu in 45.4 times, NONMMUT033604.2 in 53.4 times, and NONMMUT064397.2 in 5.2 times. The results of the present study provide evidence that the mSPS model effectively induces PTSD-like behaviour in mice leading to a significant decrease in the expression level of Gomafu, NONMMUT033604.2 and NONMMUT064397.2 lncRNA in mice hippocampus. CONCLUSIONS This data provides evidence that the three studied lncRNAs could be potential biomarkers of PTSD development.
Collapse
Affiliation(s)
- Anastasiya Klimenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Vasyl Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Anastasiia Horlova
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Yulia Dobropolska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Ruslan Bogovik
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Dmytro Stroy
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| | - Victor Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
7
|
Wei Y, Lei J, Peng Y, Chang H, Luo T, Tang Y, Wang L, Wen H, Volpe G, Liu L, Han L. Expression characteristics and potential function of non-coding RNA in mouse cortical cells. Front Mol Neurosci 2024; 17:1365978. [PMID: 38660385 PMCID: PMC11040102 DOI: 10.3389/fnmol.2024.1365978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) play essential regulatory functions in various physiological and pathological processes in the brain. To systematically characterize the ncRNA profile in cortical cells, we downloaded single-cell SMART-Seq v4 data of mouse cerebral cortex. Our results revealed that the ncRNAs alone are sufficient to define the identity of most cortical cell types. We identified 1,600 ncRNAs that exhibited cell type specificity, even yielding to distinguish microglia from perivascular macrophages with ncRNA. Moreover, we characterized cortical layer and region specific ncRNAs, in line with the results by spatial transcriptome (ST) data. By constructing a co-expression network of ncRNAs and protein-coding genes, we predicted the function of ncRNAs. By integrating with genome-wide association studies data, we established associations between cell type-specific ncRNAs and traits related to neurological disorders. Collectively, our study identified differentially expressed ncRNAs at multiple levels and provided the valuable resource to explore the functions and dysfunctions of ncRNAs in cortical cells.
Collapse
Affiliation(s)
- Yanrong Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | | | - Yuanchun Tang
- BGI Research, Hangzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Huiying Wen
- BGI Research, Hangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS–Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Lei Han
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| |
Collapse
|
8
|
Espadas I, Wingfield JL, Nakahata Y, Chanda K, Grinman E, Ghosh I, Bauer KE, Raveendra B, Kiebler MA, Yasuda R, Rangaraju V, Puthanveettil S. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun 2024; 15:2694. [PMID: 38538603 PMCID: PMC10973417 DOI: 10.1038/s41467-024-46972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Karl E Bauer
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
9
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
10
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Wang D, Xie D, Zhang J, Cai B, Yang B, Zhou L, Huang X. Comprehensive analysis of the coding and non-coding RNA transcriptome expression profiles of hippocampus tissue in tx-J animal model of Wilson's disease. Sci Rep 2023; 13:9252. [PMID: 37286730 DOI: 10.1038/s41598-023-36503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder with a genetic basis. The predominant non-motor symptom of WD is cognitive dysfunction, although the specific genetic regulatory mechanism remains unclear. Tx-J mice, with an 82% sequence homology of the ATP7B gene to the human gene, are considered the most suitable model for WD. This study employs deep sequencing to investigate the differences in RNA transcript profiles, both coding and non-coding, as well as the functional characteristics of the regulatory network involved in WD cognitive impairment. The cognitive function of tx-J mice was evaluated using the Water Maze Test (WMT). Long non-coding RNA (lncRNA), circular RNA (circRNA), and messenger RNA (mRNA) profiles were analyzed in the hippocampal tissue of tx-J mice to identify differentially expressed RNAs (DE-RNAs). Subsequently, the DE-RNAs were used to construct protein-protein interaction (PPI) networks, as well as DE-circRNAs and lncRNAs-associated competing endogenous RNA (ceRNA) expression networks, and coding-noncoding co-expression (CNC) networks. To elucidate their biological functions and pathways, the PPI and ceRNA networks were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A total of 361 differentially expressed mRNAs (DE-mRNAs), comprising 193 up-regulated and 168 down-regulated mRNAs, 2627 differentially expressed long non-coding RNAs (DE-lncRNAs), consisting of 1270 up-regulated and 1357 down-regulated lncRNAs, and 99 differentially expressed circular RNAs (DE-circRNAs), consisting of 68 up-regulated and 31 down-regulated circRNAs, were observed in the tx-J mice group when compared to the control mice group. Gene Ontology (GO) and pathway analyses revealed that DE-mRNAs were enriched in cellular processes, calcium signaling pathways, and mRNA surveillance pathways. In contrast, the DE-circRNAs-associated competing endogenous RNA (ceRNA) network was enriched for covalent chromatin modification, histone modification, and axon guidance, whereas the DE-lncRNAs-associated ceRNA network was enriched for dendritic spine, regulation of cell morphogenesis involved in differentiation, and mRNA surveillance pathway. The study presented the expression profiles of lncRNA, circRNA, and mRNA in the hippocampal tissue of tx-J mice. Furthermore, the study constructed PPI, ceRNA, and CNC expression networks. The findings are significant in comprehending the function of regulatory genes in WD associated with cognitive impairment. These results also offer valuable information for the diagnosis and treatment of WD.
Collapse
Affiliation(s)
- Dan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, People's Republic of China
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China.
| | - Juan Zhang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, People's Republic of China
| | - Bo Yang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| | - Lei Zhou
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| | - Xiaofeng Huang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| |
Collapse
|
12
|
Espadas I, Wingfield J, Grinman E, Ghosh I, Chanda K, Nakahata Y, Bauer K, Raveendra B, Kiebler M, Yasuda R, Rangaraju V, Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. RESEARCH SQUARE 2023:rs.3.rs-2489387. [PMID: 36993323 PMCID: PMC10055528 DOI: 10.21203/rs.3.rs-2489387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute, Jupiter, FL, USA
| | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael Kiebler
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
13
|
Wang B, Jiang B, Li G, Dong F, Luo Z, Cai B, Wei M, Huang J, Wang K, Feng X, Tong F, Wang S, Wang Q, Han Q, Li C, Zhang X, Yang L, Bao L. Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch sensation in mice. EMBO Rep 2023; 24:e54313. [PMID: 36524339 PMCID: PMC9900349 DOI: 10.15252/embr.202154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Bowen Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Guo‐Wei Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Fei Dong
- Institute of Neuroscience and State Key Laboratory of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghaiChina
| | - Zheng Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Bing Cai
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Manyi Wei
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiansong Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Kaikai Wang
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xin Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Sashuang Wang
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Qiong Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Changlin Li
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- Research Unit of Pain, Chinese Academy of Medical Sciences, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
- Institute of Neuroscience and State Key Laboratory of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Research Unit of Pain, Chinese Academy of Medical Sciences, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
14
|
Identification of PAX6 and NFAT4 as the Transcriptional Regulators of the Long Noncoding RNA Mrhl in Neuronal Progenitors. Mol Cell Biol 2022; 42:e0003622. [PMID: 36317923 PMCID: PMC9670966 DOI: 10.1128/mcb.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The long noncoding RNA (lncRNA) Mrhl has been shown to be involved in coordinating meiotic commitment of mouse spermatogonial progenitors and differentiation events in mouse embryonic stem cells. Here, we characterized the interplay of Mrhl with lineage-specific transcription factors during mouse neuronal lineage development. Our results demonstrate that Mrhl is expressed in the neuronal progenitor populations in mouse embryonic brains and in retinoic acid-derived radial-glia-like neuronal progenitor cells. Depletion of Mrhl leads to early differentiation of neuronal progenitors to a more committed state. A master transcription factor, PAX6, directly binds to the Mrhl promoter at a major site in the distal promoter, located at 2.9 kb upstream of the transcription start site (TSS) of Mrhl. Furthermore, NFAT4 occupies the Mrhl-proximal promoter at two sites, at 437 base pairs (bp) and 143 bp upstream of the TSS. Independent knockdown studies for PAX6 and NFAT4 confirm that they regulate Mrhl expression in neuronal progenitors. We also show that PAX6 and NFAT4 associate with each other in the same chromatin complex. NFAT4 occupies the Mrhl promoter in PAX6-bound chromatin, implying possible coregulation of Mrhl. Our studies are crucial for understanding how lncRNAs are regulated by major lineage-specific transcription factors, in order to define specific development and differentiation events.
Collapse
|
15
|
Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: Potential therapeutic targets for psychiatric disorders? Pharmacol Ther 2022; 237:108254. [DOI: 10.1016/j.pharmthera.2022.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
|
16
|
Zakutansky PM, Feng Y. The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond. Cells 2022; 11:1949. [PMID: 35741078 PMCID: PMC9221589 DOI: 10.3390/cells11121949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropsychiatric diseases are among the most common brain developmental disorders, represented by schizophrenia (SZ). The complex multifactorial etiology of SZ remains poorly understood, which reflects genetic vulnerabilities and environmental risks that affect numerous genes and biological pathways. Besides the dysregulation of protein-coding genes, recent discoveries demonstrate that abnormalities associated with non-coding RNAs, including microRNAs and long non-coding RNAs (lncRNAs), also contribute to the pathogenesis of SZ. lncRNAs are an actively evolving family of non-coding RNAs that harbor greater than 200 nucleotides but do not encode for proteins. In general, lncRNA genes are poorly conserved. The large number of lncRNAs specifically expressed in the human brain, together with the genetic alterations and dysregulation of lncRNA genes in the SZ brain, suggests a critical role in normal cognitive function and the pathogenesis of neuropsychiatric diseases. A particular lncRNA of interest is GOMAFU, also known as MIAT and RNCR2. Growing evidence suggests the function of GOMAFU in governing neuronal development and its potential roles as a risk factor and biomarker for SZ, which will be reviewed in this article. Moreover, we discuss the potential mechanisms through which GOMAFU regulates molecular pathways, including its subcellular localization and interaction with RNA-binding proteins, and how interruption to GOMAFU pathways may contribute to the pathogenesis of SZ.
Collapse
Affiliation(s)
- Paul M. Zakutansky
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA;
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med 2022; 11:jcm11123319. [PMID: 35743389 PMCID: PMC9224922 DOI: 10.3390/jcm11123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Scientific efforts continue to concentrate on elucidating the complex molecular mechanisms underlying traumatic brain injury (TBI), and recent reports suggest that epigenetic regulation including long non-coding RNA (lncRNA) is involved. The present study aimed to investigate the plasma concentration of a long non-coding RNA, named growth arrest-specific 5 (GAS5), in a group of 45 patients with severe TBI (sTBI), and to analyze the correlations of GAS5 with TBI onset, injury severity, systemic inflammation, and early outcome of the patients. It was found that plasma GAS5 levels were substantially increased in sTBI patients compared with the relative controls (p < 0.001). Further, significantly higher expression of plasma GAS5 was observed in patients with a Glasgow Coma Scale (GCS) score of less than five (p = 0.002) or unfavorable outcome at discharge (p < 0.001). Circulating GAS5 expression had a negative correlation with GCS score (r = −0.406, p = 0.006), and positive correlations with white blood cell count (r = 0.473, p = 0.001), neutrophil count (r = 0.502, p < 0.001), and neutrophil/lymphocyte ratio (NLR) (r = 0.398, p = 0.007). Univariate and multivariate logistic regression analyses revealed that GCS score (OR = 0.318, 95% CI 0.132−0.767, p = 0.011) and GAS5 (OR = 2.771, 95% CI 1.025−7.494, p = 0.045) were the two independent predictors for early outcome of patients. The receiver operating characteristic (ROC) curves showed good prognostic values of GCS score (AUC = 0.856, 95% CI: 0.719−0.943) and GAS5 expression (AUC = 0.798, 95% CI: 0.651−0.903). Importantly, the combined use of them can improve the prognostic ability of TBI with an AUC of 0.895 (95% CI: 0.767−0.966). Collectively, our study indicated that the levels of lncRNA GAS5 in circulation were elevated following severe TBI and correlated well with injury severity and inflammatory parameters. In addition, GAS5 as well as GCS scores may have the potential to predict the early outcome of TBI patients.
Collapse
|
18
|
Liu Z, Wang J, Xu Q, Wu Z, You L, Hong Q, Zhu J, Chi X. Vitamin A supplementation ameliorates prenatal valproic acid-induced autism-like behaviors in rats. Neurotoxicology 2022; 91:155-165. [PMID: 35594946 DOI: 10.1016/j.neuro.2022.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive stereotyped behaviors. Prenatal exposure to the anticonvulsant drug valproic acid (VPA) is reported to induce ASD in human and ASD-like phenotypes in rodents. Unfortunately, the etiology and pathogenesis of ASD remains unclear. METHODS Pregnant rats received an intraperitoneal injection of 600 mg/kg VPA on E12.5 to construct the ASD rat model in offspring. The different expression of long non-coding RNA (lncRNA) and mRNA profiles in the hippocampus were determined by RNA sequencing to investigate potential mechanisms of VPA-induced ASD. Gene Ontology (GO) and pathway enrichment analysis were performed to predict the function of dysregulated lncRNAs. Co-expression network and real-time polymerase chain reaction (RT-PCR) analysis were conducted to validate the potential regulatory lncRNA-mRNA network. RESULTS VPA increased the total distance, time spent in the central zone and self-grooming (open field test) in rats. Meanwhile, VPA induced social impairment (three-chamber sociability test) and repetitive behaviors (marble burying test). A total of 238 lncRNAs and 354 mRNAs were differentially expressed in the VPA group. In addition, the dysregulated lncRNAs were involved in neural function and developmental processes of ASD. 5 lncRNAs and 7 mRNAs were differently expressed and included in the lncRNA-mRNA co-expression network. RT-PCR confirmed the upregulation of 4 lncRNAs and 6 mRNAs, and identified a potential regulatory network of NONRATT021475.2 (lncRNA) and Desert hedgehog (Dhh). Moreover, VPA decreased the serum vitamin A (VA) levels in offspring rats on postnatal day (PND) 21 and 49. Importantly, VA supplementation significantly restored VPA-induced autism-related behaviors and upregulation of NONRATT021475.2 and Dhh in the hippocampus of ASD rats. CONCLUSION This study not only contributed to understand the importance of lncRNAs and mRNAs in the progression of ASD, but also identified VA as a potential therapy for the condition. DATA AVAILABILITY The data that support the findings of this study are available from the corresponding author with reasonable request.
Collapse
Affiliation(s)
- Zhonghui Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Zhenggang Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China.
| |
Collapse
|
19
|
Jara E, Peñagaricano F, Armstrong E, Menezes C, Tardiz L, Rodons G, Iriarte A. Identification of Long Noncoding RNAs Involved in Eyelid Pigmentation of Hereford Cattle. Front Genet 2022; 13:864567. [PMID: 35601493 PMCID: PMC9114348 DOI: 10.3389/fgene.2022.864567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Several ocular pathologies in cattle, such as ocular squamous cell carcinoma and infectious keratoconjunctivitis, have been associated with low pigmentation of the eyelids. The main objective of this study was to analyze the transcriptome of eyelid skin in Hereford cattle using strand-specific RNA sequencing technology to characterize and identify long noncoding RNAs (lncRNAs). We compared the expression of lncRNAs between pigmented and unpigmented eyelids and analyzed the interaction of lncRNAs and putative target genes to reveal the genetic basis underlying eyelid pigmentation in cattle. We predicted 4,937 putative lncRNAs mapped to the bovine reference genome, enriching the catalog of lncRNAs in Bos taurus. We found 27 differentially expressed lncRNAs between pigmented and unpigmented eyelids, suggesting their involvement in eyelid pigmentation. In addition, we revealed potential links between some significant differentially expressed lncRNAs and target mRNAs involved in the immune response and pigmentation. Overall, this study expands the catalog of lncRNAs in cattle and contributes to a better understanding of the biology of eyelid pigmentation.
Collapse
Affiliation(s)
- Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Eileen Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Claudia Menezes
- Laboratorio de Endocrinología y Metabolismo Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Lucía Tardiz
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Gastón Rodons
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- *Correspondence: Andrés Iriarte,
| |
Collapse
|
20
|
Yang Z, Li X, Luo W, Wu Y, Tang T, Wang Y. The Involvement of Long Non-coding RNA and Messenger RNA Based Molecular Networks and Pathways in the Subacute Phase of Traumatic Brain Injury in Adult Mice. Front Neuroinform 2022; 16:794342. [PMID: 35311004 PMCID: PMC8931714 DOI: 10.3389/fninf.2022.794342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex injury with a multi-faceted recovery process. Long non-coding RNAs (lncRNAs) are demonstrated to be involved in central nervous system (CNS) disorders. However, the roles of lncRNAs in long-term neurological deficits post-TBI are poorly understood. The present study depicted the microarray’s lncRNA and messenger RNA (mRNA) profiles at 14 days in TBI mice hippocampi. LncRNA and mRNA microarray was used to identify differentially expressed genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the microarray results. Bioinformatics analysis [including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, lncRNA-mRNA co-expression network, and lncRNA-miRNA-mRNA network] were applied to explore the underlying mechanism. A total of 264 differentially expressed lncRNAs and 232 expressed mRNAs were identified (fold change > 1.5 and P-value < 0.05). Altered genes were enriched in inflammation, immune response, blood–brain barrier, glutamatergic neurological effects, and neuroactive ligand-receptor, which may be associated with TBI-induced pathophysiologic changes in the long-term neurological deficits. The lncRNAs-mRNAs co-expression network was generated for 74 lncRNA-mRNA pairs, most of which are positive correlations. The lncRNA-miRNA-mRNA interaction network included 12 lncRNAs, 59 miRNAs, and 25 mRNAs. Numerous significantly altered lncRNAs and mRNAs in mice hippocampi were enriched in inflammation and immune response. Furthermore, these dysregulated lncRNAs and mRNAs may be promising therapeutic targets to overcome obstacles in long-term recovery following TBI.
Collapse
Affiliation(s)
- Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Tao Tang,
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
21
|
Liu Y, Chen X, Che Y, Li H, Zhang Z, Peng W, Yang J. LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer’s Disease. Aging Dis 2022; 13:837-851. [PMID: 35656102 PMCID: PMC9116922 DOI: 10.14336/ad.2021.1119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a serious threat to the health and safety of the elderly population. It has become an emerging public health problem and a major economic and social burden. However, there is currently no effective treatment for AD. Although the mechanism of AD pathogenesis has been investigated substantially, the full range of molecular factors that contribute to its development remain largely unclear. In recent years, accumulating evidence has revealed that long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, play important roles in multiple biological processes involved in AD pathogenesis. With the further exploration of genomics, the role of lncRNA in the pathogenesis of AD has been phenotypically or mechanistically studied. Herein, we systematically review the current knowledge about lncRNAs implicated in AD and elaborate on their main regulatory pathways, which may contribute to the discovery of novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Xin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yutong Che
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Inter-disciplinary Research Center of Language Intelligence and Cultural Heritages, Hunan University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Yang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Nursing School, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
22
|
Joseph NF, Zucca A, Wingfield JL, Espadas I, Page D, Puthanveettil SV. Molecular motor KIF3B in the prelimbic cortex constrains the consolidation of contextual fear memory. Mol Brain 2021; 14:162. [PMID: 34749771 PMCID: PMC8573985 DOI: 10.1186/s13041-021-00873-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.
Collapse
Affiliation(s)
- Nadine F Joseph
- The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Aya Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Damon Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | |
Collapse
|
23
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
24
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
25
|
Jovčevska I, Videtič Paska A. Neuroepigenetics of psychiatric disorders: Focus on lncRNA. Neurochem Int 2021; 149:105140. [PMID: 34298078 DOI: 10.1016/j.neuint.2021.105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Understanding the pathology of psychiatric disorders is challenging due to their complexity and multifactorial origin. However, development of high-throughput technologies has allowed for better insight into their molecular signatures. Advancement of sequencing methodologies have made it possible to study not only the protein-coding but also the noncoding genome. It is now clear that besides the genetic component, different epigenetic mechanisms play major roles in the onset and development of psychiatric disorders. Among them, examining the role of long noncoding RNAs (lncRNAs) is a relatively new field. Here, we present an overview of what is currently known about the involvement of lncRNAs in schizophrenia, major depressive and bipolar disorders, as well as suicide. The diagnosis of psychiatric disorders mainly relies on clinical evaluation without using measurable biomarkers. In this regard, lncRNA may open new opportunities for development of molecular tests. However, so far only a small set of known lncRNAs have been characterized at molecular level, which means they have a long way to go before clinical implementation. Understanding how changes in lncRNAs affect the appearance and development of psychiatric disorders may lead to a more classified and objective diagnostic system, but also open up new therapeutic targets for these patients.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H, Wang D, Bi J, Xu S. Long Non-coding RNAs in Pathogenesis of Neurodegenerative Diseases. Front Cell Dev Biol 2021; 9:719247. [PMID: 34527672 PMCID: PMC8435612 DOI: 10.3389/fcell.2021.719247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence addresses the link between the aberrant epigenetic regulation of gene expression and numerous diseases including neurological disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). LncRNAs, a class of ncRNAs, have length of 200 nt or more, some of which crucially regulate a variety of biological processes such as epigenetic-mediated chromatin remodeling, mRNA stability, X-chromosome inactivation and imprinting. Aberrant regulation of the lncRNAs contributes to pathogenesis of many diseases, such as the neurological disorders at the transcriptional and post-transcriptional levels. In this review, we highlight the latest research progress on the contributions of some lncRNAs to the pathogenesis of neurodegenerative diseases via varied mechanisms, such as autophagy regulation, Aβ deposition, neuroinflammation, Tau phosphorylation and α-synuclein aggregation. Meanwhile, we also address the potential challenges on the lncRNAs-mediated epigenetic study to further understand the molecular mechanism of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Department of Nutrition, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Song
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Yang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dewei Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
27
|
Pant T, DiStefano JK, Logan S, Bosnjak ZJ. Emerging Role of Long Noncoding RNAs in Perioperative Neurocognitive Disorders and Anesthetic-Induced Developmental Neurotoxicity. Anesth Analg 2021; 132:1614-1625. [PMID: 33332892 DOI: 10.1213/ane.0000000000005317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Diabetes and Fibrotic Disease Unit, Translational Genomic Research Institute, Phoenix, Arizona
| | | | - Sara Logan
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
28
|
Policarpo R, Sierksma A, De Strooper B, d'Ydewalle C. From Junk to Function: LncRNAs in CNS Health and Disease. Front Mol Neurosci 2021; 14:714768. [PMID: 34349622 PMCID: PMC8327212 DOI: 10.3389/fnmol.2021.714768] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.
Collapse
Affiliation(s)
- Rafaela Policarpo
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| |
Collapse
|
29
|
Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu XA, Raveendra BL, Zucca A, Mediouni S, Sadhu A, Valente S, Page D, Miller K, Puthanveettil SV. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep 2021; 36:109369. [PMID: 34260917 PMCID: PMC8319835 DOI: 10.1016/j.celrep.2021.109369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/16/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yosef Avchalumov
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Eddie Grinman
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xin-An Liu
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Aya Zucca
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sonia Mediouni
- Department of Immunology and Microbiology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Abhishek Sadhu
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Susana Valente
- Department of Immunology and Microbiology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Damon Page
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kyle Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
30
|
Taghizadeh E, Gheibihayat SM, Taheri F, Afshani SM, Farahani N, Saberi A. LncRNAs as putative biomarkers and therapeutic targets for Parkinson's disease. Neurol Sci 2021; 42:4007-4015. [PMID: 34254198 DOI: 10.1007/s10072-021-05408-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is known as one of the most common degenerative disorders related to the damage of the central nervous system (CNS). This brain disorder is also characterized by the formation of Lewy bodies in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta (SNc), which consequently leads to motor and non-motor symptoms. With regard to the growing trend in the number of cases with PD and its effects on individuals, families, and communities, immediate treatments together with diagnostic methods are required. In this respect, long non-coding ribonucleic acids (lncRNAs) represent a large class of ncRNAs with more than 200 nucleotides in length, playing key roles in some important processes including gene expression, cell differentiation, genomic imprinting, apoptosis, and cell cycle. They are highly expressed in the CNS and previous studies have further reported that the expression profile of lncRNAs is disrupted in human diseases such as neurodegenerative disorders. Since the levels of some lncRNAs change over time in the brains of patients with PD, a number of previous studies have examined their potentials as biomarkers for this brain disorder. Therefore, the main purpose of this study was to review the advances in the related literature on lncRNAs as diagnostic, therapeutic, and prognostic biomarkers for PD.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Forough Taheri
- Islamic Azad University (Shahrekord Branch), Shahrekord, Iran
| | - Seyed Mohammadreza Afshani
- Department of Cardiology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
31
|
Puthanveettil S. The emerging RNA-centric world of neurobiology. RNA Biol 2021; 18:933-935. [PMID: 34142924 DOI: 10.1080/15476286.2021.1930367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
Mishra P, Kumar S. Association of lncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metab Brain Dis 2021; 36:849-858. [PMID: 33608830 DOI: 10.1007/s11011-021-00692-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
Schizophrenia is one of the most agonizing neurodegenerative diseases of the brain. Research undertaken to understand the molecular mechanism of this disease has undergone a transition and currently more emphasis is put on long noncoding RNA (lncRNA). High expression level of lncRNA in the brain contributes to several molecular pathways essential for the proper functioning of neurons, neurotransmitters, and synapses, that are often found dysfunctional in Schizophrenia. Recently, the association of lncRNA with various molecular factors in the brain has been explored to a considerably large extent. This review comprehends the significance of lncRNA in causing profound regulatory effect in the brain and how any alterations to the association of lncRNA with regulatory proteins, enzymes and other noncoding RNA could contribute to the aetiology of Schizophrenia.
Collapse
Affiliation(s)
- Parinita Mishra
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
33
|
Ciomborowska-Basheer J, Staszak K, Kubiak MR, Makałowska I. Not So Dead Genes-Retrocopies as Regulators of Their Disease-Related Progenitors and Hosts. Cells 2021; 10:cells10040912. [PMID: 33921034 PMCID: PMC8071448 DOI: 10.3390/cells10040912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Retroposition is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others. Here, we summarize recent findings related to lncRNAs originating from retrocopies that are involved in human diseases such as cancer and neurodegenerative, mental or cardiovascular disorders. Special attention is given to retrocopies that regulate their progenitors or host genes. Presented evidence from the literature and our bioinformatics analyses demonstrates that these retrocopies, often described as unimportant pseudogenes, are significant players in the cell’s molecular machinery.
Collapse
|
34
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
35
|
López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA 2021; 7:17. [PMID: 33668203 PMCID: PMC8006041 DOI: 10.3390/ncrna7010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian genome comprehends a small minority of genes that encode for proteins (barely 2% of the total genome in humans) and an immense majority of genes that are transcribed into RNA but not encoded for proteins (ncRNAs). These non-coding genes are intimately related to the expression regulation of protein-coding genes. The ncRNAs subtypes differ in their size, so there are long non-coding genes (lncRNAs) and other smaller ones, like microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs). Due to their important role in the maintenance of cellular functioning, any deregulation of the expression profiles of these ncRNAs can dissemble in the development of different types of diseases. Among them, we can highlight some of high incidence in the population, such as cancer, neurodegenerative, or cardiovascular disorders. In addition, thanks to the enormous advances in the field of medical genomics, these same ncRNAs are starting to be used as possible drugs, approved by the FDA, as an effective treatment for diseases.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Centre for Haematology, Immunology and Inflammation Department, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
36
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Banerjee B, Koner D, Karasik D, Saha N. Genome-wide identification of novel long non-coding RNAs and their possible roles in hypoxic zebrafish brain. Genomics 2020; 113:29-43. [PMID: 33264657 DOI: 10.1016/j.ygeno.2020.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023]
Abstract
Long non-coding RNAs (lncRNAs) are the master regulators of numerous biological processes. Hypoxia causes oxidative stress with severe and detrimental effects on brain function and acts as a critical initiating factor in the pathogenesis of Alzheimer's disease (AD). From the RNA-Seq in the forebrain (Fb), midbrain (Mb), and hindbrain (Hb) regions of hypoxic and normoxic zebrafish, we identified novel lncRNAs, whose potential cis targets showed involvement in neuronal development and differentiation pathways. Under hypoxia, several lncRNAs and mRNAs were differentially expressed. Co-expression studies indicated that the Fb and Hb regions' potential lncRNA target genes were involved in the AD pathogenesis. In contrast, those in Mb (cry1b, per1a, cipca) was responsible for regulating circadian rhythm. We identified specific lncRNAs present in the syntenic regions between zebrafish and humans, possibly functionally conserved. We thus identified several conserved lncRNAs as the probable regulators of AD genes (adrb3b, cav1, stat3, bace2, apoeb, psen1, s100b).
Collapse
Affiliation(s)
- Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - David Karasik
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
38
|
Ren D, Chen W, Cao K, Wang Z, Zheng P. Expression Profiles of Long Non-coding RNA and Messenger RNA in Human Traumatic Brain Injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:99-113. [PMID: 32919233 PMCID: PMC7493132 DOI: 10.1016/j.omtn.2020.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) play an important role in central nervous diseases; however, the exact expression and co-expressed profiles in human traumatic brain injury (TBI) are still unknown. Therefore, we investigated whole blood in 12 patients with TBI and 4 healthy controls to observe expression characteristics with different severity. We identified 3,035 lncRNAs and 1,204 mRNAs differentially expressed in the severe TBI group, 2,362 lncRNAs and 656 mRNAs in the moderate group, and 433 lncRNAs and 100 mRNAs in the mild group. Enrichment analyses showed 30 signaling pathways such as inflammatory and immune response pathways. Subsequently, a lncRNA-gene co-expression network was generated for 717 lncRNA-mRNA pairs and most of them with a positive correlation. Based on GSEA analysis, we found that TBI caused severe immune abnormality reflected on Th1, Th2, and Th17 cell differentiation deficiency. Finally, the expression of one upregulated and one downregulated lncRNA was validated in all three TBI groups, which was consistent with the microarray results. In summary, our results show that expression profiles of lncRNAs and mRNAs are significantly different in bloods from different severity TBI especially in immune response, providing novel insight for lncRNAs in human TBI.
Collapse
Affiliation(s)
- Dabin Ren
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai 200120, China
| | - Wei Chen
- Department of Neurosurgery, Shanghai East Hospital, Shanghai 200120, China
| | - Ke Cao
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai 200120, China
| | - Zhihan Wang
- Department of Neurosurgery, Pudong Hospital, Fudan University, Shanghai 200120, China
| | - Ping Zheng
- Department of Neurosurgery, Pudong New Area People's Hospital, Shanghai 200120, China.
| |
Collapse
|
39
|
Zhang S, You L, Xu Q, Ou J, Wu D, Yuan X, Liu Z, Hong Q, Tong M, Yang L, Chi X. Distinct long non-coding RNA and mRNA expression profiles in the hippocampus of an attention deficit hyperactivity disorder model in spontaneously hypertensive rats and control wistar Kyoto rats. Brain Res Bull 2020; 161:177-196. [DOI: 10.1016/j.brainresbull.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
40
|
Tian H, Guo F, Zhang Z, Ding H, Meng J, Li X, Peng Z, Wan S. Discovery, identification, and functional characterization of long noncoding RNAs in Arachis hypogaea L. BMC PLANT BIOLOGY 2020; 20:308. [PMID: 32615935 PMCID: PMC7330965 DOI: 10.1186/s12870-020-02510-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs), which are typically > 200 nt in length, are involved in numerous biological processes. Studies on lncRNAs in the cultivated peanut (Arachis hypogaea L.) largely remain unknown. RESULTS A genome-wide scan of the peanut (Arachis hypogaea L.) transcriptome identified 1442 lncRNAs, which were encoded by loci distributed over every chromosome. Long intergenic noncoding RNAs accounted for 85.58% of these lncRNAs. Additionally, 189 lncRNAs were differentially abundant in the root, leaf, or seed. Generally, lncRNAs showed lower expression levels, tighter tissue-specific expression, and less splicing than mRNAs. Approximately 44.17% of the lncRNAs with an exon/intron structure were alternatively spliced; this rate was slightly lower than the splicing rate of mRNA. Transcription at the start site event was the alternative splicing (AS) event with the highest frequency (28.05%) in peanut lncRNAs, whereas the occurrence rate (30.19%) of intron retention event was the highest in mRNAs. AS changed the target gene profiles of lncRNAs and increased the diversity and flexibility of lncRNAs, which may be important for lncRNAs to execute their functions. Additionally, a substantial number of the peanut AS isoforms generated from protein-encoding genes appeared to be noncoding because they were truncated transcripts; such isoforms can be legitimately regarded as a class of lncRNAs. The predicted target genes of the lncRNAs were involved in a wide range of biological processes. Furthermore, expression pattern of several selected lncRNAs and their target genes were examined under salt stress, results showed that all of them could respond to salt stress in different manners. CONCLUSIONS This study provided a resource of candidate lncRNAs and expression patterns across tissues, and whether these lncRNAs are functional will be further investigated in our subsequent experiments.
Collapse
Affiliation(s)
- Haiying Tian
- College of Life Science, Shandong University, Jinan, 250014 China
| | - Feng Guo
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Zhimeng Zhang
- Peanut Research Institute of Shandong, Qingdao, 266100 China
| | - Hong Ding
- Peanut Research Institute of Shandong, Qingdao, 266100 China
| | - Jingjing Meng
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Xinguo Li
- College of Life Science, Shandong University, Jinan, 250014 China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Zhenying Peng
- College of Life Science, Shandong University, Jinan, 250014 China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Shubo Wan
- College of Life Science, Shandong University, Jinan, 250014 China
- Shandong Academy of Agricultural Science, Jinan, 250014 China
| |
Collapse
|
41
|
Yang AC, Stevens MY, Chen MB, Lee DP, Stähli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L, Vest RT, Chaney A, Lehallier B, Olsson N, du Bois H, Hsieh R, Cropper HC, Berdnik D, Li L, Wang EY, Traber GM, Bertozzi CR, Luo J, Snyder MP, Elias JE, Quake SR, James ML, Wyss-Coray T. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 2020; 583:425-430. [PMID: 32612231 DOI: 10.1038/s41586-020-2453-z] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
The vascular interface of the brain, known as the blood-brain barrier (BBB), is understood to maintain brain function in part via its low transcellular permeability1-3. Yet, recent studies have demonstrated that brain ageing is sensitive to circulatory proteins4,5. Thus, it is unclear whether permeability to individually injected exogenous tracers-as is standard in BBB studies-fully represents blood-to-brain transport. Here we label hundreds of proteins constituting the mouse blood plasma proteome, and upon their systemic administration, study the BBB with its physiological ligand. We find that plasma proteins readily permeate the healthy brain parenchyma, with transport maintained by BBB-specific transcriptional programmes. Unlike IgG antibody, plasma protein uptake diminishes in the aged brain, driven by an age-related shift in transport from ligand-specific receptor-mediated to non-specific caveolar transcytosis. This age-related shift occurs alongside a specific loss of pericyte coverage. Pharmacological inhibition of the age-upregulated phosphatase ALPL, a predicted negative regulator of transport, enhances brain uptake of therapeutically relevant transferrin, transferrin receptor antibody and plasma. These findings reveal the extent of physiological protein transcytosis to the healthy brain, a mechanism of widespread BBB dysfunction with age and a strategy for enhanced drug delivery.
Collapse
Affiliation(s)
- Andrew C Yang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Y Stevens
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle B Chen
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Davis P Lee
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Stähli
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Winnie Chen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ryan T Vest
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Chemical Engineering, Stanford, CA, USA
| | - Aisling Chaney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Niclas Olsson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Haley du Bois
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan Hsieh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley C Cropper
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniela Berdnik
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lulin Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Y Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gavin M Traber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jian Luo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,Chan Zuckerberg Biohub, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- ChEM-H, Stanford University, Stanford, CA, USA. .,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Chemistry, Stanford University, Stanford, CA, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
42
|
Satoh Y, Takei N, Kawamura S, Takahashi N, Kotani T, Kimura AP. A novel testis-specific long noncoding RNA, Tesra, activates the Prss42/Tessp-2 gene during mouse spermatogenesis†. Biol Reprod 2020; 100:833-848. [PMID: 30379984 PMCID: PMC6437258 DOI: 10.1093/biolre/ioy230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
The progression of spermatogenesis is precisely controlled by meiotic stage-specific genes, but the molecular mechanism for activation of such genes is still elusive. Here we found a novel testis-specific long noncoding RNA (lncRNA), Tesra, that was specifically expressed in the mouse testis at the Prss/Tessp gene cluster on chromosome 9. Tesra was transcribed downstream of Prss44/Tessp-4, starting within the gene, as a 4435-nucleotide transcript and developmentally activated at a stage similar to that for Prss/Tessp genes. By in situ hybridization, Tesra was found to be localized in and around germ cells and Leydig cells, being consistent with biochemical data showing its existence in cytoplasmic, nuclear, and extracellular fractions. Based on the finding of more signals in nuclei of pachytene spermatocytes, we explored the possibility that Tesra plays a role in transcriptional activation of Prss/Tessp genes. By a ChIRP assay, the Tesra transcript was found to bind to the Prss42/Tessp-2 promoter region in testicular germ cells, and transient overexpression of Tesra significantly activated endogenous Prss42/Tessp-2 expression and increased Prss42/Tessp-2 promoter activity in a reporter construct. These findings suggest that Tesra activates the Prss42/Tessp-2 gene by binding to the promoter. Finally, we investigated whether Tesra co-functioned with enhancers adjacent to another lncRNA, lncRNA-HSVIII. In the Tet-on system, Tesra transcription significantly increased activity of one enhancer, but Tesra and the enhancer were not interdependent. Collectively, our results proposed a potential function of an lncRNA, Tesra, in transcriptional activation and suggest a novel relationship between an lncRNA and an enhancer.
Collapse
Affiliation(s)
- Yui Satoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Takei
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shohei Kawamura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Nobuhiko Takahashi
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Tomoya Kotani
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
Rusconi F, Battaglioli E, Venturin M. Psychiatric Disorders and lncRNAs: A Synaptic Match. Int J Mol Sci 2020; 21:ijms21093030. [PMID: 32344798 PMCID: PMC7246907 DOI: 10.3390/ijms21093030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders represent a heterogeneous class of multifactorial mental diseases whose origin entails a pathogenic integration of genetic and environmental influences. Incidence of these pathologies is dangerously high, as more than 20% of the Western population is affected. Despite the diverse origins of specific molecular dysfunctions, these pathologies entail disruption of fine synaptic regulation, which is fundamental to behavioral adaptation to the environment. The synapses, as functional units of cognition, represent major evolutionary targets. Consistently, fine synaptic tuning occurs at several levels, involving a novel class of molecular regulators known as long non-coding RNAs (lncRNAs). Non-coding RNAs operate mainly in mammals as epigenetic modifiers and enhancers of proteome diversity. The prominent evolutionary expansion of the gene number of lncRNAs in mammals, particularly in primates and humans, and their preferential neuronal expression does represent a driving force that enhanced the layering of synaptic control mechanisms. In the last few years, remarkable alterations of the expression of lncRNAs have been reported in psychiatric conditions such as schizophrenia, autism, and depression, suggesting unprecedented mechanistic insights into disruption of fine synaptic tuning underlying severe behavioral manifestations of psychosis. In this review, we integrate literature data from rodent pathological models and human evidence that proposes the biology of lncRNAs as a promising field of neuropsychiatric investigation.
Collapse
Affiliation(s)
- Francesco Rusconi
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| | | | - Marco Venturin
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| |
Collapse
|
44
|
Kovalenko IL, Galyamina AG, Smagin DA, Kudryavtseva NN. Co-expression of glutamatergic and autism-related genes in the hippocampus of male mice with disturbances of social behavior. Vavilovskii Zhurnal Genet Selektsii 2020; 24:191-199. [PMID: 33659799 PMCID: PMC7716547 DOI: 10.18699/vj20.42-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
В настоящее время существует представление о вовлеченности глутаматергической системы (ГГ)
в механизмы развития аутизма. В предыдущих исследованиях нами было показано, что негативный социальный опыт, приобретенный в ежедневных межсамцовых конфронтациях, приводит к нарушениям в социальном
поведении: снижению коммуникативности, нарушению социализации, появлению стереотипных форм поведения, которые могут рассматриваться как симптомы аутистического спектра. В связи с этим целью нашей работы было изучение с помощью транскриптомного анализа изменений экспрессии генов, кодирующих белки,
вовлеченные в функционирование глутаматергической системы, и генов, связанных с патологией аутизма (ГА),
в гиппокампе. В эксперименте использовали животных с нарушениями социального поведения, вызванными
повторным опытом социальных побед или поражений в ежедневных агонистических взаимодействиях. Для
формирования групп животных с контрастными типами поведения использовали модель сенсорного контакта
(хронического социального стресса). Полученные образцы мозга были секвенированы в ЗАО «Геноаналитика»
(http://genoanalytica.ru/, Россия, Москва). Транскриптомный анализ показал, что у агрессивных животных снижается экспрессия генов Shank3, Auts2, Ctnnd2, Nrxn2, для которых показано участие в развитии аутизма, а также глутаматергического гена Grm4. В то же время у животных с негативным социальным опытом экспрессия ГА Shank2,
Nlgn2, Ptcdh10, Reln, Arx возрастает. При этом ГГ (Grik3, Grm2, Grm4, Slc17a7, Slc1a4, Slc25a22), за исключением гена
Grin2a, повышают свою экспрессию. Корреляционный анализ выявил статистически значимую взаимосвязь
из-
мененной экспрессии ГГ и ГА. Полученные результаты, с одной стороны, могут служить подтверждением участия
ГГ в патофизиологии развития симптомов аутистического спектра, с другой – свидетельствовать о коэкспрессии
ГГ и ГА в гиппокампе, развивающейся под влиянием социальной среды. Так как большинство ГА, изменивших
экспрессию в настоящем исследовании, являются генами, связанными с клеточным скелетом и внеклеточным
матриксом, в частности участвующими в формировании синапсов, а ГГ, изменившие свою экспрессию, – генами,
кодирующими субъединицы рецепторов, то можно предположить, что вовлечение ГГ в патофизиологию аутизма происходит на уровне рецепторов.
Collapse
Affiliation(s)
- I. L. Kovalenko
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - A. G. Galyamina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - D. A. Smagin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - N. N. Kudryavtseva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
45
|
Wang Y, Luo Y, Yao Y, Ji Y, Feng L, Du F, Zheng X, Tao T, Zhai X, Li Y, Han P, Xu B, Zhao H. Silencing the lncRNA Maclpil in pro-inflammatory macrophages attenuates acute experimental ischemic stroke via LCP1 in mice. J Cereb Blood Flow Metab 2020; 40:747-759. [PMID: 30895879 PMCID: PMC7168792 DOI: 10.1177/0271678x19836118] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNA) expression profiles change in the ischemic brain after stroke, but their roles in specific cell types after stroke have not been studied. We tested the hypothesis that lncRNA modulates brain injury by altering macrophage functions. Using RNA deep sequencing, we identified 73 lncRNAs that were differentially expressed in monocyte-derived macrophages (MoDMs) and microglia-derived macrophages (MiDMs) isolated in the ischemic brain three days after stroke. Among these, the lncRNA, GM15628, is highly expressed in pro-inflammatory MoDMs but not in MiDMs, and are functionally related to its neighbor gene, lymphocyte cytosolic protein 1 (LCP1), which plays a role in maintaining cell shape and cell migration. We termed this lncRNA as Macrophage contained LCP1 related pro-inflammatory lncRNA, Maclpil. Using cultured macrophages polarized by LPS, M(LPS), we found that downregulation of Maclpil in M(LPS) decreased pro-inflammatory gene expression while promoting anti-inflammatory gene expression. Maclpil inhibition also reduced the migration and phagocytosis ability of MoDMs by inhibiting LCP1. Furthermore, adoptive transfer of Maclpil silenced M(LPS), reduced ischemic brain infarction, improved behavioral performance and attenuated penetration of MoDMs in the ischemic hemisphere. We conclude that by blocking macrophage, Maclpil protects against acute ischemic stroke by inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ying Luo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Yao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhua Ji
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Liangshu Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Fang Du
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoya Zheng
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tao Tao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuan Zhai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yaning Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Pei Han
- Department of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Wang J, Koganti PP, Yao J. Systematic identification of long intergenic non-coding RNAs expressed in bovine oocytes. Reprod Biol Endocrinol 2020; 18:13. [PMID: 32085734 PMCID: PMC7035783 DOI: 10.1186/s12958-020-00573-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are key regulators of diverse cellular processes. Although a number of studies have reported the identification of bovine lncRNAs across many tissues, very little is known about the identity and characteristics of lncRNAs in bovine oocytes. METHODS A bovine oocyte cDNA library was constructed and sequenced using the Illumina HiSeq 2000 sequencing system. The oocyte transcriptome was constructed using the ab initio assembly software Scripture and Cufflinks. The assembled transcripts were categorized to identify the novel intergenic transcripts, and the coding potential of these novel transcripts was assessed using CPAT and PhyloCSF. The resulting candidate long intergenic non-coding RNAs (lincRNAs) transcripts were further evaluated to determine if any of them contain any known protein coding domains in the Pfam database. RT-PCR was used to analyze the expression of oocyte-expressed lincRNAs in various bovine tissues. RESULTS A total of 85 million raw reads were generated from sequencing of the bovine oocyte library. Transcriptome reconstruction resulted in the assembly of a total of 42,396 transcripts from 37,678 genomic loci. Analysis of the assembled transcripts using the step-wide pipeline resulted in the identification of 1535 oocyte lincRNAs corresponding to 1183 putative non-coding genes. A comparison of the oocyte lincRNAs with the lncRNAs reported in other bovine tissues indicated that 970 of the 1535 oocyte lincRNAs appear to be unique to bovine oocytes. RT-PCR analysis of 5 selected lincRNAs showed either specific or predominant expression of 4 lincRNAs in the fetal ovary. Functional prediction of the oocyte-expressed lincRNAs suggested their involvement in oogenesis through regulating their neighboring protein-coding genes. CONCLUSIONS This study provides a starting point for future research aimed at understanding the roles of lncRNAs in controlling oocyte development and early embryogenesis in cattle.
Collapse
Affiliation(s)
- Jian Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Prasanthi P Koganti
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
47
|
Yoshino Y, Dwivedi Y. Non-Coding RNAs in Psychiatric Disorders and Suicidal Behavior. Front Psychiatry 2020; 11:543893. [PMID: 33101077 PMCID: PMC7522197 DOI: 10.3389/fpsyt.2020.543893] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
It is well known that only a small proportion of the human genome code for proteins; the rest belong to the family of RNAs that do not code for protein and are known as non-coding RNAs (ncRNAs). ncRNAs are further divided into two subclasses based on size: 1) long non-coding RNAs (lncRNAs; >200 nucleotides) and 2) small RNAs (<200 nucleotides). Small RNAs contain various family members that include microRNAs (miRNAs), small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and small nuclear RNAs (snRNAs). The roles of ncRNAs, especially lncRNAs and miRNAs, are well documented in brain development, homeostasis, stress responses, and neural plasticity. It has also been reported that ncRNAs can influence the development of psychiatric disorders including schizophrenia, major depressive disorder, and bipolar disorder. More recently, their roles are being investigated in suicidal behavior. In this article, we have comprehensively reviewed the findings of lncRNA and miRNA expression changes and their functions in various psychiatric disorders including suicidal behavior. We primarily focused on studies that have been done in postmortem human brain. In addition, we have briefly reviewed the role of other small RNAs (e.g. piwiRNA, siRNA, snRNA, and snoRNAs) and their expression changes in psychiatric illnesses.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
48
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
49
|
The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med 2019; 70:127-140. [DOI: 10.1016/j.mam.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
|
50
|
Wu Y, Gong Y, Luan Y, Li Y, Liu J, Yue Z, Yuan B, Sun J, Xie C, Li L, Zhen J, Jin X, Zheng Y, Wang X, Xie L, Wang W. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer's disease. FASEB J 2019; 34:1412-1429. [PMID: 31914599 DOI: 10.1096/fj.201901984r] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Accumulation of amyloid β (Aβ) peptide, inflammation, and oxidative stress contribute to Alzheimer's disease (AD) and trigger complex pathogenesis. The ketone body β-hydroxybutyrate (BHBA) is an endogenous metabolic intermediate that protects against stroke and neurodegenerative diseases, but the underlying mechanisms are unclear. The present study aims to elucidate the protective effects of BHBA in the early stage of AD model and investigate the underlying molecular mechanisms. Three-and-half-month-old double-transgenic mice (5XFAD) overexpressing β-amyloid precursor protein (APP) and presenilin-1 (PS1) were used as the AD model. The 5XFAD mice received 1.5 mmol/kg/d BHBA subcutaneously for 28 days. Morris water maze test, nest construction, and passive avoidance experiments were performed to assess the therapeutic effects on AD prevention in vivo, and brain pathology of 5XFAD mice including amyloid plaque deposition and microglia activation were assessed. Gene expression profiles in the cortexes of 5XFAD- and BHBA-treated 5XFAD mice were performed with high-throughput sequencing and bioinformatic analysis. Mouse HT22 cells were treated with 2 mM BHBA to explore its in vitro protective effects of BHBA on hippocampal neurons against Aβ oligomer toxicity, ATP production, ROS generation, and mitochondrial aerobic respiratory function. APP, BACE1, and neprilysin (NEP) expression levels were evaluated in HT22 cells following treatment with BHBA by measuring the presence or absence of G protein-coupled receptor 109A (GPR109A). BHBA improved cognitive function of 5XFAD mice in Morris water maze test, nesting construction and passive avoidance experiments, and attenuated Aβ accumulation and microglia overactivation in the brain. BHBA also enhanced mitochondrial respiratory function of hippocampal neurons and protected it from Aβ toxicity. The enzymes, APP and NEP were regulated by BHBA via G-protein-coupled receptor 109A (GPR109A). Furthermore, RNA sequencing revealed that BHBA-regulated genes mainly annotated in aging, immune system, nervous system, and neurodegenerative diseases. Our data suggested that BHBA confers protection against the AD-like pathological events in the AD mouse model by targeting multiple aspects of AD and it may become a promising candidate for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yancheng Wu
- Innovative Institute of Animal Healthy Breeding, Key Laboratory of Waterfowl Healthy Breeding of Guangdong Province, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China.,College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yuhong Gong
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yongxin Luan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Yang Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zitong Yue
- Changchun Jida Middle School Experimental School, Changchun, P.R. China
| | - Boyu Yuan
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Jingxuan Sun
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Changxin Xie
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Lijuan Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China.,The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Junli Zhen
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Xinxin Jin
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yan Zheng
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Xiaomin Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, P.R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, Key Laboratory of Waterfowl Healthy Breeding of Guangdong Province, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China.,College of Veterinary Medicine, Jilin University, Changchun, P.R. China.,Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| |
Collapse
|