1
|
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng F, Lei Y, Tan Y, Zhu Y, Wang Y, Wang Y, Yu FX. WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT. Cell Death Dis 2023; 14:491. [PMID: 37528078 PMCID: PMC10394084 DOI: 10.1038/s41419-023-06020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
WWC1 regulates episodic learning and memory, and genetic nucleotide polymorphism of WWC1 is associated with neurodegenerative diseases such as Alzheimer's disease. However, the molecular mechanism through which WWC1 regulates neuronal function has not been fully elucidated. Here, we show that WWC1 and its paralogs (WWC2/3) bind directly to angiomotin (AMOT) family proteins (Motins), and recruit USP9X to deubiquitinate and stabilize Motins. Deletion of WWC genes in different cell types leads to reduced protein levels of Motins. In mice, neuron-specific deletion of Wwc1 and Wwc2 results in reduced expression of Motins and lower density of dendritic spines in the cortex and hippocampus, in association with impaired cognitive functions such as memory and learning. Interestingly, ectopic expression of AMOT partially rescues the neuronal phenotypes associated with Wwc1/2 deletion. Thus, WWC proteins modulate spinogenesis and cognition, at least in part, by regulating the protein stability of Motins.
Collapse
Affiliation(s)
- Runyi Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China.
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Datta A, Sarmah D, Kaur H, Chaudhary A, Vadak N, Borah A, Shah S, Wang X, Bhattacharya P. Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cell Mol Neurobiol 2023; 43:1019-1035. [PMID: 35751791 PMCID: PMC11414438 DOI: 10.1007/s10571-022-01242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Neurological disorders have complicated pathophysiology that may involve several genetic mutations. Conventional treatment has limitations as they only treat apparent symptoms. Although, personalized medicine is emerging as a promising neuro-intervention, lack of precision is the major pitfall. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is evolving as a technological platform that may overcome the therapeutic limitations towards precision medicine. In the future, targeting genes in neurological disorders may be the mainstay of modern therapy. The present review on CRISPR/Cas9 and its application in various neurological disorders may provide a platform for its future clinical relevance towards developing precise and personalized medicine.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Antra Chaudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Namrata Vadak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sudhir Shah
- Department of Neurology, SVPIMSR and NHL Municipal Medical College & Sterling Hospital, Ahmedabad, Gujarat, 380006, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
4
|
Jiao Z, He Z, Liu N, Lai Y, Zhong T. Multiple roles of neuronal extracellular vesicles in neurological disorders. Front Cell Neurosci 2022; 16:979856. [PMID: 36204449 PMCID: PMC9530318 DOI: 10.3389/fncel.2022.979856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathy is a growing public health problem in the aging, adolescent, and sport-playing populations, and the number of individuals at risk of neuropathy is growing; its risks include aging, violence, and conflicts between players. The signal pathways underlying neuronal aging and damage remain incompletely understood and evidence-based treatment for patients with neuropathy is insufficiently delivered; these are two of the reasons that explain why neuropathy is still not completely curable and why the progression of the disease cannot be inhibited. Extracellular vesicles (EVs) shuttling is an important pathway in disease progression. Previous studies have focused on the EVs of cells that support and protect neurons, such as astrocytes and microglia. This review aims to address the role of neuronal EVs by delineating updated mechanisms of neuronal damage and summarizing recent findings on the function of neuronal EVs. Challenges and obstacles in isolating and analyzing neuronal EVs are discussed, with an emphasis on neuron as research object and modification of EVs on translational medicine.
Collapse
Affiliation(s)
- Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Branch of National Geriatric Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Zhigang Jiao,
| | - Zhengyi He
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Nanhai Liu
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanwei Lai
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
5
|
Song L, Han X, Li Y, Han X, Zhao M, Li C, Wang P, Wang J, Dong Y, Cong L, Han X, Hou T, Liu K, Wang Y, Qiu C, Du Y. Thalamic gray matter volume mediates the association between KIBRA polymorphism and olfactory function among older adults: a population-based study. Cereb Cortex 2022; 33:3664-3673. [PMID: 35972417 PMCID: PMC10068283 DOI: 10.1093/cercor/bhac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
The kidney and brain expressed protein (KIBRA) rs17070145 polymorphism is associated with both structure and activation of the olfactory cortex. However, no studies have thus far examined whether KIBRA can be linked with olfactory function and whether brain structure plays any role in the association. We addressed these questions in a population-based cross-sectional study among rural-dwelling older adults. This study included 1087 participants derived from the Multidomain Interventions to Delay Dementia and Disability in Rural China, who underwent the brain MRI scans in August 2018 to October 2020; of these, 1016 took the 16-item Sniffin' Sticks identification test and 634 (62.40%) were defined with olfactory impairment (OI). Data were analyzed using the voxel-based morphometry analysis and general linear, logistic, and structural equation models. The KIBRA rs17070145 C-allele (CC or CT vs. TT genotype) was significantly associated with greater gray matter volume (GMV) mainly in the bilateral orbitofrontal cortex and left thalamus (P < 0.05) and with the multi-adjusted odds ratio of 0.73 (95% confidence interval 0.56-0.95) for OI. The left thalamic GMV could mediate 8.08% of the KIBRA-olfaction association (P < 0.05). These data suggest that the KIBRA rs17070145 C-allele is associated with a reduced likelihood of OI among older adults, partly mediated through left thalamic GMV.
Collapse
Affiliation(s)
- Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Xiaodong Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yuanjing Li
- Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, 17177 Stockholm, Sweden
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China
| | - Chunyan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China
| | - Pin Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Jiafeng Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China.,Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, 17177 Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| |
Collapse
|
6
|
Han X, Wang C, Song L, Wang X, Tang S, Hou T, Liu C, Liang X, Qiu C, Wang Y, Du Y. KIBRA regulates amyloid β metabolism by controlling extracellular vesicles secretion. EBioMedicine 2022; 78:103980. [PMID: 35367771 PMCID: PMC8983338 DOI: 10.1016/j.ebiom.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous research has revealed that KIBRA controls secretion of extracellular vesicles (EVs) by inhibiting the proteasomal degradation of Rab27a and EVs play an important role in amyloid β (Aβ) metabolism and transmission during Alzheimer's disease (AD) pathogenesis. Here, we further test the hypothesis that KIBRA regulates Aβ metabolism via the endosomal-lysosomal system. Methods We generated KIBRA knockout mice on a 5XFAD background and KIBRA knockdown cells in murine HT22 cells with stably overexpressing APP. Various forms of Aβ and quantification of EVs were analyzed by biochemical methods and nanoparticle tracking analysis, respectively. Multivesicular bodies (MVBs) were visualized by electron microscopy and confocal fluorescent microscopy. In a population-based cohort (n = 1419), KIBRA genotypes and plasma Aβ levels were analyzed using multiple-PCR amplification and Simoa, respectively. Findings Multiple forms of Aβ were dramatically attenuated in KIBRA knockout mouse brain, including monomers, oligomers, and extracellular deposition, but KIBRA knockout had no effect on intraneuronal APP C-terminal fragment β (APP-CTFβ)/Aβ levels. KIBRA depletion also decreased APP-CTFβ/Aβ-associated EVs secretion and subsequently enhanced MVBs number. Furthermore, we found that excessive accumulation of MVBs harboring APP-CTFβ/Aβ promoted the MVBs-lysosome fusion for degradation and inhibition of lysosomal function rescued secretion of APP-CTFβ/Aβ-associated EVs. More importantly, whole exon sequencing of KIBRA in a large population-based cohort identified the association of KIBRA rs28421695 polymorphism with plasma Aβ levels. Interpretation These results demonstrate that KIBRA regulates Aβ metabolism via controlling the secretion of APP-CTFβ/Aβ-associated EVs. Funding National Key R&D Program of China, and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Chaoqun Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Xiaojie Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| |
Collapse
|
7
|
Terrelonge M, LaHue SC, Tang C, Movsesyan I, Pullinger CR, Dubal DB, Leung J, Douglas VC. KIBRA, MTNR1B, and FKBP5 genotypes are associated with decreased odds of incident delirium in elderly post-surgical patients. Sci Rep 2022; 12:556. [PMID: 35017578 PMCID: PMC8752781 DOI: 10.1038/s41598-021-04416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the association between cognitive impairment and delirium, little is known about whether genetic differences that confer cognitive resilience also confer resistance to delirium. To investigate whether older adults without postoperative delirium, compared with those with postoperative delirium, are more likely to have specific single nucleotide polymorphisms (SNPs) in the FKBP5, KIBRA, KLOTHO, MTNR1B, and SIRT1 genes known to be associated with cognition or delirium. This prospective nested matched exploratory case-control study included 94 older adults who underwent orthopedic surgery and screened for postoperative delirium. Forty-seven subjects had incident delirium, and 47 age-matched controls were not delirious. The primary study outcome was genotype frequency for the five SNPs. Compared with participants with delirium, those without delirium had higher adjusted odds of KIBRA SNP rs17070145 CT/TT [vs. CC; adjusted odds ratio (aOR) 2.80, 95% confidence interval (CI) 1.03, 7.54; p = 0.04] and MTNR1B SNP rs10830963 CG/GG (vs. CC; aOR 4.14, 95% CI 1.36, 12.59; p = 0.01). FKBP5 SNP rs1360780 CT/TT (vs. CC) demonstrated borderline increased adjusted odds of not developing delirium (aOR 2.51, 95% CI 1.00, 7.34; p = 0.05). Our results highlight the relevance of KIBRA, MTNR1B, and FKBP5 in understanding the complex relationship between delirium, cognition, and sleep, which warrant further study in larger, more diverse populations.
Collapse
Affiliation(s)
- Mark Terrelonge
- Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sara C LaHue
- Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Christopher Tang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Dena B Dubal
- Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jacqueline Leung
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Vanja C Douglas
- Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Lu L, Yu X, Cai Y, Sun M, Yang H. Application of CRISPR/Cas9 in Alzheimer's Disease. Front Neurosci 2021; 15:803894. [PMID: 34992519 PMCID: PMC8724030 DOI: 10.3389/fnins.2021.803894] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder clinically characterized by cognitive impairment, abnormal behavior, and social deficits, which is intimately linked with excessive β-amyloid (Aβ) protein deposition along with many other misfolded proteins, neurofibrillary tangles formed by hyperphosphorylated tau protein aggregates, and mitochondrial damage in neurons, leading to neuron loss. Currently, research on the pathological mechanism of AD has been elucidated for decades, still no effective treatment for this complex disease was developed, and the existing therapeutic strategies are extremely erratic, thereby leading to irreversible and progressive cognitive decline in AD patients. Due to gradually mental dyscapacitating of AD patients, AD not only brings serious physical and psychological suffering to patients themselves, but also imposes huge economic burdens on family and society. Accordingly, it is very imperative to recapitulate the progress of gene editing-based precision medicine in the emerging fields. In this review, we will mainly focus on the application of CRISPR/Cas9 technique in the fields of AD research and gene therapy, and summarize the application of CRISPR/Cas9 in the aspects of AD model construction, screening of pathogenic genes, and target therapy. Finally, the development of delivery systems, which is a major challenge that hinders the clinical application of CRISPR/Cas9 technology will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Chen D, Yu W, Aitken L, Gunn-Moore F. Willin/FRMD6: A Multi-Functional Neuronal Protein Associated with Alzheimer's Disease. Cells 2021; 10:cells10113024. [PMID: 34831245 PMCID: PMC8616527 DOI: 10.3390/cells10113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The FERM domain-containing protein 6 (FRMD6), also known as Willin, is an upstream regulator of Hippo signaling that has recently been shown to modulate actin cytoskeleton dynamics and mechanical phenotype of neuronal cells through ERK signaling. Physiological functions of Willin/FRMD6 in the nervous system include neuronal differentiation, myelination, nerve injury repair, and vesicle exocytosis. The newly established neuronal role of Willin/FRMD6 is of particular interest given the mounting evidence suggesting a role for Willin/FRMD6 in Alzheimer's disease (AD), including a series of genome wide association studies that position Willin/FRMD6 as a novel AD risk gene. Here we describe recent findings regarding the role of Willin/FRMD6 in the nervous system and its actions in cellular perturbations related to the pathogenesis of AD.
Collapse
|
10
|
Zhu M, Jia L, Li F, Jia J. Identification of KIAA0513 and Other Hub Genes Associated With Alzheimer Disease Using Weighted Gene Coexpression Network Analysis. Front Genet 2020; 11:981. [PMID: 33005179 PMCID: PMC7483929 DOI: 10.3389/fgene.2020.00981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) is the most common cause of dementia and creates a significant burden on society. As a result, the investigation of hub genes for the discovery of potential therapeutic targets and candidate biomarkers is warranted. In this study, we used the ComBat method to merge three gene expression datasets of AD from the Gene Expression Omnibus (GEO). During combined analysis, we identified 850 differentially expressed genes (DEGs) from the temporal cortex of AD and cognitively normal (CN) samples. We performed weighted gene coexpression network analysis to build gene coexpression networks incorporating these DEGs to identify key modules and hub genes. We found one module most strongly correlated with AD onset as the key module and 19 hub genes in the key module that were down-regulated in AD brains. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, DEGs were mostly enriched in synapse function, and genes in the key module were mostly related to learning and memory. We selected five little-studied genes, AP3B2, GABRD, GPR158, KIAA0513, and MAL2, to validate their expression in AD mouse model by performing quantitative real-time polymerase chain reaction. We found that all of them were down-regulated in cortices of 8-month 5xFAD mice compared to those of wild-type mice. We then further investigated their correlations with β-secretase activity and Aβ42 levels in AD samples of different Braak stages. We found that all five hub genes had significant negative associations with β-secretase activity and that AP3B2 and KIAA0513 had significant negative associations with Aβ42 levels. We tested the differential expressions of the five hub genes in two AD GEO datasets from the blood and found that KIAA0513 was significantly up-regulated in patients with both mild cognitive impairment (MCI) and AD and was able to differentiate MCI and AD from CN in the two datasets. In conclusion, these five novel vulnerable genes were involved in AD progression, and KIAA0513 was a promising candidate biomarker for early diagnosis of AD.
Collapse
Affiliation(s)
- Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
11
|
Jiang W, Peng A, Chen Y, Pang B, Zhang Z. Long non‑coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR‑204‑5p and regulating TMPRSS3 expression. Int J Mol Med 2020; 45:1851-1863. [PMID: 32186779 PMCID: PMC7169660 DOI: 10.3892/ijmm.2020.4545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the major leading causes of hearing impairment, and is typically characterized by the degeneration of spiral ganglion neurons (SGNs). In previous studies by the authors, it was demonstrated that microRNA (miRNA or miR)-204-5p decreased the viability of SGNs by inhibiting the expression of transmembrane protease, serine 3 (TMPRSS3), which was closely associated with the development of SGNs. However, the upstream regulatory mechanism of miR-204-5p was not fully elucidated. The present study found that an important upstream regulatory factor of miR-204-5p, long non-coding RNA (lncRNA) EBLN3P, was expressed at low levels in impaired SGNs, whereas it was expressed at high levels in normal SGNs. Mechanistic analyses demonstrated that lncRNA EBLN3P functioned as a competing endogenous RNA (ceRNA) when regulating miR-204-5p in normal SGNs. In addition, lncRNA EBLN3P regulated TMPRSS3 expression via the regulation of miR-204-5p in normal SGNs. In vitro functional analysis revealed that lncRNA EBLN3P promoted the recovery of the viability of normal SGNs and inhibited the apoptosis of normal SGNs. Finally, the results revealed a recovery-promoting effect of lncRNA EBLN3P on the structure and function of impaired SGNs in models of deafness. On the whole, the findings of the present study demonstrate that lncRNA EBLN3P promotes the recovery of the function of impaired SGNs by competitively binding to miR-204-5p and regulating TMPRSS3 expression. This suggests that lncRNA EBLN3P may be a potential therapeutic target for diseases involving SNHL.
Collapse
Affiliation(s)
- Wenqi Jiang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Anquan Peng
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yichao Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bo Pang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiwen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
12
|
Yin Q, Ji X, Lv R, Pei JJ, Du Y, Shen C, Hou X. Targetting Exosomes as a New Biomarker and Therapeutic Approach for Alzheimer's Disease. Clin Interv Aging 2020; 15:195-205. [PMID: 32103922 PMCID: PMC7025655 DOI: 10.2147/cia.s240400] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that mainly occurs in old age and involves progressive cognitive impairment. AD has become a major global issue for public health, with approximately 24 million people currently affected by the disease. Estimates indicted that this number will quadruple by 2050. Because of the high incidence of AD, there is an urgent need to develop new strategies to diagnose and treat AD. Many recent studies have indicated the multiple, yet somewhat controversial, roles of exosomes in AD. Although the underlying mechanisms by which exosomes play a role in AD are still unknown, current evidence suggests that exosomes can carry and spread toxic amyloid-beta, and hyperphosphorylated tau, between cells, and then induce apoptosis, thus contributing to the loss of neurons. In addition, exosomes appear to possess the ability to reduce brain amyloid-beta, and tau hyperphosphorylation, and transfer neuroprotective substances between neural cells. The accumulating data brings hope that the application of exosomes may be helpful for early diagnostics and the identification of new therapeutic targets for AD. Here, we summarized the various roles of exosomes, and how they might relate to the pathogenesis of AD. We also highlight the potential application of exosomes as a therapeutic option in AD therapy.
Collapse
Affiliation(s)
- Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xiaojuan Ji
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, People's Republic of China
| | - Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Jin-Jing Pei
- Stress Research Institute, Stockholm University, Stockholm 10691, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Chao Shen
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xunyao Hou
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
13
|
Srivastava A, Swarup V, Kumar V, Faruq M, Singh H, Singh I. CRISPR/Cas9 technology in neurological disorders: An update for clinicians. ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_39_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|