1
|
Feng ZH, Li WY, Li QZ, Zhao FB, Zhang HJ, Zhang L, Zhang H. Tylophora yunnanensis extract inhibits cholesterol biosynthesis to suppress triple negative breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119877. [PMID: 40287115 DOI: 10.1016/j.jep.2025.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Female breast cancer ranks second in incidence rate and fourth in mortality globally. Tylophora yunnanensis Schlechter (Asclepiadaceae) is frequently used in folk medicine to treat irregular menses, falls caused injuries, rheumatoid arthritis, hepatitis, gastric ulcers, and gynecological tumors. AIMS OF THE STUDY To explore the molecular mechanism of T. yunnanensis against breast cancer. MATERIALS AND METHODS Numerous experiments were implemented for detection of cell proliferation, death, toxicity, MMP, cycle, apoptosis, DNA damage, and cholesterol levels. Transcriptomic analysis, proteomic analysis, exogenous cholesterol antagonism, gene overexpression and Western blot were performed to explore the mechanism of action. A tumor-bearing animal model was utilized. The chemical composition of T. yunnanensis extract (TYE) was analyzed using LC-MS/MS. RESULTS TYE repressed the proliferation of BT549 and 4T1 cells, with IC50 values of 4.88, 2.98 μg/mL for 24 h and 4.70, 1.87 μg/mL for 48 h, respectively. Cell cycle arrest was also induced. The multi-omics analysis displayed that TYE suppressed cholesterol biosynthesis and interfered with DNA damage repair in TNBC cells. Exogenous cholesterol reversed these effects, counteracted the elevated intracellular TC, FC, γ-H2AX, and tail moment. TYE downregulated the expression of SQLE, MVK, FDPS, TM7SF2, and DHCR24 proteins, which was offset by addition of cholesterol. Overexpression of SQLE reduced the inhibition effects of TYE on cell viability but was not responsible for the expression inhibition of MVK, FDPS and DHCR24 proteins. TYE decreased the tumor growth, serum TC and TG, and in situ expression of ki67 and SQLE in tumor-bearing mice and had no acute toxicity to mice. No chemical components of TYE were identified. CONCLUSION TYE inhibits SQLE transcription to decrease its protein expression, reduces cholesterol biosynthesis and accumulation, impedes DNA damage repair, leading to cell cycle arrest, and thus elicits cell death, followed by obstruction of breast cancer progression. T. yunnanensis may be a novel anti-breast cancer agent owing to its inhibitory effects on cholesterol biosynthesis.
Collapse
Affiliation(s)
- Zhi-Hui Feng
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Wen-Yue Li
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Oncology Department, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Qi-Zhang Li
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Feng-Bo Zhao
- Medical School of Nantong University, Nantong, 226001, China.
| | - Hai-Jun Zhang
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Lei Zhang
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Hong Zhang
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
2
|
Kamel EM, Allam AA, Rudayni HA, Alkhedhairi S, Alkhayl FFA, Alwaili MA, Lamsabhi AM. Mechanistic Insights into Polyphenols-mediated Squalene Epoxidase Inhibition: Computational Models and Experimental Validation for Targeting Cholesterol Biosynthesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01784-5. [PMID: 40418424 DOI: 10.1007/s12013-025-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Squalene epoxidase is a key enzyme in sterol biosynthesis, particularly in cholesterol metabolism. Its inhibition has emerged as a promising therapeutic strategy for metabolic disorders, hypercholesterolemia, and certain infections. Herein, we investigated the SQLE inhibitory potential of six polyphenolic compounds, identified through in silico virtual screening of a large natural phenolic library and selected for high predicted binding affinity and structural diversity. Molecular docking demonstrated strong interactions between these candidates and SQLE, with curcumin exhibiting the highest binding affinity (-10.1 kcal/mol). Molecular dynamics simulations confirmed stable interactions for all compounds, highlighting curcumin, piceatannol, and pterostilbene as particularly favorable. Their strong binding free energies were further supported by MM/PBSA calculations (-36.62 ± 4.17, -31.32 ± 3.77, and -32.01 ± 1.34 kcal/mol, respectively), corroborated by free energy landscape analysis. ADMET profiling revealed diverse pharmacokinetic properties among the six polyphenolics. In vitro testing confirmed curcumin as the most potent inhibitor (IC50 = 1.88 ± 0.21 µM), with piceatannol (2.55 ± 0.30 µM) and pterostilbene (2.69 ± 0.11 µM) following closely. Enzyme kinetics demonstrated that these three compounds act as competitive inhibitors targeting the enzyme's active site. Collectively, these findings highlight the combined power of computational and experimental approaches for identifying novel SQLE inhibitors.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saleh Alkhedhairi
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, P.O. Box 6622, Buraidah, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Maha A Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química and Institute for advanced research in chemical Science (IAdChem), Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Tseng TY, Hsieh CH, Liu JY, Huang HC, Juan HF. Single-cell and multi-omics integration reveals cholesterol biosynthesis as a synergistic target with HER2 in aggressive breast cancer. Comput Struct Biotechnol J 2025; 27:1719-1731. [PMID: 40391299 PMCID: PMC12088767 DOI: 10.1016/j.csbj.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Breast cancer stands as one of the most prevalent malignancies affecting women. Alterations in molecular pathways in cancer cells represent key regulatory disruptions that drive malignancy, influencing cancer cell survival, proliferation, and potentially modulating therapeutic responsiveness. Therefore, decoding the intricate molecular mechanisms and identifying novel therapeutic targets through systematic computational approaches are essential steps toward advancing effective breast cancer treatments. In this study, we developed an integrative computational framework that combines single-cell RNA sequencing (scRNA-seq) and multi-omics analyses to delineate the functional characteristics of malignant cell subsets in breast cancer patients. Our analyses revealed a significant correlation between cholesterol biosynthesis and HER2 expression in malignant breast cancer cells, supported by proteomics data, gene expression profiles, drug treatment scores, and cell-surface HER2 intensity measurements. Given previous evidence linking cholesterol biosynthesis to HER2 membrane dynamics, we proposed a combinatorial strategy targeting both pathways. Experimental validation through clonogenic and viability assays demonstrated that simultaneous inhibition of cholesterol biosynthesis (via statins) and HER2 (via Neratinib) synergistically reduced malignant breast cancer cells, even in HER2-negative contexts. Through systematic analysis of scRNA-seq and multi-omics data, our study computationally identified and experimentally validated cholesterol biosynthesis and HER2 as novel combinatorial therapeutic targets in breast cancer. This data-driven approach highlights the potential of leveraging multiple molecular profiling techniques to uncover previously unexplored treatment strategies.
Collapse
Affiliation(s)
- Tzu-Yang Tseng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chiao-Hui Hsieh
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jie-Yu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei, Taiwan
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Wang J, Xie A, Fang W, Zhu H, Ye C, Peng J. Zebrafish leg1a and leg1b double null mutant accumulates lipids in the liver. Biochem Biophys Res Commun 2025; 751:151418. [PMID: 39922057 DOI: 10.1016/j.bbrc.2025.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Zebrafish Leg1a and Leg1b are two homologous proteins sharing high sequence homology. Previous studies have revealed that leg1a and leg1b genes are important for early liver development and Leg1a and Leg1b are liver-produced serum proteins, however, whether they play a physiological role in the zebrafish liver remains unknown. Here, we carry out an analysis of the bulk RNA sequencing (RNA-seq) data and find that lipid metabolic pathways are the most prominently affected biological processes in the leg1a-/-leg1b-/- double mutant larvae. Oil-Red-O staining shows a significant accumulation of lipids in the leg1a-/-leg1b-/- double mutant larvae and adult livers. Lipidomics analysis reveals that the increased lipids are mainly diacylglycerol (DAG) in the adult liver. Our findings identify the essential role of Leg1 in maintaining the lipid metabolic homeostasis in zebrafish.
Collapse
Affiliation(s)
- Jinyang Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aixuan Xie
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haozhe Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cunqi Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhu J, Wang Y, Zhu K, Zhang C. Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance. Mol Biol Rep 2025; 52:162. [PMID: 39869140 DOI: 10.1007/s11033-025-10276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis. Secondly, directing efforts towards targeting SQLE, via mechanisms such as the PI3K/AKT pathway, presents promising avenues for overcoming resistance to conventional therapies such as endocrine cancer therapy, chemotherapy, immunotherapy, or radiotherapy. Moreover, the effectiveness of SQLE protein inhibitors in impeding cancer progression may either depend directly on SQLE inhibition or function through alternative pathways separate from SQLE. This mini-review offers insights into the intricate mechanisms through which SQLE affects the prognosis and resistance profiles across diverse cancer types, while succinctly elucidating the mechanisms underpinning the anticancer effects of SQLE protein inhibitors. Furthermore, this mini-review underscores the necessity for further investigations into the interplay between SQLE and cancer, proposing potential avenues for future research, with the aim of serving as a reference for exploring the mechanisms governing the role of SQLE in cancer regulation.
Collapse
Affiliation(s)
- Jiazhuang Zhu
- Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Ye Q, Yao H, Xiao Z, Zhao L, Tan WS. Insights into IAV Replication and Lipid Metabolism in Suspension-Adapted MDCK-STAT1-KO Cells. Vaccines (Basel) 2025; 13:106. [PMID: 40006653 PMCID: PMC11860519 DOI: 10.3390/vaccines13020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES The industrial production of influenza vaccines is facing significant challenges, particularly in improving virus production efficiency. Despite advances in cell culture technologies, our understanding of the production characteristics of high-yield suspension cell lines remains limited, thereby impeding the development of efficient vaccine production platforms. This study aims to investigate the key features of STAT1 knockout suspension-adapted MDCK cells (susMDCK-STAT1-KO) in enhancing influenza A virus (IAV) production. METHODS Suspension-adapted susMDCK-STAT1-KO cells were compared to suspension-adapted wild-type MDCK cells (susMDCK) for IAV production. Virus quantification, gene expression analysis, and cholesterol deprivation assays were performed. Metabolite profiles, viral RNA quantification, and lipid and dry weight measurements were also conducted to assess the viral replication and release efficiency. RESULTS The susMDCK-STAT1-KO cells exhibited significantly improved virus adsorption (64%) and entry efficiency (75%) for the H1N1 virus, as well as accelerated viral transcription and replication for both the H1N1 and H9N2 viruses. Virus release was identified as a limiting factor, with a 100-fold higher intracellular-to-extracellular viral RNA ratio. However, the STAT1-KO cells showed a 2.39-fold higher release rate (750 virions/cell/h) and 3.26-fold greater RNA release for the H1N1 virus compared to wild-type cells. A gene expression analysis revealed enhanced lipid metabolism, particularly cholesterol synthesis, as a key factor in viral replication and release. Cholesterol deprivation resulted in reduced viral titers, confirming the critical role of intracellular cholesterol in IAV production. CONCLUSIONS This study demonstrates the enhanced influenza virus production capacity of susMDCK-STAT1-KO cells, with significant improvements in viral yield, replication, and release efficiency. The findings highlight the importance of STAT1-mediated immune modulation and cholesterol metabolism in optimizing virus production. These insights provide a foundation for the development of more efficient vaccine production platforms, with implications for large-scale industrial applications.
Collapse
Affiliation(s)
- Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Hong Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Zhiying Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
- Shanghai BioEngine Sci-Tech Co., Ltd., Shanghai 201203, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
- Shanghai BioEngine Sci-Tech Co., Ltd., Shanghai 201203, China
| |
Collapse
|
7
|
Liu S, Zhang N, Ji X, Yang S, Zhao Z, Li P. Helicobacter pylori CagA promotes gastric cancer immune escape by upregulating SQLE. Cell Death Dis 2025; 16:17. [PMID: 39809787 PMCID: PMC11733131 DOI: 10.1038/s41419-024-07318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for gastric cancer, primarily due to its virulence factor, cytotoxin-associated gene A (CagA). Although PD-L1/PD-1-mediated immune evasion is critical in cancer development, the impact of CagA on PD-L1 regulation remains unclear. This study revealed that H. pylori CagA upregulated squalene epoxidase (SQLE) expression, a key enzyme in the cholesterol biosynthesis pathway. Elevated SQLE activity increased cellular palmitoyl-CoA levels, enhancing PD-L1 palmitoylation while decreasing its ubiquitination. This ultimately increases PD-L1 stability, suppressing T cell activity and facilitating immune evasion in gastric cancer. In summary, our findings highlight the crucial role of the CagA-SQLE-PD-L1 axis in gastric cancer progression, suggesting potential therapeutic strategies for targeting CagA-positive gastric cancer.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China.
| | - Xu Ji
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China.
| |
Collapse
|
8
|
Mo JS, Lamichhane S, Sharma G, Chae SC. MicroRNA 133A Regulates Squalene Epoxidase Expression in Colorectal Cancer Cells to Control Cell Proliferation and Cholesterol Production. GASTROENTEROLOGY INSIGHTS 2025; 16:5. [DOI: 10.3390/gastroent16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) is one of the most common cancers worldwide, with high incidence and mortality rates. MicroRNAs are endogenous and non-coding RNAs that play a pivotal role in the development and progression of various cancers by targeting specific genes. Previously, we identified MIR133A to be significantly decreased in human CRC tissues. This study aims to identify the relationship with SQLE, one of the candidate target genes of MIR133A, and study their interaction in CRC cells. Methods: Through the luciferase reporter assay, quantitative RT-PCR (qRT-PCR), and Western blot analysis. Results: We identified SQLE as a direct target gene of MIR133A. Using the MIR133A KI cell lines, which knocked-in MIR133A1 or MIR133A2 in CRC cell lines, and CRC cells transfected with siSQLE, we found that MIR133A regulated the proliferation and migration of CRC cells by modulating SQLE-mediated PIK3CA-AKT1 and CYP24A1 signaling. We also found that cholesterol production was regulated by MIR133A in CRC cells. Conclusions: Our results suggest that MIR133A is an important therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Ji-Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| | - Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Republic of Korea
| |
Collapse
|
9
|
Zobi C, Algul O. The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies. Chem Biol Drug Des 2025; 105:e70045. [PMID: 39841631 PMCID: PMC11753615 DOI: 10.1111/cbdd.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy. Recent research has highlighted the potential of dual inhibitors that simultaneously target multiple pathways or enzymes involved in fungal growth and survival. Combining pharmacophores, such as lanosterol 14α-demethylase (CYP51), heat shock protein 90 (HSP90), histone deacetylase (HDAC), and squalene epoxidase (SE) inhibitors, has led to the development of compounds with enhanced antifungal activity and reduced resistance. This dual-target approach, along with novel chemical scaffolds, not only represents a promising strategy for combating antifungal resistance but is also being utilized in the development of anticancer agents. This review explores the development of new antifungal agents that employ mono-, dual-, or multi-target strategies to combat IFIs. We discuss emerging antifungal targets, resistance mechanisms, and innovative therapeutic approaches that offer hope in managing these challenging infections.
Collapse
Affiliation(s)
- Cengiz Zobi
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of İliç Dursun Yildirim MYOErzincan Binali Yildirim UniversityErzincanTurkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMersin UniversityMersinTurkiye
| |
Collapse
|
10
|
Jin Q, Wang F, Ye W, Wang Q, Xu S, Jiang S, Li X, Yue M, Yu D, Jin M, Fu A, Li W. Compound Bacillus improves eggshell quality and egg metabolites of hens by promoting the metabolism balance of calcium and phosphorus and uterine cell proliferation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:355-369. [PMID: 39640545 PMCID: PMC11617893 DOI: 10.1016/j.aninu.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Probiotics have beneficial effects on improving egg quality, but there is little research about the effect of probiotics on metabolite composition, and the mechanisms are not yet fully understood. The aim of this study was to investigate the potential mechanisms by which compound Bacillus improves egg quality and metabolite composition. A total of 20,000 Jingfen No. 6 laying hens at 381 d old were randomly divided into two treatments: control group with a basal diet, and the basal diet with 5 × 108 CFU/kg compound Bacillus supplementation (Ba) group. The trial lasted eight weeks. The results showed that compound Bacillus improved the gloss and strength of eggshells and reduced the ratio of sand-shell eggs by 23.8%. Specifically, the effective layer of eggshell was thicker and its calcite column was closely connected. Compound Bacillus increased the contents of beneficial fatty acids in the egg yolk, and lipids and lipid-like molecules in the albumen (P < 0.01), while decreased the contents of total cholesterol, triglycerides, and benzene ring compounds in the egg yolk and organic oxygen compounds in the albumen (P < 0.01). In addition, the compound Bacillus increased the calcium absorption in the duodenum by up-regulating the expression of transporters and serum hormone synergism (P < 0.05), and promoted metabolic balance of calcium and phosphorus. Simultaneously, uterine transcriptome showed that the expression of ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (C1GALT1), phosphatidylinositol-4-phosphate 5-kinase type 1 beta (PIP5K1B), methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), brain enriched myelin associated protein 1 (BCAS1), and squalene epoxidase (SQLE) genes were increased (P < 0.01), indicating that nutrient metabolism activity was enhanced. The expression of the BCAS1, C1GALT1, KLF transcription factor 13 (KLF13), and leucine rich repeat neuronal 1 (LRRN1) was increased (P < 0.01), indicating that the cell proliferation was enhanced, which slowed uterus aging. In conclusion, compound Bacillus improved the eggshell strength and metabolite composition in the egg by promoting metabolic balance of calcium and phosphorus, cell proliferation, and nutrient metabolism in the uterus.
Collapse
Affiliation(s)
- Qian Jin
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weisheng Ye
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shaoxiong Jiang
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
11
|
Chen M, Yang Y, Chen S, He Z, Du L. Targeting squalene epoxidase in the treatment of metabolic-related diseases: current research and future directions. PeerJ 2024; 12:e18522. [PMID: 39588004 PMCID: PMC11587872 DOI: 10.7717/peerj.18522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Metabolic-related diseases are chronic diseases caused by multiple factors, such as genetics and the environment. These diseases are difficult to cure and seriously affect human health. Squalene epoxidase (SQLE), the second rate-limiting enzyme in cholesterol synthesis, plays an important role in cholesterol synthesis and alters the gut microbiota and tumor immunity. Research has shown that SQLE is expressed in many tissues and organs and is involved in the occurrence and development of various metabolic-related diseases, such as cancer, nonalcoholic fatty liver disease, diabetes mellitus, and obesity. SQLE inhibitors, such as terbinafine, NB598, natural compounds, and their derivatives, can effectively ameliorate fungal infections, nonalcoholic fatty liver disease, and cancer. In this review, we provide an overview of recent research progress on the role of SQLE in metabolic-related diseases. Further research on the regulation of SQLE expression is highly important for developing drugs for the treatment of metabolic-related diseases with good pharmacological activity.
Collapse
Affiliation(s)
- Mingzhu Chen
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yongqi Yang
- Harbin Medical University, Department of Pharmacology, College of Pharmacy, Harbin, Heilongjiang Province, China
| | - Shiting Chen
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhigang He
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lian Du
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
12
|
Ge AY, Arab A, Dai R, Navickas A, Fish L, Garcia K, Asgharian H, Goudreau J, Lee S, Keenan K, Pappalardi MB, McCabe MT, Przybyla L, Goodarzi H, Gilbert LA. A multiomics approach reveals RNA dynamics promote cellular sensitivity to DNA hypomethylation. Sci Rep 2024; 14:25940. [PMID: 39472491 PMCID: PMC11522420 DOI: 10.1038/s41598-024-77314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The search for new approaches in cancer therapy requires a mechanistic understanding of cancer vulnerabilities and anti-cancer drug mechanisms of action. Problematically, some effective therapeutics target cancer vulnerabilities that have poorly defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline therapeutic approved for the treatment of high-risk acute myeloid leukemia (AML). Decitabine is thought to kill cancer cells selectively via inhibition of DNA methyltransferase enzymes, but the genes and mechanisms involved remain unclear. Here, we apply an integrated multiomics and CRISPR functional genomics approach to identify genes and processes associated with response to decitabine in AML cells. Our integrated multiomics approach reveals RNA dynamics are key regulators of DNA hypomethylation induced cell death. Specifically, regulation of RNA decapping, splicing and RNA methylation emerge as important regulators of cellular response to decitabine.
Collapse
Affiliation(s)
- Alex Y Ge
- School of Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Abolfazl Arab
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Raymond Dai
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Albertas Navickas
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lisa Fish
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kristle Garcia
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Hosseinali Asgharian
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jackson Goudreau
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sean Lee
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kathryn Keenan
- Tumor Cell Targeting Research Unit, Research, GSK, Collegeville, PA, 19426, USA
| | | | - Michael T McCabe
- Tumor Cell Targeting Research Unit, Research, GSK, Collegeville, PA, 19426, USA
| | - Laralynne Przybyla
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
| | - Hani Goodarzi
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
13
|
Zhang R, Zhang L, Fan S, Wang L, Wang B, Wang L. Squalene monooxygenase (SQLE) protects ovarian cancer cells from ferroptosis. Sci Rep 2024; 14:22646. [PMID: 39349544 PMCID: PMC11442994 DOI: 10.1038/s41598-024-72506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
Altered cholesterol metabolism has been linked to a poor prognosis in various types of cancer. Cholesterol oxidation can lead to lipid peroxidation, membrane damage, and cell death. Ferroptosis is a regulated form of cell death characterized by the accumulation of lipid peroxides, which significantly inhibits the growth of ovarian cancer cells. SQLE is the primary enzyme responsible for catalyzing cholesterol lipid synthesis and is notably expressed in ovarian cancer tissues and cells. This study aims to investigate the role of squalene monooxygenase (SQLE) in ferroptosis in ovarian cancer. The protein and mRNA expression of SQLE was assessed using qRT-PCR, Western Blot, and immunohistochemistry. The association between SQLE and ferroptosis was demonstrated through analysis of TCGA and GTEx databases, TMT protein sequencing, as well as validation by qRT-PCR, Western Blot, immunofluorescence, ROS detection, and lipid peroxide detection. Animal experiments further confirmed the relationship between SQLE and ferroptosis in ovarian cancer. The protein and mRNA expression of SQLE was found to be upregulated in both ovarian cancer tissues and cell lines. Decreased SQLE expression led to ferroptosis in ovarian cancer cells, thereby increasing their sensitivity to ferroptosis inducers. Our research demonstrates that SQLE is significantly upregulated in both ovarian cancer tissues and cells. The overexpression of SQLE in ovarian cancer may facilitate tumorigenesis by conferring resistance to ferroptosis, thus shedding light on potential novel therapeutic strategies for ovarian cancer.
Collapse
Affiliation(s)
- Rong Zhang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Lingmei Zhang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Sizhe Fan
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Liangliang Wang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Beibei Wang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China
| | - Lihua Wang
- The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzih, Bengbu, Anhui, China.
| |
Collapse
|
14
|
Zhao YC, Li YF, Qiu L, Jin SZ, Shen YN, Zhang CH, Cui J, Wang TJ. SQLE-a promising prognostic biomarker in cervical cancer: implications for tumor malignant behavior, cholesterol synthesis, epithelial-mesenchymal transition, and immune infiltration. BMC Cancer 2024; 24:1133. [PMID: 39261819 PMCID: PMC11389260 DOI: 10.1186/s12885-024-12897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Cervical cancer, encompassing squamous cell carcinoma and endocervical adenocarcinoma (CESC), presents a considerable risk to the well-being of women. Recent studies have reported that squalene epoxidase (SQLE) is overexpressed in several cancers, which contributes to cancer development. METHODS RNA sequencing data for SQLE were obtained from The Cancer Genome Atlas. In vitro experiments, including colorimetry, colony formation, Transwell, RT-qPCR, and Western blotting were performed. Furthermore, a transplanted CESC nude mouse model was constructed to validate the tumorigenic activity of SQLE in vivo. Associations among the SQLE expression profiles, differentially expressed genes (DEGs), immune infiltration, and chemosensitivity were examined. The prognostic value of genetic changes and DNA methylation in SQLE were also assessed. RESULTS SQLE mRNA expression was significantly increased in CESC. ROC analysis revealed the strong diagnostic ability of SQLE toward CESC. Patients with high SQLE expression experienced shorter overall survival. The promotional effects of SQLE on cancer cell proliferation, metastasis, cholesterol synthesis, and EMT were emphasized. DEGs functional enrichment analysis revealed the signaling pathways and biological processes. Notably, a connection existed between the SQLE expression and the presence of immune cells as well as the activation of immune checkpoints. Increased SQLE expressions exhibited increased chemotherapeutic responses. SQLE methylation status was significantly associated with CESC prognosis. CONCLUSION SQLE significantly affects CESC prognosis, malignant behavior, cholesterol synthesis, EMT, and immune infiltration; thereby offering diagnostic and indicator roles in CESC. Thus, SQLE can be a novel therapeutic target in CESC treatment.
Collapse
MESH Headings
- Humans
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/mortality
- Female
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Prognosis
- Squalene Monooxygenase/genetics
- Squalene Monooxygenase/metabolism
- Mice
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cholesterol/metabolism
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- DNA Methylation
- Cell Line, Tumor
- Cell Proliferation
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/immunology
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yun-Feng Li
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
| | - Ling Qiu
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
| | - Shun-Zi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yan-Nan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Chao-He Zhang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, PR China
| | - Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
15
|
Coates HW, Nguyen TB, Du X, Olzomer EM, Farrell R, Byrne FL, Yang H, Brown AJ. The constitutively active form of a key cholesterol synthesis enzyme is lipid droplet-localized and upregulated in endometrial cancer tissues. J Biol Chem 2024; 300:107232. [PMID: 38537696 PMCID: PMC11061744 DOI: 10.1016/j.jbc.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Cholesterol is essential for both normal cell viability and cancer cell proliferation. Aberrant activity of squalene monooxygenase (SM, also known as squalene epoxidase), the rate-limiting enzyme of the committed cholesterol synthesis pathway, is accordingly implicated in a growing list of cancers. We previously reported that hypoxia triggers the truncation of SM to a constitutively active form, thus preserving sterol synthesis during oxygen shortfalls. Here, we show SM truncation is upregulated and correlates with the magnitude of hypoxia in endometrial cancer tissues, supporting the in vivo relevance of our earlier work. To further investigate the pathophysiological consequences of SM truncation, we examined its lipid droplet-localized pool using complementary immunofluorescence and cell fractionation approaches and found that it exclusively comprises the truncated enzyme. This partitioning is facilitated by the loss of an endoplasmic reticulum-embedded region at the SM N terminus, whereas the catalytic domain containing membrane-associated C-terminal helices is spared. Moreover, we determined multiple amphipathic helices contribute to the lipid droplet localization of truncated SM. Taken together, our results expand on the striking differences between the two forms of SM and suggest upregulated truncation may contribute to SM-related oncogenesis.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Tina B Nguyen
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Rhonda Farrell
- Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia; Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Zhu C, Fang X, Liu X, Jiang C, Ren W, Huang W, Jiang Y, Wang D. Squalene monooxygenase facilitates bladder cancer development in part by regulating PCNA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119681. [PMID: 38280406 DOI: 10.1016/j.bbamcr.2024.119681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Bladder cancer (BC) is one of the most common cancers worldwide. Although the treatment and survival rate of BC are being improved, the risk factors and the underlying mechanisms causing BC are incompletely understood. Squalene monooxygenase (SQLE) has been associated with the occurrence and development of multiple cancers but whether it contributes to BC development is unclear. In this study, we performed bioinformatics analysis on paired BC and adjacent non-cancerous tissues and found that SQLE expression is significantly upregulated in BC samples. Knockdown of SQLE impairs viability, induces apoptosis, and inhibits the migration and invasion of BC cells. RNA-seq data reveals that SQLE deficiency leads to dysregulated expression of genes regulating proliferation, migration, and apoptosis. Mass spectrometry-directed interactome screening identifies proliferating cell nuclear antigen (PCNA) as an SQLE-interacting protein and overexpression of PCNA partially rescues the impaired viability, migration, and invasion of BC cells caused by SQLE knockdown. In addition, we performed xenograft assays and confirmed that SQLE deficiency inhibits BC growth in vivo. In conclusion, these data suggest that SQLE promotes BC development and SQLE inhibition may be therapeutically useful in BC treatment.
Collapse
Affiliation(s)
- Changyan Zhu
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Xiao Fang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China; Department of Urology, MengChao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Xiangshen Liu
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Chengxi Jiang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Wenjun Ren
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Wenmao Huang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Yanyan Jiang
- Department of Ultrasonography, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China.
| | - Dong Wang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China.
| |
Collapse
|
17
|
Shao M, Wang M, Wang X, Feng X, Zhang L, Lv H. SQLE is a promising prognostic and immunological biomarker and correlated with immune Infiltration in Sarcoma. Medicine (Baltimore) 2024; 103:e37030. [PMID: 38335381 PMCID: PMC10861000 DOI: 10.1097/md.0000000000037030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Squalene epoxidase (SQLE) is an essential enzyme involved in cholesterol biosynthesis. However, its role in sarcoma and its correlation with immune infiltration remains unclear. All original data were downloaded from The Cancer Genome Atlas (TCGA). SQLE expression was explored using the TCGA database, and correlations between SQLE and cancer immune characteristics were analyzed via the TISIDB databases. Generally, SQLE is predominantly overexpressed and has diagnostic and prognostic value in sarcoma. Upregulated SQLE was associated with poorer overall survival, poorer disease-specific survival, and tumor multifocality in sarcoma. Mechanistically, we identified a hub gene that included a total of 82 SQLE-related genes, which were tightly associated with histone modification pathways in sarcoma patients. SQLE expression was negatively correlated with infiltrating levels of dendritic cells and plasmacytoid dendritic cells and positively correlated with Th2 cells. SQLE expression was negatively correlated with the expression of chemokines (CCL19 and CX3CL1) and chemokine receptors (CCR2 and CCR7) in sarcoma. In conclusion, SQLE may be used as a prognostic biomarker for determining prognosis and immune infiltration in sarcoma.
Collapse
Affiliation(s)
- Mengwei Shao
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mingbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaodong Feng
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lifeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huicheng Lv
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
18
|
Khalifa A, Guijarro A, Ravera S, Bertola N, Adorni MP, Papotti B, Raffaghello L, Benelli R, Becherini P, Namatalla A, Verzola D, Reverberi D, Monacelli F, Cea M, Pisciotta L, Bernini F, Caffa I, Nencioni A. Cyclic fasting bolsters cholesterol biosynthesis inhibitors' anticancer activity. Nat Commun 2023; 14:6951. [PMID: 37907500 PMCID: PMC10618279 DOI: 10.1038/s41467-023-42652-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Identifying oncological applications for drugs that are already approved for other medical indications is considered a possible solution for the increasing costs of cancer treatment. Under the hypothesis that nutritional stress through fasting might enhance the antitumour properties of at least some non-oncological agents, by screening drug libraries, we find that cholesterol biosynthesis inhibitors (CBIs), including simvastatin, have increased activity against cancers of different histology under fasting conditions. We show fasting's ability to increase CBIs' antitumour effects to depend on the reduction in circulating insulin, insulin-like growth factor-1 and leptin, which blunts the expression of enzymes from the cholesterol biosynthesis pathway and enhances cholesterol efflux from cancer cells. Ultimately, low cholesterol levels through combined fasting and CBIs reduce AKT and STAT3 activity, oxidative phosphorylation and energy stores in the tumour. Our results support further studies of CBIs in combination with fasting-based dietary regimens in cancer treatment and highlight the value of fasting for drug repurposing in oncology.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Roberto Benelli
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Asmaa Namatalla
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
19
|
Tu T, Zhang H, Xu H. Targeting sterol-O-acyltransferase 1 to disrupt cholesterol metabolism for cancer therapy. Front Oncol 2023; 13:1197502. [PMID: 37409263 PMCID: PMC10318190 DOI: 10.3389/fonc.2023.1197502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Cholesterol esterification is often dysregulated in cancer. Sterol O-acyl-transferase 1 (SOAT1) plays an important role in maintaining cellular cholesterol homeostasis by catalyzing the formation of cholesterol esters from cholesterol and long-chain fatty acids in cells. Many studies have implicated that SOAT1 plays a vital role in cancer initiation and progression and is an attractive target for novel anticancer therapy. In this review, we provide an overview of the mechanism and regulation of SOAT1 in cancer and summarize the updates of anticancer therapy targeting SOAT1.
Collapse
Affiliation(s)
- Teng Tu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|