1
|
Liang Y, Wang G, Fan S, Zhang J, He S, Pan G, Hao G, Zhu Y. Brain-to-heart cholinergic synapse-calcium signaling mediates ischemic stroke-induced atrial fibrillation. Theranostics 2024; 14:6625-6651. [PMID: 39479451 PMCID: PMC11519791 DOI: 10.7150/thno.99065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Stroke-related cardiovascular diseases have attracted considerable attention, with atrial fibrillation (AF) being among the most frequent complications. Despite increasing clinical evidence, experimental models of stroke-induced AF are still lacking, hindering mechanistic discoveries and the development of adequate therapeutics targeting this stroke-heart syndrome (SHS). This study aims to create a rat model of ischemic stroke-induced AF (ISIAF) and to explore the efficacy and mechanism of Wenxin Keli (WK), an antiarrhythmic Chinese medicine. Method: The middle cerebral artery occlusion/reperfusion model was adapted to create subacute brain ischemia in rats with normal cardiac function. Invasive electrophysiologic studies and ex vivo optical mapping were performed to evaluate the altered electrophysiological parameters and Ca2+ handling properties. RNA-seq analysis, RT-PCR, and immunohistochemistry (IHC) with immunofluorescence (IF) were employed to assess the SHS model and elucidate the mechanisms of ISIAF and the effects of WK. UPLC/Q-TOF-MS, molecular docking, and whole-cell patch recordings were used to identify the active components of WK for SHS. Results: Ischemic stroke aggravated atrial electrical instability, altered action potential duration (APD), Ca2+ transient duration (CaT), conduction heterogeneity, and spatially discordant alternans in SHS rat hearts. These abnormalities were alleviated by WK. RNA-seq analysis revealed that M3-mediated cholinergic synapse signaling and L-type calcium channel (LTCCs)-mediated Ca2+ signaling play prominent roles in ISIAF development and its reversal by WK. UPLC/Q-TOF-MS analysis identified 19 WK components as the main components in plasma after WK treatment. Molecular docking screening identified Dioscin as the major active component of WK. WK and Dioscin reduced ICa-L in a concentration-dependent manner with a half-maximal inhibitory concentration of 24.254 ± 2.051 mg/mL and 8.666 ± 0.777 µmol/L, respectively. Conclusion: This study established an experimental model of ISIAF capable of characterizing clinically relevant atrial electrophysiological changes post-cerebral ischemia. Molecular mechanistic studies revealed that the cholinergic-calcium signaling pathway is central to this brain-heart syndrome. Ischemic stroke-induced atrial fibrillation is partially reversible by the Chinese medicine Wenxin Keli, which acts via regulation of the cholinergic-calcium signaling pathway, with its active component Dioscin directly binding to IKM3 and inhibiting ICa-L.
Collapse
Affiliation(s)
- Yingran Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Gongxin Wang
- Henan Academy of Innovations in Medical Science, Institute of Electrophysiology, Zhengzhou 450000, China
- Henan SCOPE Research Institute of Electrophysiology, Kaifeng 475000, China
| | - Siwen Fan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Junyi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Guoliang Hao
- Henan Academy of Innovations in Medical Science, Institute of Electrophysiology, Zhengzhou 450000, China
- Henan SCOPE Research Institute of Electrophysiology, Kaifeng 475000, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Wang Y, Li Y, Zhou Y, Gao Y, Zhao L. Guanxinning Tablet Alleviates Post-Ischemic Stroke Injury Via Regulating Complement and Coagulation Cascades Pathway and Inflammatory Network Mobilization. Drug Des Devel Ther 2024; 18:4183-4202. [PMID: 39308695 PMCID: PMC11416781 DOI: 10.2147/dddt.s479881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Currently, ischemic stroke (IS) continues to significantly contribute to functional deterioration and reduced life quality. Regrettably, the choice of neuro-rehabilitation interventions to enhance post-IS outcomes is limited. Guanxinning tablet (GXNT), a multi-component medicine composed of Danshen and Chuanxiong, has demonstrated neuroprotective potential against ischemic brain injury and diabetic encephalopathy. However, the therapeutic impact of GXNT on post-IS functional outcomes and pathological injury, as well as the underlying molecular mechanisms and anti-IS active substances, remain unclear. Methods To answer the above questions, neurological and behavioral assessment, cerebral lesions, and blood-brain barrier (BBB) integrity were combined to comprehensively investigate GXNT's pharmacodynamic effects against post-IS injury. The possible molecular mechanisms were revealed through transcriptome sequencing coupled with experimental verification. Furthermore, the brain tissue distribution of main components in GXNT, behavioral changes of IS zebrafish, and molecular docking were integrated to identify the anti-IS active compounds. Results Treatment with GXNT significantly mitigated the functional deficits, cerebral cortex lesions, and BBB disruption following IS. Transcriptome sequencing and bioinformatics analysis suggested that complement and coagulation cascades as well as inflammation might play crucial roles in the GXNT's therapeutic effects. Molecular biology experiments indicated that GXNT administration effectively normalized the abnormal expression of mRNA and protein levels of key targets related to complement and coagulation cascades (eg C3 and F7) and inflammation (eg MMP3 and MMP9) in the impaired cortical samples of IS mice. The locomotor promotion in IS zebrafish as well as favorable affinity with key proteins (C3, F7, and MMP9) highlighted anti-IS activities of brain-permeating constituents (senkyunolide I and protocatechuic acid) of GXNT. Conclusion Taken together, these intriguing findings indicate that GXNT intervention exerts a beneficial effect against post-IS injury via regulating the complement and coagulation cascades pathway and mobilizing inflammatory network. Senkyunolide I and protocatechuic acid show promise as anti-IS active compounds.
Collapse
Affiliation(s)
- Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Yiran Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Zhou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zeng Q, Li C, Xu S, He Y. An integrated strategy to evaluate active substances of Astragali Radix-Carthami Flos combination on the treatment of cerebral ischemia reperfusion injury based on TQSM polypharmacokinetics and pharmacodynamics. J Food Drug Anal 2023; 31:711-738. [PMID: 38526820 PMCID: PMC10962676 DOI: 10.38212/2224-6614.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/05/2023] [Indexed: 03/27/2024] Open
Abstract
As a classic herb pair, Astragali Radix-Carthami Flos (AR-CF) has revealed good biological activity in the treatment of cerebral ischemia/reperfusion injury (CI/RI), which remained to be further clarified together with the underlying efficacy related compounds for material basis. In this study, the nine formulations were obtained by L9 (34) orthogonal array design of four active fractions (saponin and flavonoid extracted from AR, safflower yellow and safflower red extracted from CF). The concentrations of eleven components and the levels of four biochemical indicators in rat plasma were continuously detected after intragastric administration of nine formulations, respectively. The collected data were analyzed by sigmoid-Emax function to understand the polypharmacokinetics and pharmacodynamics (PK-PD) behaviors of multi-components. Using the total quantum statistic moment polypharmacokinetics and its similarity method, the importance of four active fractions from AR-CF in relieving CI/RI was discussed and the Q-markers were screened. The results represented that a reliable and robust liquid chromatography tandem mass spectrometry method been successfully established to simultaneously determine the concentrations of eleven components in rat plasma. The AUC and MRT values of components from flavonoid fraction had the greatest contribution to AUCT and MRTT values. The transitivity in vivo of calycosin-7-O-β-Dglucoside (CG), astragaloside IV (AIV) and hydroxysafflor yellow A (HYA) was closer to polypharmacokinetics behavior. All formulations up/down-regulated the levels of GSH-Px and ATP/ET and LDH to varying degrees, among which formulation 7 had the best regulating effect. By drawing the time-concentration-effect curve, clockwise hysteresis loops were presented in the time-concentration-effect relationships between eleven components and LDH/ET, while the relationship between eleven components and ATP/GSH-Px expressed as anticlockwise hysteresis loops. In conclusion, the combination based on the combination principle of formulation 7 produced the best alleviation effect on CI/RI, and flavonoid fraction might played key role in this process. The CG, AIV and HYA were identified as Q-markers. This research offered a novel strategy for exploring the active substances, and provided further understanding regarding the development of drugs for the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qiang Zeng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR
China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR
China
| | - Shouchao Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR
China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR
China
| |
Collapse
|
4
|
Song L, Wu Q, Fu X, Wang W, Dai Z, Gu Y, Zhuo Y, Fang S, Zhao W, Wang X, Wang Q, Fang J. In Silico Identification and Mechanism Exploration of Active Ingredients against Stroke from An-Gong-Niu-Huang-Wan (AGNHW) Formula. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5218993. [PMID: 35432729 PMCID: PMC9006076 DOI: 10.1155/2022/5218993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
An-Gong-Niu-Huang-Wan (AGNHW) is a well-known formula for treating cerebrovascular diseases, with roles including clearing away heat, detoxification, and wake-up consciousness. In recent years, AGNHW has been commonly used for the treatment of ischemic stroke, but the mechanism by which AGNHW relieves stroke has not been clearly elucidated. In the current study, we developed a multiple systems pharmacology-based framework to identify the potential antistroke ingredients in AGNHW and explore the underlying mechanisms of action (MOA) of AGNHW against stroke from a holistic perspective. Specifically, we performed a network-based method to identify the potential antistroke ingredients in AGNHW by integrating the drug-target network and stroke-associated genes. Furthermore, the oxygen-glucose deprivation/reoxygenation (OGD/R) model was used to validate the anti-inflammatory effects of the key ingredients by determining the levels of inflammatory cytokines, including interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. The antiapoptotic effects of the key ingredients were also confirmed in vitro. Integrated pathway analysis of AGNHW revealed that it might regulate three biological signaling pathways, including IL-17, TNF, and PI3K-AKT, to play a protective role in stroke. Moreover, 30 key antistroke ingredients in AGNHW were identified via network-based in silico prediction and were confirmed to have known neuroprotective effects. After drug-like property evaluation and pharmacological validation in vitro, scutellarein (SCU) and caprylic acid (CA) were selected for further antistroke investigation. Finally, systems pharmacology-based analysis of CA and SCU indicated that they might exert antistroke effects via the apoptotic signaling pathway and inflammatory response, which was further validated in an in vitro stroke model. Overall, the current study proposes an integrative systems pharmacology approach to identify antistroke ingredients and demonstrate the underlying pharmacological MOA of AGNHW in stroke, which provides an alternative strategy to investigate novel traditional Chinese medicine formulas for complex diseases.
Collapse
Affiliation(s)
- Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510404, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou 570100, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wentao Wang
- School of Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou 570100, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoyun Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510404, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
5
|
Ye Y, Li Q, Pan CS, Yan L, Sun K, Wang XY, Yao SQ, Fan JY, Han JY. QiShenYiQi Inhibits Tissue Plasminogen Activator-Induced Brain Edema and Hemorrhage after Ischemic Stroke in Mice. Front Pharmacol 2022; 12:759027. [PMID: 35095486 PMCID: PMC8790519 DOI: 10.3389/fphar.2021.759027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Thrombolysis with tissue plasminogen activator (tPA) remains the only approved drug therapy for acute ischemic stroke. However, delayed tPA treatment is associated with an increased risk of brain hemorrhage. In this study, we assessed whether QiShenYiQi (QSYQ), a compound Chinese medicine, can attenuate tPA-induced brain edema and hemorrhage in an experimental stroke model. Methods: Male mice were subjected to ferric chloride-induced carotid artery thrombosis followed by mechanical detachment of thrombi. Then mice were treated with QSYQ at 2.5 h followed by administration of tPA (10 mg/kg) at 4.5 h. Hemorrhage, infarct size, neurological score, cerebral blood flow, Evans blue extravasation, FITC-labeled albumin leakage, tight and adherens junction proteins expression, basement membrane proteins expression, matrix metalloproteinases (MMPs) expression, leukocyte adhesion, and leukocyte infiltration were assessed 24 h after tPA administration. Results: Compared with tPA alone treatments, the combination therapy of QSYQ and tPA significantly reduced hemorrhage, infarction, brain edema, Evans blue extravasation, albumin leakage, leukocyte adhesion, MMP-9 expression, and leukocyte infiltration at 28.5 h after stroke. The combination also significantly improved the survival rate, cerebral blood flow, tight and adherens junction proteins (occludin, claudin-5, junctional adhesion molecule-1, zonula occludens-1, VE-cadherin, α-catenin, β-catenin) expression, and basement membrane proteins (collagen IV, laminin) expression. Addition of QSYQ protected the downregulated ATP 5D and upregulated p-Src and Caveolin-1 after tPA treatment. Conclusion: Our results show that QSYQ inhibits tPA-induced brain edema and hemorrhage by protecting the blood-brain barrier integrity, which was partly attributable to restoration of energy metabolism, protection of inflammation and Src/Caveolin signaling activation. The present study supports QSYQ as an effective adjunctive therapy to increase the safety of delayed tPA thrombolysis for ischemic stroke.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Khrunin AV, Khvorykh GV, Rozhkova AV, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. Examination of Genetic Variants Revealed from a Rat Model of Brain Ischemia in Patients with Ischemic Stroke: A Pilot Study. Genes (Basel) 2021; 12:genes12121938. [PMID: 34946887 PMCID: PMC8701352 DOI: 10.3390/genes12121938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Although there has been great progress in understanding the genetic bases of ischemic stroke (IS), many of its aspects remain underexplored. These include the genetics of outcomes, as well as problems with the identification of real causative loci and their functional annotations. Therefore, analysis of the results obtained from animal models of brain ischemia could be helpful. We have developed a bioinformatic approach exploring single nucleotide polymorphisms (SNPs) in human orthologues of rat genes expressed differentially under conditions of induced brain ischemia. Using this approach, we identified and analyzed nine SNPs in 553 Russian individuals (331 patients with IS and 222 controls). We explored the association of SNPs with both IS outcomes and with the risk of IS. SNP rs66782529 (LGALS3) was associated with negative IS outcomes (p = 0.048). SNPs rs62278647 and rs2316710 (PTX3) were associated significantly with IS (p = 0.000029 and p = 0.0025, respectively). These correlations for rs62278647 and rs2316710 were found only in women, which suggests a sex-specific association of the PTX3 polymorphism. Thus, this research not only reveals some new genetic associations with IS and its outcomes but also shows how exploring variations in genes from a rat model of brain ischemia can be of use in searching for human genetic markers of this disorder.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
- Correspondence: ; Tel.: +7-499-1961851
| | - Gennady V. Khvorykh
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
| | - Alexandra V. Rozhkova
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.A.K.); (E.A.P.); (E.I.K.)
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.A.K.); (E.A.P.); (E.I.K.)
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.A.K.); (E.A.P.); (E.I.K.)
| | - Svetlana A. Limborska
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
| |
Collapse
|