1
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024:10.1007/s10787-024-01499-8. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
2
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Sikiric P, Kokot A, Kralj T, Zlatar M, Masnec S, Lazic R, Loncaric K, Oroz K, Sablic M, Boljesic M, Antunovic M, Sikiric S, Strbe S, Stambolija V, Beketic Oreskovic L, Kavelj I, Novosel L, Zubcic S, Krezic I, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S, Staresinic M. Stable Gastric Pentadecapeptide BPC 157-Possible Novel Therapy of Glaucoma and Other Ocular Conditions. Pharmaceuticals (Basel) 2023; 16:1052. [PMID: 37513963 PMCID: PMC10385428 DOI: 10.3390/ph16071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, stable gastric pentadecapeptide BPC 157 therapy by activation of collateral pathways counteracted various occlusion/occlusion-like syndromes, vascular, and multiorgan failure, and blood pressure disturbances in rats with permanent major vessel occlusion and similar procedures disabling endothelium function. Thereby, we revealed BPC 157 cytoprotective therapy with strong vascular rescuing capabilities in glaucoma therapy. With these capabilities, BPC 157 therapy can recover glaucomatous rats, normalize intraocular pressure, maintain retinal integrity, recover pupil function, recover retinal ischemia, and corneal injuries (i.e., maintained transparency after complete corneal abrasion, corneal ulceration, and counteracted dry eye after lacrimal gland removal or corneal insensitivity). The most important point is that in glaucomatous rats (three of four episcleral veins cauterized) with high intraocular pressure, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, nor- mal retinal and choroidal blood vessel presentation, and normal optic nerve presentation. The one episcleral vein rapidly upgraded to accomplish all functions in glaucomatous rats may correspond with occlusion/occlusion-like syndromes of the activated rescuing collateral pathway (azygos vein direct blood flow delivery). Normalized intraocular pressure in glaucomatous rats corresponded to the counteracted intra-cranial (superior sagittal sinus), portal, and caval hypertension, and aortal hypotension in occlusion/occlusion-like syndromes, were all attenuated/eliminated by BPC 157 therapy. Furthermore, given in other eye disturbances (i.e., retinal ischemia), BPC 157 instantly breaks a noxious chain of events, both at an early stage and an already advanced stage. Thus, we further advocate BPC 157 as a therapeutic agent in ocular disease.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Kralj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mirna Zlatar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Masnec
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ratimir Lazic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sablic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marta Boljesic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle. Biomedicines 2022; 10:biomedicines10123221. [PMID: 36551977 PMCID: PMC9775659 DOI: 10.3390/biomedicines10123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application).
Collapse
|
5
|
Gamulin O, Oroz K, Coric L, Krajacic M, Skrabic M, Dretar V, Strbe S, Talapko J, Juzbasic M, Krezic I, Lozic M, Stambolija V, Zizek H, Jurca I, Jurjevic I, Blagaic AB, Skrtic A, Seiwerth S, Sikiric P. Fourier Transform Infrared Spectroscopy Reveals Molecular Changes in Blood Vessels of Rats Treated with Pentadecapeptide BPC 157. Biomedicines 2022; 10:3130. [PMID: 36551886 PMCID: PMC9775416 DOI: 10.3390/biomedicines10123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, it was found that when confronted with major vessel occlusion and vascular failure, stable gastric pentadecapeptide BPC 157 therapy might rapidly functionally improve minor vessels to take over the function of disabled major vessels, reorganize blood flow, and compensate failed vessel function. We focused on the BPC 157 therapy effect obtained by giving 10 ng/kg ip to rats 5 min before sacrifice on the rat thoracic aorta, which we assessed with Fourier transform infrared spectroscopy (FTIR) 90 min thereafter. We applied a principal component analysis (PCA). The PCA model showed, with a clear distinction being mostly due to the PC1 score, differences between the spectra of BPC 157- and saline-treated rats. The comparison of the averaged spectra of these two groups with their differential spectrum and PC loadings allowed us to identify the parts of the FTIR spectra that contributed the most to the spectral separation of the two observed groups. The PC1 loadings and the differential spectrum showed that the main bands affecting the separation were the amid I band around 1650 cm-1, the amid II band around 1540 cm-1, and the vibrational band around 1744 cm-1. Fitting the spectral range between 1450 and 1800 cm-1 showed changes in protein conformation and confirmed the appearance of the vibrational band at 1744 cm-1. Controls had a substantially more intense vibrational band at 1744 cm-1. These spectral results showed the cells from saline-treated (control) rats to be in the early stage of cell death, while the samples from BPC 157-rats were protected. Thus, BPC 157 therapy changed the lipid contents and protein secondary structure conformation, with a rapid effect on vessels, within a short time upon application.
Collapse
Affiliation(s)
- Ozren Gamulin
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maria Krajacic
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Skrabic
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vilim Dretar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Juzbasic
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marin Lozic
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurca
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Stable Gastric Pentadecapeptide BPC 157 as Useful Cytoprotective Peptide Therapy in the Heart Disturbances, Myocardial Infarction, Heart Failure, Pulmonary Hypertension, Arrhythmias, and Thrombosis Presentation. Biomedicines 2022; 10:biomedicines10112696. [PMID: 36359218 PMCID: PMC9687817 DOI: 10.3390/biomedicines10112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
In heart disturbances, stable gastric pentadecapeptide BPC 157 especial therapy effects combine the therapy of myocardial infarction, heart failure, pulmonary hypertension arrhythmias, and thrombosis prevention and reversal. The shared therapy effect occurred as part of its even larger cytoprotection (cardioprotection) therapy effect (direct epithelial cell protection; direct endothelium cell protection) that BPC 157 exerts as a novel cytoprotection mediator, which is native and stable in human gastric juice, as well as easily applicable. Accordingly, there is interaction with many molecular pathways, combining maintained endothelium function and maintained thrombocytes function, which counteracted thrombocytopenia in rats that underwent major vessel occlusion and deep vein thrombosis and counteracted thrombosis in all vascular studies; the coagulation pathways were not affected. These appeared as having modulatory effects on NO-system (NO-release, NOS-inhibition, NO-over-stimulation all affected), controlling vasomotor tone and the activation of the Src-Caveolin-1-eNOS pathway and modulatory effects on the prostaglandins system (BPC 157 counteracted NSAIDs toxicity, counteracted bleeding, thrombocytopenia, and in particular, leaky gut syndrome). As an essential novelty noted in the vascular studies, there was the activation of the collateral pathways. This might be the upgrading of the minor vessel to take over the function of the disabled major vessel, competing with and counteracting the Virchow triad circumstances devastatingly present, making possible the recruitment of collateral blood vessels, compensating vessel occlusion and reestablishing the blood flow or bypassing the occluded or ruptured vessel. As a part of the counteraction of the severe vessel and multiorgan failure syndrome, counteracted were the brain, lung, liver, kidney, gastrointestinal lesions, and in particular, the counteraction of the heart arrhythmias and infarction.
Collapse
|
7
|
Novel Therapeutic Effects in Rat Spinal Cord Injuries: Recovery of the Definitive and Early Spinal Cord Injury by the Administration of Pentadecapeptide BPC 157 Therapy. Curr Issues Mol Biol 2022; 44:1901-1927. [PMID: 35678659 PMCID: PMC9164058 DOI: 10.3390/cimb44050130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Recently, marked therapeutic effects pertaining to the recovery of injured rat spinal cords (1 min compression injury of the sacrocaudal spinal cord (S2-Co1) resulting in tail paralysis) appeared after a single intraperitoneal administration of the stable gastric pentadecapeptide BPC 157 at 10 min post-injury. Besides the demonstrated rapid and sustained recovery (1 year), we showed the particular points of the immediate effect of the BPC 157 therapy that began rapidly after its administration, (i) soon after injury (10 min), or (ii) later (4 days), in the rats with a definitive spinal cord injury. Specifically, in counteracting spinal cord hematoma and swelling, (i) in rats that had undergone acute spinal cord injury, followed by intraperitoneal BPC 157 application at 10 min, we focused on the first 10–30 min post-injury period (assessment of gross, microscopic, and gene expression changes). Taking day 4 post-injury as the definitive injury, (ii) we focused on the immediate effects after the BPC 157 intragastric application over 20 min of the post-therapy period. Comparable long-time recovery was noted in treated rats which had definitive tail paralysis: (iii) the therapy was continuously given per orally in drinking water, beginning at day 4 after injury and lasting one month after injury. BPC 157 rats presented only discrete edema and minimal hemorrhage and increased Nos1, Nos2, and Nos3 values (30 min post-injury, (i)) or only mild hemorrhage, and only discrete vacuolation of tissue (day 4, (ii)). In the day 4–30 post-injury study (iii), BPC 157 rats rapidly presented tail function recovery, and no demyelination process (Luxol fast blue staining).
Collapse
|
8
|
Stable Gastric Pentadecapeptide BPC 157 Therapy of Rat Glaucoma. Biomedicines 2021; 10:biomedicines10010089. [PMID: 35052769 PMCID: PMC8773185 DOI: 10.3390/biomedicines10010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cauterization of three episcleral veins (open-angle glaucoma model) induces venous congestion and increases intraocular pressure in rats. If not upgraded, one episcleral vein is regularly unable to acquire and take over the whole function, and glaucoma-like features persist. Recently, the rapid upgrading of the collateral pathways by a stable gastric pentadecapeptide BPC 157 has cured many severe syndromes induced by permanent occlusion of major vessels, veins and/or arteries, peripherally and centrally. In a six-week study, medication was given prophylactically (immediately before glaucoma surgery, i.e., three episcleral veins cauterization) or as curative treatment (starting at 24 h after glaucoma surgery). The daily regimen of BPC 157 (0.4 µg/eye, 0.4 ng/eye; 10 µg/kg, 10 ng/kg) was administered locally as drops in each eye, intraperitoneally (last application at 24 h before sacrifice) or per-orally in drinking water (0.16 µg/mL, 0.16 ng/mL, 12 mL/rat until the sacrifice, first application being intragastric). Consequently, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, normal retinal and choroidal blood vessel presentation and normal optic nerve presentation. As leading symptoms, increased intraocular pressure and mydriasis, as well as degeneration of retinal ganglion cells, optic nerve head excavation and reduction in optic nerve thickness, generalized severe irregularity of retinal vessels, faint presentation of choroidal vessels and severe optic nerve disc atrophy were all counteracted. In conclusion, we claim that the reversal of the episcleral veins cauterization glaucoma appeared as a consequence of the BPC 157 therapy of the vessel occlusion-induced perilous syndrome.
Collapse
|
9
|
Tepes M, Gojkovic S, Krezic I, Zizek H, Vranes H, Madzar Z, Santak G, Batelja L, Milavic M, Sikiric S, Kocman I, Simonji K, Samara M, Knezevic M, Barisic I, Lovric E, Strbe S, Kokot A, Sjekavica I, Kolak T, Skrtic A, Seiwerth S, Boban Blagaic A, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy for Primary Abdominal Compartment Syndrome in Rats. Front Pharmacol 2021; 12:718147. [PMID: 34966273 PMCID: PMC8710746 DOI: 10.3389/fphar.2021.718147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the stable gastric pentadecapeptide BPC 157 was shown to counteract major vessel occlusion syndromes, i.e., peripheral and/or central occlusion, while activating particular collateral pathways. We induced abdominal compartment syndrome (intra-abdominal pressure in thiopental-anesthetized rats at 25 mmHg (60 min), 30 mmHg (30 min), 40 mmHg (30 min), and 50 mmHg (15 min) and in esketamine-anesthetized rats (25 mmHg for 120 min)) as a model of multiple occlusion syndrome. By improving the function of the venous system with BPC 157, we reversed the chain of harmful events. Rats with intra-abdominal hypertension (grade III, grade IV) received BPC 157 (10 µg or 10 ng/kg sc) or saline (5 ml) after 10 min. BPC 157 administration recovered the azygos vein via the inferior–superior caval vein rescue pathway. Additionally, intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were reduced, as were the grossly congested stomach and major hemorrhagic lesions, brain swelling, venous and arterial thrombosis, congested inferior caval and superior mesenteric veins, and collapsed azygos vein; thus, the failed collateral pathway was fully recovered. Severe ECG disturbances (i.e., severe bradycardia and ST-elevation until asystole) were also reversed. Microscopically, transmural hyperemia of the gastrointestinal tract, intestinal mucosa villi reduction, crypt reduction with focal denudation of superficial epithelia, and large bowel dilatation were all inhibited. In the liver, BPC 157 reduced congestion and severe sinusoid enlargement. In the lung, a normal presentation was observed, with no alveolar membrane focal thickening and no lung congestion or edema, and severe intra-alveolar hemorrhage was absent. Moreover, severe heart congestion, subendocardial infarction, renal hemorrhage, brain edema, hemorrhage, and neural damage were prevented. In conclusion, BPC 157 cured primary abdominal compartment syndrome.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Surgery, General Hospital Nasice, Nasice, Croatia
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, Osijek, Croatia
- PhD Program Translational Research in Biomedicine—TRIBE, School of Medicine, University of Split, Split, Croatia
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zrinko Madzar
- Clinical Department of Surgery, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Goran Santak
- Department of Surgery, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Lovorka Batelja
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivica Kocman
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Karol Simonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine Zagreb, Zagreb, Croatia
| | - Mariam Samara
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivica Sjekavica
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, Zagreb, Croatia
| | - Toni Kolak
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Predrag Sikiric, ; Anita Skrtic,
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Predrag Sikiric, ; Anita Skrtic,
| |
Collapse
|
10
|
Over-Dose Lithium Toxicity as an Occlusive-like Syndrome in Rats and Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:biomedicines9111506. [PMID: 34829735 PMCID: PMC8615292 DOI: 10.3390/biomedicines9111506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Due to endothelial impairment, high-dose lithium may produce an occlusive-like syndrome, comparable to permanent occlusion of major vessel-induced syndromes in rats; intracranial, portal, and caval hypertension, and aortal hypotension; multi-organ dysfunction syndrome; brain, heart, lung, liver, kidney, and gastrointestinal lesions; arterial and venous thrombosis; and tissue oxidative stress. Stable gastric pentadecapeptide BPC 157 may be a means of therapy via activating loops (bypassing vessel occlusion) and counteracting major occlusion syndromes. Recently, BPC 157 counteracted the lithium sulfate regimen in rats (500 mg/kg/day, ip, for 3 days, with assessment at 210 min after each administration of lithium) and its severe syndrome (muscular weakness and prostration, reduced muscle fibers, myocardial infarction, and edema of various brain areas). Subsequently, BPC 157 also counteracted the lithium-induced occlusive-like syndrome; rapidly counteracted brain swelling and intracranial (superior sagittal sinus) hypertension, portal hypertension, and aortal hypotension, which otherwise would persist; counteracted vessel failure; abrogated congestion of the inferior caval and superior mesenteric veins; reversed azygos vein failure; and mitigated thrombosis (superior mesenteric vein and artery), congestion of the stomach, and major hemorrhagic lesions. Both regimens of BPC 157 administration also counteracted the previously described muscular weakness and prostration (as shown in microscopic and ECG recordings), myocardial congestion and infarction, in addition to edema and lesions in various brain areas; marked dilatation and central venous congestion in the liver; large areas of congestion and hemorrhage in the lung; and degeneration of proximal and distal tubules with cytoplasmic vacuolization in the kidney, attenuating oxidative stress. Thus, BPC 157 therapy overwhelmed high-dose lithium intoxication in rats.
Collapse
|
11
|
Gojkovic S, Krezic I, Vranes H, Zizek H, Drmic D, Batelja Vuletic L, Milavic M, Sikiric S, Stilinovic I, Simeon P, Knezevic M, Kolak T, Tepes M, Simonji K, Strbe S, Nikolac Gabaj N, Barisic I, Oreskovic EG, Lovric E, Kokot A, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Robert's Intragastric Alcohol-Induced Gastric Lesion Model as an Escalated General Peripheral and Central Syndrome, Counteracted by the Stable Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:1300. [PMID: 34680419 PMCID: PMC8533388 DOI: 10.3390/biomedicines9101300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
We redefined Robert's prototypical cytoprotection model, namely the intragastric administration of 96% alcohol in order to generate a general peripheral and central syndrome similar to that which occurs when major central or peripheral veins are occluded in animal models. With this redefinition, we used Robert's model to examine the cytoprotective effects of the stable gastric pentadecapeptide BPC 157. The intragastric administration of alcohol induced gastric lesions, intracranial (superior sagittal sinus) hypertension, severe brain swelling and lesions, portal and vena caval hypertension, aortal hypotension, severe thrombosis, inferior vena cava and superior mesenteric vein congestion, azygos vein failure (as a failed collateral pathway), electrocardiogram disturbances, and heart, lung, liver and kidney lesions. The use of BPC 157 therapy (10 µg/kg or 10 ng/kg given intraperitoneally 1 min after alcohol) counteracted these deficits rapidly. Specifically, BPC 157 reversed brain swelling and superior mesenteric vein and inferior vena caval congestion, and helped the azygos vein to recover, which improved the collateral blood flow pathway. Microscopically, BPC 157 counteracted brain (i.e., intracerebral hemorrhage with degenerative changes of cerebral and cerebellar neurons), heart (acute subendocardial infarct), lung (parenchymal hemorrhage), liver (congestion), kidney (congestion) and gastrointestinal (epithelium loss, hemorrhagic gastritis) lesions. In addition, this may have taken place along with the activation of specific molecular pathways. In conclusion, these findings clarify and extend the theory of cytoprotection, offer an approach to its practical application, and establish BPC 157 as a prospective cytoprotective treatment.
Collapse
Affiliation(s)
- Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Irma Stilinovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Paris Simeon
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Toni Kolak
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Karol Simonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Nora Nikolac Gabaj
- Department of Chemistry, University Clinical Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Emma Grace Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| |
Collapse
|
12
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Vranes H, Malekinusic D, Vrdoljak B, Knezevic T, Horvat Pavlov K, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Lovric E, Milavic M, Sikiric S, Barisic I, Tepes M, Tvrdeic A, Patrlj L, Strbe S, Sola M, Situm A, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Complex Syndrome of the Complete Occlusion of the End of the Superior Mesenteric Vein, Opposed with the Stable Gastric Pentadecapeptide BPC 157 in Rats. Biomedicines 2021; 9:1029. [PMID: 34440233 PMCID: PMC8394093 DOI: 10.3390/biomedicines9081029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background. Gastric pentadecapeptide BPC 157 therapy in rats compensated irremovable occlusion of various vessels and counteracted the consequent multiorgan dysfunction syndromes by activation of the corresponding collateral bypassing loops. Thus, we used BPC 157 therapy against the irremovable occlusion of the end of the superior mesenteric vein. Methods. Assessments, for 30 min (gross recording, venography, ECG, pressure, microscopy, biochemistry, and oxidative stress) include the portal and caval hypertension, aortal hypotension, and centrally, the superior sagittal sinus hypertension, systemic arterial and venous thrombosis, ECG disturbances, MDA-tissue increase, and heart, lung, liver, kidney and gastrointestinal tract, in particular, and brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus) lesions. Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally at 1 or 15 min ligation time. Results. BPC 157 rapidly activated the superior mesenteric vein-inferior anterior pancreati-coduodenal vein-superior anterior pancreaticoduodenal vein-pyloric vein-portal vein pathway, reestablished superior mesenteric vein and portal vein connection and reestablished blood flow. Simultaneously, toward inferior caval vein, an additional pathway appears via the inferior mesenteric vein united with the middle colic vein, throughout its left colic branch to ascertain alternative bypassing blood flow. Consequently, BPC 157 acts peripherally and centrally, and counteracted the intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, ECG disturbances attenuated, abolished progressing venous and arterial thrombosis. Additionally, BPC 157 counteracted multiorgan dysfunction syndrome, heart, lung, liver, kidney and gastrointestinal tract, and brain lesions, and oxidative stress in tissues. Conclusion. BPC 157 therapy may be specific management also for the superior mesenteric vein injuries.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Katarina Horvat Pavlov
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Andrej Situm
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| |
Collapse
|