1
|
Nejat Dehkordi A, Maddahi M, Vafa P, Ebrahimi N, Aref AR. Salivary biomarkers: a promising approach for predicting immunotherapy response in head and neck cancers. Clin Transl Oncol 2025; 27:1887-1920. [PMID: 39377974 DOI: 10.1007/s12094-024-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 04/27/2025]
Abstract
Head and neck cancers, including cancers of the mouth, throat, voice box, salivary glands, and nose, are a significant global health issue. Radiotherapy and surgery are commonly used treatments. However, due to treatment resistance and disease recurrence, new approaches such as immunotherapy are being explored. Immune checkpoint inhibitors (ICIs) have shown promise, but patient responses vary, necessitating predictive markers to guide appropriate treatment selection. This study investigates the potential of non-invasive biomarkers found in saliva, oral rinses, and tumor-derived exosomes to predict ICI response in head and neck cancer patients. The tumor microenvironment significantly impacts immunotherapy efficacy. Oral biomarkers can provide valuable information on composition, such as immune cell presence and checkpoint expression. Elevated tumor mutation load is also associated with heightened immunogenicity and ICI responsiveness. Furthermore, the oral microbiota may influence treatment outcomes. Current research aims to identify predictive salivary biomarkers. Initial studies indicate that tumor-derived exosomes and miRNAs present in saliva could identify immunosuppressive pathways and predict ICI response. While tissue-based markers like PD-L1 have limitations, combining multiple oral fluid biomarkers could create a robust panel to guide treatment decisions and advance personalized immunotherapy for head and neck cancer patients.
Collapse
Affiliation(s)
| | - Moein Maddahi
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Parinaz Vafa
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Patterson WB, Young ND, Holzhausen EA, Lurmann F, Liang D, Walker DI, Jones DP, Liao J, Chen Z, Conti DV, Chatzi L, Goodrich JA, Alderete TL. Oxidative gaseous air pollutant exposure interacts with PNPLA3-I148M genotype to influence liver fat fraction and multi-omics profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125692. [PMID: 39864653 PMCID: PMC11859754 DOI: 10.1016/j.envpol.2025.125692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (Oxwt) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort. Prior-month residential Oxwt exposure (redox-weighted oxidative capacity of nitrogen dioxide and ozone) was spatially interpolated from monitoring stations via inverse-distance-squared weighting. Liver fat fraction was assessed by MRI. Serum miRNAs and metabolites were assayed via NanoString nCounter and LC-HRMS, respectively. Multi-omics factor analysis (MOFA) was used to identify latent factors with shared variance across omics layers. Multivariable linear regression models adjusted for age, sex, body mass index, and genotype with liver fat or MOFA factors as an outcome and examined PNPLA3 (rs738409; CC/CG vs. GG) as a multiplicative interaction term. Overall, a standard deviation difference in Oxwt exposure was associated with 8.9% relative increase in liver fat (p = 0.04) and this relationship differed by PNPLA3 genotype (p-value for interaction term: pintx<0.001), whereby relative increases in liver fat for GG and CC/CG participants were 71.8% and 2.4%, respectively. There was no main effect of Oxwt on MOFA Factor 1 expression (p = 0.85), but there was an interaction with PNPLA3 genotype (pintx = 0.01), whereby marginal slopes were 0.211 and -0.017 for GG and CC/CG participants, respectively. MOFA Factor 1 in turn was associated with liver fat (p = 0.006). MOFA Factor 1 miRNAs targeted genes in Fatty Acid Biosynthesis and Metabolism and Lysine Degradation pathways. MOFA Factor 9 was also associated with liver fat and was comprised of branched-chain keto acid and amino acid metabolites. The effects of Oxwt exposure on liver fat is exacerbated in young adults with two PNPLA3 risk alleles, potentially through differential effects on miRNA and/or metabolite profiles.
Collapse
Affiliation(s)
- William B Patterson
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nathan D Young
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Alwood JS, Mulavara AP, Iyer J, Mhatre SD, Rosi S, Shelhamer M, Davis C, Jones CW, Mao XW, Desai RI, Whitmire AM, Williams TJ. Circuits and Biomarkers of the Central Nervous System Relating to Astronaut Performance: Summary Report for a NASA-Sponsored Technical Interchange Meeting. Life (Basel) 2023; 13:1852. [PMID: 37763256 PMCID: PMC10532466 DOI: 10.3390/life13091852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.
Collapse
Affiliation(s)
| | | | - Janani Iyer
- Universities Space Research Association (USRA), Moffett Field, CA 94035, USA
| | | | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
| | - Mark Shelhamer
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Catherine Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| | - Christopher W. Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Rajeev I. Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
4
|
Zhang L, Li D, Yi P, Shi J, Guo M, Yin Q, Liu D, Zhuang P, Zhang Y. Peripheral origin exosomal microRNAs aggravate glymphatic system dysfunction in diabetic cognitive impairment. Acta Pharm Sin B 2023; 13:2817-2825. [PMID: 37521866 PMCID: PMC10372831 DOI: 10.1016/j.apsb.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 08/01/2023] Open
Abstract
Cognitive dysfunction is one of the common central nervous systems (CNS) complications of diabetes mellitus, which seriously affects the quality of life of patients and results in a huge economic burden. The glymphatic system dysfunction mediated by aquaporin-4 (AQP4) loss or redistribution in perivascular astrocyte endfeet plays a crucial role in diabetes-induced cognitive impairment (DCI). However, the mechanism of AQP4 loss or redistribution in the diabetic states remains unclear. Accumulating evidence suggests that peripheral insulin resistance target tissues and CNS communication affect brain homeostasis and that exosomal miRNAs are key mediators. Glucose and lipid metabolism disorder is an important pathological feature of diabetes mellitus, and skeletal muscle, liver and adipose tissue are the key target insulin resistance organs. In this review, the changes in exosomal miRNAs induced by peripheral metabolism disorders in diabetes mellitus were systematically reviewed. We focused on exosomal miRNAs that could induce low AQP4 expression and redistribution in perivascular astrocyte endfeet, which could provide an interorgan communication pathway to illustrate the pathogenesis of DCI. Furthermore, the mechanisms of exosome secretion from peripheral insulin resistance target tissue and absorption to the CNS were summarized, which will be beneficial for proposing novel and feasible strategies to optimize DCI prevention and/or treatment in diabetic patients.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongna Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengrong Yi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Mengqing Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingsheng Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pengwei Zhuang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
5
|
Xu Z, Yang C, Wu F, Tan X, Guo Y, Zhang H, Wang H, Sui X, Xu Z, Zhao M, Jiang S, Dai Z, Li Y. Triple-gene deletion for osteocalcin significantly impairs the alignment of hydroxyapatite crystals and collagen in mice. Front Physiol 2023; 14:1136561. [PMID: 37057181 PMCID: PMC10089303 DOI: 10.3389/fphys.2023.1136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Osteocalcin (Ocn), also known as bone Gla protein, is synthesized by osteoblasts and thought to regulate energy metabolism, testosterone synthesis and brain development. However, its function in bone is not fully understood. Mice have three Ocn genes: Bglap, Bglap2 and Bglap3. Due to the long span of these genes in the mouse genome and the low expression of Bglap3 in bone, researchers commonly use Bglap and Bglap2 knockout mice to investigate the function of Ocn. However, it is unclear whether Bglap3 has any compensatory mechanisms when Bglap and Bglap2 are knocked out. Considering the controversy surrounding the role of Ocn in bone, we constructed an Ocn-deficient mouse model by knocking out all three genes (Ocn−/−) and analyzed bone quality by Raman spectroscopy (RS), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and MicroCT (μCT). The RS test showed that the alignment of hydroxyapatite crystals and collagen fibers was significantly poorer in Ocn−/− mice than in wild-type (WT) mice. Ocn deficiency resulted in a looser surface structure of bone particles and a larger gap area proportion. FTIR analysis showed few differences in bone mineral index between WT and Ocn−/− mice, while μCT analysis showed no significant difference in cortical and trabecular regions. However, under tail-suspension simulating bone loss condition, the disorder of hydroxyapatite and collagen fiber alignment in Ocn−/− mice led to more obvious changes in bone mineral composition. Collectively, our results revealed that Ocn is necessary for regulating the alignment of minerals parallel to collagen fibrils.
Collapse
Affiliation(s)
- Zihan Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaowen Tan
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Minbo Zhao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Siyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Yinghui Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| |
Collapse
|
6
|
Cao W, Sun W, Chen S, Jia X, Wang J, Lai S. Comprehensive analysis of microRNA and metabolic profiles in bovine seminal plasma of different semen quality. Front Vet Sci 2023; 10:1088148. [PMID: 37056229 PMCID: PMC10086235 DOI: 10.3389/fvets.2023.1088148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundSeminal plasma plays a pivotal role in modulating sperm viability and function. However, the underlying mechanisms have not been fully elucidated.MethodIn this study, the bull semen production records of core breeding farms and bull stations in the past 10 years were analyzed.ResultsWe found that the semen of 5-year-old bulls collected for the first time is of the best quality (p < 0.05). Despite the bull semen collected under the above conditions, low-quality sperm is still obtained from part of bulls due to individual differences. Interestingly, seminal plasma from normal semen is capable of improving low-quality semen motility. To identify the potential key factors in seminal plasma, the differences in miRNA and metabolite profiles between normal and low-quality seminal plasma were analyzed. We found that 59 miRNAs were differently expressed, including 38 up-regulated and 21 down-regulated miRNAs. Three hundred and ninety-one and 327 significantly different metabolites were identified from the positive and negative ion models, respectively. These multiple miRNAs and metabolites collectively contribute to the motility of sperm, subsequently, affect semen quality.DiscussionTogether, these results not only revealed the critical factors of seminal plasma improving sperm quality but also provided potential miRNA- or metabolite-based biomarkers to identify the high semen quality.
Collapse
Affiliation(s)
- Wei Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Wenqiang Sun
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shiyi Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xianbo Jia
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Songjia Lai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Songjia Lai
| |
Collapse
|
7
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|