1
|
Quarta R, Cristiano E, Han MKL, Boccanegra B, Marinelli M, Gaio N, Ohana J, Mouly V, Cappellari O, De Luca A. Patient-Oriented In Vitro Studies in Duchenne Muscular Dystrophy: Validation of a 3D Skeletal Muscle Organoid Platform. Biomedicines 2025; 13:1109. [PMID: 40426938 PMCID: PMC12109395 DOI: 10.3390/biomedicines13051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Three-dimensional skeletal muscle organoids (3D SkMO) are becoming of increasing interest for preclinical studies in Duchenne muscular dystrophy (DMD), provided that the used platform demonstrates the possibility to form functional and reproducible 3D SkMOs, to investigate on potential patient-related phenotypic differences. Methods: In this study, we employed fibrin-based 3D skeletal muscle organoids derived from immortalized myogenic precursors of DMD patients carrying either a stop codon mutation in exon 59 or a 48-50 deletion. We compared dystrophic lines with a healthy wild-type control (HWT) by assessing microtissue formation ability, contractile function at multiple timepoints along with intracellular calcium dynamics via calcium imaging, as well as expression of myogenic markers. Results: We found patient-specific structural and functional differences in the early stages of 3D SkMO development. Contractile force, measured as both single twitch and tetanic responses, was significantly lower in dystrophic 3D SkMOs compared to HWT, with the most pronounced differences observed at day 7 of differentiation. However, these disparities diminished over time under similar culturing conditions and in the absence of continuous nerve-like stimulation, suggesting that the primary deficit lies in delayed myogenic maturation, as also supported by gene expression analysis. Conclusions: Our results underline that, despite the initial maturation delay, DMD muscle precursors retain the capacity to form functional 3D SkMOs once this intrinsic lag is overcome. This suggests a critical role of dystrophin in early myogenic development, while contraction-induced stress and/or an inflammatory microenvironment are essential to fully recapitulate dystrophic phenotypes in 3D SkMOs.
Collapse
Affiliation(s)
- Raffaella Quarta
- Department of Pharmacy Drug Science, University of Bari Aldo Moro, 70125 Bari, Italy; (R.Q.); (B.B.); (A.D.L.)
| | - Enrica Cristiano
- Department of Pharmacy Drug Science, University of Bari Aldo Moro, 70125 Bari, Italy; (R.Q.); (B.B.); (A.D.L.)
| | | | - Brigida Boccanegra
- Department of Pharmacy Drug Science, University of Bari Aldo Moro, 70125 Bari, Italy; (R.Q.); (B.B.); (A.D.L.)
| | - Manuel Marinelli
- Department of Pharmacy Drug Science, University of Bari Aldo Moro, 70125 Bari, Italy; (R.Q.); (B.B.); (A.D.L.)
| | - Nikolas Gaio
- BIOND Solutions B.V., 2629 JD Delft, The Netherlands
| | - Jessica Ohana
- Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Vincent Mouly
- Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Ornella Cappellari
- Department of Pharmacy Drug Science, University of Bari Aldo Moro, 70125 Bari, Italy; (R.Q.); (B.B.); (A.D.L.)
| | - Annamaria De Luca
- Department of Pharmacy Drug Science, University of Bari Aldo Moro, 70125 Bari, Italy; (R.Q.); (B.B.); (A.D.L.)
| |
Collapse
|
2
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025; 14:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
4
|
Santoso J, Do SK, Verma R, Do AV, Hendricks E, Ichida JK, McCain ML. Human iPSC-Derived Motor Neuron Innervation Enhances the Differentiation of Muscle Bundles Engineered with Benchtop Fabrication Techniques. ACS Biomater Sci Eng 2025; 11:1731-1740. [PMID: 39973396 PMCID: PMC11897949 DOI: 10.1021/acsbiomaterials.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. However, the impact of motor neurons on muscle phenotype when added prior to the onset of muscle differentiation is not clearly established. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering three-dimensional (3D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after 1 and 2 weeks of differentiation compared to noninnervated muscle bundles cultured with or without neurotrophic factors. Noninnervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and noninnervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.
Collapse
Affiliation(s)
- Jeffrey
W. Santoso
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Stephanie K. Do
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Riya Verma
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Alexander V. Do
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
- Thomas
Jefferson High School for Science and Technology, Alexandria, Virginia 22312, United States
| | - Eric Hendricks
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Justin K. Ichida
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Megan L. McCain
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
5
|
Li T, Takeuchi S. Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications. BIOPHYSICS REVIEWS 2025; 6:011304. [PMID: 39957912 PMCID: PMC11825180 DOI: 10.1063/5.0246194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
Biohybrid robots have attracted many researchers' attention due to their high flexibility, adaptation ability, and high output efficiency. Under electrical, optical, and neural stimulations, the biohybrid robot can achieve various movements. However, better understanding and more precise control of the biohybrid robot are strongly needed to establish an integrated autonomous robotic system. In this review, we outlined the ongoing techniques aiming for the contraction model and accurate control for the biohybrid robot. Computational modeling tools help to construct the bedrock of the contraction mechanism. Selective control, closed-loop control, and on-board control bring new perspectives to realize accurate control of the biohybrid robot. Additionally, applications of the biohybrid robot are given to indicate the future direction in this field.
Collapse
Affiliation(s)
- Tingyu Li
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
6
|
Shahin-Shamsabadi A, Cappuccitti J. Proteomics and machine learning: Leveraging domain knowledge for feature selection in a skeletal muscle tissue meta-analysis. Heliyon 2024; 10:e40772. [PMID: 39720035 PMCID: PMC11667615 DOI: 10.1016/j.heliyon.2024.e40772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/22/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Omics techniques, such as proteomics, contain crucial data for understanding biological processes, but they remain underutilized due to their high dimensionality. Typically, proteomics research focuses narrowly on using a limited number of datasets, hindering cross-study comparisons, a problem that can potentially be addressed by machine learning. Despite this potential, machine learning has seen limited adoption in the field of proteomics. Here, skeletal muscle proteomics datasets from five separate studies were combined. These studies included conditions such as in vitro models (both 2D and 3D), in vivo skeletal muscle tissue, and adjacent tissues such as tendons. The collected data was preprocessed using MaxQuant, and then enriched using a Python script fetching structural and compositional details from UniProt and Ensembl databases. This was used to handle high-dimensional and sparsely labeled dataset by breaking it down into five smaller categories using cellular composition information and then training a Random Forest model for each category separately. Using biological context for interpreting the data resulted in improved model performance and made tailored analysis possible by reducing the dimensionality and increasing signal-to-noise ratio as well as only preserving biologically relevant features in each category. This integration of domain knowledge into data analysis and model training facilitated the discovery of new patterns while ensuring the retention of critical details, often overlooked when blind feature selection methods are used to exclude proteins with minimal expressions or variances. This approach was shown to be suitable for performing diverse analyses on individual as well as combined datasets within a broader biological context, ultimately leading to the identification of biologically relevant patterns. Besides from generating new biological insights, this approach can be used to perform tasks such as biomarker discovery, cluster analysis, classification, and anomaly detection more accurately, but incorporation of more datasets is needed to further expand the computational capabilities of such models in clinical settings.
Collapse
|
7
|
Santoso JW, Do SK, Verma R, Do AV, Hendricks E, Ichida JK, McCain ML. Human iPSC-derived motor neuron innervation enhances the differentiation of muscle bundles engineered with benchtop fabrication techniques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626391. [PMID: 39677637 PMCID: PMC11642770 DOI: 10.1101/2024.12.02.626391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. Although motor neurons have been added to pre-engineered muscle constructs, the impact of motor neurons added prior to the onset of muscle differentiation has not been evaluated. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering 3-dimensional (3-D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after one and two weeks of differentiation compared to non-innervated muscle bundles cultured with or without neurotrophic factors. Non-innervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and non-innervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.
Collapse
Affiliation(s)
- Jeffrey W. Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie K. Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Riya Verma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander V. Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Jefferson Highschool for Science and Technology, Alexandria, VA 22312, USA
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Harriot AD, Ward CW, Kim DH. Microphysiological systems to advance human pathophysiology and translational medicine. J Appl Physiol (1985) 2024; 137:1494-1501. [PMID: 39417817 DOI: 10.1152/japplphysiol.00087.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Microphysiological systems (MPS) or "organ-on-a-chip" models are sophisticated tools that harness techniques from cell biology, tissue engineering, and microengineering to recapitulate human physiology. Typically, MPS are biofabricated three-dimensional (3-D) tissue constructs integrated into platforms designed to mimic the tissue microenvironment and provide functional outputs. Over the past decade, researchers have endeavored to manufacture high-throughput, high-fidelity MPS models of all major human organs. By incorporating patient-derived cells, researchers have produced biomimetic models of tissues with disease-linked genetic mutations capable of exhibiting patient heterogeneity. This work has demonstrated that MPS more closely model organotypic function and pathophysiology than traditional two-dimensional (2-D) culture systems. Moreover, investigators have shown that human MPS are better predictors of drug efficacy and toxicity than animal models. Thus, MPS have emerged as a promising candidate to improve the efficacy and safety of preclinical trials. In this mini-review, we provide an overview of current advances in MPS models, their applications in mechanistic research, and relevance to drug screening. Finally, we discuss current investments in MPS development by the United States federal government and research institutions around the world to advance translational medicine.
Collapse
Affiliation(s)
- Anicca D Harriot
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, Maryland, United States
| | - Christopher W Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Claude D. Pepper Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, Maryland, United States
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Montowska M, Kasałka-Czarna N, Sumara A, Fornal E. Comparative analysis of the longissimus muscle proteome of European wild boar and domestic pig in response to thermal processing. Food Chem 2024; 456:139871. [PMID: 38870802 DOI: 10.1016/j.foodchem.2024.139871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/26/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
This study tries to fill the knowledge gap regarding differences in the expression of proteins in the meat of European wild boar (Sus scrofa scrofa) and domestic pig (Sus scrofa domestica), considering the impact of thermally induced degradation. We assessed relative protein changes between cooked longissimus thoracis et lumborum (LTL) muscle proteomes by using mass spectrometry, chemometric, label-free proteomic, and bioinformatic tools. Among 30 differentially abundant proteins identified MyHC-2a, ATPs-α, CK-S, ADP/ATPt1, IDH2, and MyBP-C1 were upregulated (x > 1) whereas NEB, γ-ENO and EPSF were downregulated (x < 1) in wild boar. ShinyGO and KEGG database pathway analyses revealed that these proteins are mainly involved in processes related to muscle contraction and various pathways of glucose metabolism and energy production. Protein expression changes could have been caused by the different muscle activity of wild animals in response to prolonged movement associated with foraging for food in the natural environment.
Collapse
Affiliation(s)
- Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland.
| | - Natalia Kasałka-Czarna
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
10
|
Pallotta I, Stec MJ, Schriver B, Golann DR, Considine K, Su Q, Barahona V, Napolitano JE, Stanley S, Garcia M, Feric NT, Durney KM, Aschar‐Sobbi R, Bays N, Shavlakadze T, Graziano MP. Electrical stimulation of biofidelic engineered muscle enhances myotube size, force, fatigue resistance, and induces a fast-to-slow-phenotype shift. Physiol Rep 2024; 12:e70051. [PMID: 39384537 PMCID: PMC11464147 DOI: 10.14814/phy2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
Therapeutic development for skeletal muscle diseases is challenged by a lack of ex vivo models that recapitulate human muscle physiology. Here, we engineered 3D human skeletal muscle tissue in the Biowire II platform that could be maintained and electrically stimulated long-term. Increasing differentiation time enhanced myotube formation, modulated myogenic gene expression, and increased twitch and tetanic forces. When we mimicked exercise training by applying chronic electrical stimulation, the "exercised" skeletal muscle tissues showed increased myotube size and a contractility profile, fatigue resistance, and gene expression changes comparable to in vivo models of exercise training. Additionally, tissues also responded with expected physiological changes to known pharmacological treatment. To our knowledge, this is the first evidence of a human engineered 3D skeletal muscle tissue that recapitulates in vivo models of exercise. By recapitulating key features of human skeletal muscle, we demonstrated that the Biowire II platform may be used by the pharmaceutical industry as a model for identifying and optimizing therapeutic drug candidates that modulate skeletal muscle function.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Su
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Espinoza-Álvarez ML, Rojas-Rojas L, Morales-Sánchez J, Guillén-Girón T. Impact of Uniaxial Static Strain on Myoblast Differentiation in Collagen-Coated PCL Microfilament Scaffolds: Role of Onset Time of Mechanical Stimulation. Bioengineering (Basel) 2024; 11:919. [PMID: 39329661 PMCID: PMC11428666 DOI: 10.3390/bioengineering11090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Tissue engineering endeavors to create in vitro constructs that replicate the properties of native tissue, such as skeletal muscle. This study investigated the use of mechanical stimulation to promote myogenic differentiation and enhance the functionality of bioengineered tissues. Specifically, it aimed to facilitate the differentiation of myoblasts within a three-dimensional scaffold using a defined pattern of mechanical stimulation. C2C12 cells were cultured on a collagen-coated PCL microfilament scaffold and subjected to 24 h of uniaxial static strain using a biomechanical stimulation system. Two onset times of stimulation, 72 h and 120 h post-seeding, were evaluated. Cell proliferation, myogenic marker expression, and alterations in cell morphology and orientation were assessed. Results indicate that static strain on the scaffold promoted myoblast differentiation, evidenced by morphological and molecular changes. Notably, strain initiated at 72 h induced an early differentiation stage marked by MyoD expression, whereas stimulation beginning at 120 h led to a mid-stage differentiation characterized by the co-expression of MyoD and Myogenin, culminating in myotube formation. These results highlight the critical influence of myoblast maturity at the time of strain application on the differentiation outcome. This study provides insights that could guide the optimization of mechanical stimulation protocols in tissue engineering applications.
Collapse
Affiliation(s)
- María Laura Espinoza-Álvarez
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (L.R.-R.); (T.G.-G.)
- Tissue Engineering Laboratory, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
| | - Laura Rojas-Rojas
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (L.R.-R.); (T.G.-G.)
- Physics School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Johan Morales-Sánchez
- Tissue Engineering Laboratory, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
- PhD Program in Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (L.R.-R.); (T.G.-G.)
| |
Collapse
|
12
|
Rahmani A, Jafari R, Nadri S. Molecular dynamics simulation in tissue engineering. BIOIMPACTS : BI 2024; 15:30160. [PMID: 40161944 PMCID: PMC11954742 DOI: 10.34172/bi.30160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2025]
Abstract
Introduction In tissue engineering, the interaction among three primary elements, namely cells, material scaffolds, and stimuli, plays a pivotal role in determining the fate of cells and the formation of new tissue. Understanding the characteristics of these components and their interplay through various methodologies can significantly enhance the efficiency of the designed tissue engineering system. In silico methods, such as molecular dynamics (MD) simulation, use mathematical calculations to investigate molecular properties and can overcome the limitations of laboratory methods in delivering adequate molecular-level information. Methods The studies that used molecular dynamics simulation, either alone or in combination with other techniques, have been reviewed in this paper. Results The review explores the use of molecular dynamics simulations in studying substrate formation mechanism and its optimization. It highlights MD simulations' role in predicting biomolecule binding strength, understanding substrate properties' impact on biological activity, and factors influencing cell attachment and proliferation. Despite limited studies, MD simulations are considered a reliable tool for identifying ideal substrates for cell proliferation. The review also touches on MD simulations' contribution to cell differentiation studies, emphasizing their role in designing engineered extracellular matrix for desired cell fates. Conclusion Molecular dynamics simulation as a non-laboratory tool has many capabilities in providing basic and practical information about the behavior of the molecular components of the cell as well as the interaction of the cell and its components with the surrounding environment. Using this information along with other information obtained from laboratory tools can ultimately lead to the advancement of tissue engineering through the development of more appropriate and efficient methods.
Collapse
Affiliation(s)
- Ali Rahmani
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Khodabukus A, Prabhu NK, Roberts T, Buldo M, Detwiler A, Fralish ZD, Kondash ME, Truskey GA, Koves TR, Bursac N. Bioengineered Model of Human LGMD2B Skeletal Muscle Reveals Roles of Intracellular Calcium Overload in Contractile and Metabolic Dysfunction in Dysferlinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400188. [PMID: 38887849 PMCID: PMC11336985 DOI: 10.1002/advs.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Indexed: 06/20/2024]
Abstract
Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.
Collapse
Affiliation(s)
| | - Neel K. Prabhu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Taylor Roberts
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Meghan Buldo
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Amber Detwiler
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Megan E. Kondash
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Timothy R. Koves
- Duke Molecular Physiology InstituteDuke UniversityDurhamNC27708USA
| | - Nenad Bursac
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
14
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
15
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
16
|
In 't Groen SLM, Franken M, Bock T, Krüger M, de Greef JC, Pijnappel WWMP. A knock down strategy for rapid, generic, and versatile modelling of muscular dystrophies in 3D-tissue-engineered-skeletal muscle. Skelet Muscle 2024; 14:3. [PMID: 38389096 PMCID: PMC10882755 DOI: 10.1186/s13395-024-00335-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput. METHODS Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week. RESULTS As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models. CONCLUSIONS These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies.
Collapse
Affiliation(s)
- Stijn L M In 't Groen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Marnix Franken
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Theresa Bock
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands.
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands.
| |
Collapse
|
17
|
van der Wal E, Iuliano A, In 't Groen SLM, Bholasing AP, Priesmann D, Sharma P, den Hamer B, Saggiomo V, Krüger M, Pijnappel WWMP, de Greef JC. Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues. Stem Cell Reports 2023; 18:1954-1971. [PMID: 37774701 PMCID: PMC10656354 DOI: 10.1016/j.stemcr.2023.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.
Collapse
Affiliation(s)
- Erik van der Wal
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alessandro Iuliano
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Anjali P Bholasing
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Dominik Priesmann
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Preeti Sharma
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vittorio Saggiomo
- Department of BioNanoTechnology, Wageningen University and Research, 6708 WG Wageningen, the Netherlands
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands.
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
18
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
20
|
Filippi M, Yasa O, Giachino J, Graf R, Balciunaite A, Stefani L, Katzschmann RK. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue. Adv Healthc Mater 2023; 12:e2300151. [PMID: 36911914 PMCID: PMC11468554 DOI: 10.1002/adhm.202300151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Oncay Yasa
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Jan Giachino
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Reto Graf
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Aiste Balciunaite
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Lisa Stefani
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | | |
Collapse
|
21
|
Conte F, Ashikov A, Mijdam R, van de Ven EGP, van Scherpenzeel M, Veizaj R, Mahalleh-Yousefi SP, Post MA, Huijben K, Panneman DM, Rodenburg RJT, Voermans NC, Garanto A, Koopman WJH, Wessels HJCT, Noga MJ, Lefeber DJ. In Vitro Skeletal Muscle Model of PGM1 Deficiency Reveals Altered Energy Homeostasis. Int J Mol Sci 2023; 24:ijms24098247. [PMID: 37175952 PMCID: PMC10179458 DOI: 10.3390/ijms24098247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Phosphoglucomutase 1 (PGM1) is a key enzyme for the regulation of energy metabolism from glycogen and glycolysis, as it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. PGM1 deficiency is an autosomal recessive disorder characterized by a highly heterogenous clinical spectrum, including hypoglycemia, cleft palate, liver dysfunction, growth delay, exercise intolerance, and dilated cardiomyopathy. Abnormal protein glycosylation has been observed in this disease. Oral supplementation with D-galactose efficiently restores protein glycosylation by replenishing the lacking pool of UDP-galactose, and rescues some symptoms, such as hypoglycemia, hepatopathy, and growth delay. However, D-galactose effects on skeletal muscle and heart symptoms remain unclear. In this study, we established an in vitro muscle model for PGM1 deficiency to investigate the role of PGM1 and the effect of D-galactose on nucleotide sugars and energy metabolism. Genome-editing of C2C12 myoblasts via CRISPR/Cas9 resulted in Pgm1 (mouse homologue of human PGM1, according to updated nomenclature) knockout clones, which showed impaired maturation to myotubes. No difference was found for steady-state levels of nucleotide sugars, while dynamic flux analysis based on 13C6-galactose suggested a block in the use of galactose for energy production in knockout myoblasts. Subsequent analyses revealed a lower basal respiration and mitochondrial ATP production capacity in the knockout myoblasts and myotubes, which were not restored by D-galactose. In conclusion, an in vitro mouse muscle cell model has been established to study the muscle-specific metabolic mechanisms in PGM1 deficiency, which suggested that galactose was unable to restore the reduced energy production capacity.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rachel Mijdam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Eline G P van de Ven
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Raisa Veizaj
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Seyed P Mahalleh-Yousefi
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Merel A Post
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daan M Panneman
- Radboud Center for Mitochondrial Medicine (RCMM), Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Richard J T Rodenburg
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Werner J H Koopman
- Radboud Center for Mitochondrial Medicine (RCMM), Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marek J Noga
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
22
|
de Oliveira J, de Souza MA, Assef AA, Maia JM. Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9232. [PMID: 36501933 PMCID: PMC9740760 DOI: 10.3390/s22239232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The study of muscle contractions generated by the muscle-tendon unit (MTU) plays a critical role in medical diagnoses, monitoring, rehabilitation, and functional assessments, including the potential for movement prediction modeling used for prosthetic control. Over the last decade, the use of combined traditional techniques to quantify information about the muscle condition that is correlated to neuromuscular electrical activation and the generation of muscle force and vibration has grown. The purpose of this review is to guide the reader to relevant works in different applications of ultrasound imaging in combination with other techniques for the characterization of biological signals. Several research groups have been using multi-sensing systems to carry out specific studies in the health area. We can divide these studies into two categories: human-machine interface (HMI), in which sensors are used to capture critical information to control computerized prostheses and/or robotic actuators, and physiological study, where sensors are used to investigate a hypothesis and/or a clinical diagnosis. In addition, the relevance, challenges, and expectations for future work are discussed.
Collapse
Affiliation(s)
- Jonathan de Oliveira
- Graduate Program in Health Technology (PPGTS), Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Mauren Abreu de Souza
- Graduate Program in Health Technology (PPGTS), Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Amauri Amorin Assef
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
| | - Joaquim Miguel Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
- Electronics Engineering Department (DAELN), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
| |
Collapse
|
23
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Tamta AK, Shivanaiah B, Ningaraju S, Prabhashankar AB, Sundaresan NR. Cultured Neonatal Murine Primary Myotubes as a Model to Study Muscle Atrophy. Curr Protoc 2022; 2:e616. [PMID: 36440976 DOI: 10.1002/cpz1.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Besides genetic disorders, skeletal muscle atrophy mainly occurs as a consequence of underlying conditions such as prolonged inactivity, aging, and metabolic diseases, ultimately contributing to the risk of disability. Disturbances in cellular and molecular mechanisms involved in proteolysis and protein synthesis underpin muscle fiber shrinkage and decreased muscle fiber diameter. Stress-induced primary myotube culture is an established model for studying muscle atrophy. An in vitro model is an essential criterion in establishing preliminary data in a cell-autonomous manner that can later be validated using in vivo models. Here, we describe protocols for the isolation, culture, and differentiation of primary murine myotubes and the induction of myotube atrophy using dexamethasone, a synthetic corticosteroid. We further elaborate the procedure to validate degenerative parameters, such as assessing muscle fiber diameter, expression of muscle atrophy genes, and protein synthesis status under dexamethasone treatment. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of primary myoblasts from rat or mouse pups Support Protocol 1: Preparation of coated tissue culture ware Support Protocol 2: Subculture of myoblasts Basic Protocol 2: Induction and assessment of myotube atrophy.
Collapse
Affiliation(s)
- Ankit Kumar Tamta
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Bhoomika Shivanaiah
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sunayana Ningaraju
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Arathi Bangalore Prabhashankar
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Nagalingam Ravi Sundaresan
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
25
|
Thangadurai M, Ajith A, Budharaju H, Sethuraman S, Sundaramurthi D. Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue. BIOMATERIALS ADVANCES 2022; 142:213135. [PMID: 36215745 DOI: 10.1016/j.bioadv.2022.213135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscles are essential for body movement, and the loss of motor function due to volumetric muscle loss (VML) limits the mobility of patients. Current therapeutic approaches are insufficient to offer complete functional recovery of muscle damages. Tissue engineering provides viable ways to fabricate scaffolds to regenerate damaged tissues. Hence, tissue engineering options are explored to address existing challenges in the treatment options for muscle regeneration. Electrospinning is a widely employed fabrication technique to make muscle mimetic nanofibrous scaffolds for tissue regeneration. 3D bioprinting has also been utilized to fabricate muscle-like tissues in recent times. This review discusses the anatomy of skeletal muscle, defects, the healing process, and various treatment options for VML. Further, the advanced strategies in electrospinning of natural and synthetic polymers are discussed, along with the recent developments in the fabrication of hybrid scaffolds. Current approaches in 3D bioprinting of skeletal muscle tissues are outlined with special emphasis on the combination of electrospinning and 3D bioprinting towards the development of fully functional muscle constructs. Finally, the current challenges and future perspectives of these convergence techniques are discussed.
Collapse
Affiliation(s)
- Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Athulya Ajith
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
26
|
Apa L, Cosentino M, Forconi F, Musarò A, Rizzuto E, Del Prete Z. The Development of an Innovative Embedded Sensor for the Optical Measurement of Ex-Vivo Engineered Muscle Tissue Contractility. SENSORS (BASEL, SWITZERLAND) 2022; 22:6878. [PMID: 36146227 PMCID: PMC9502572 DOI: 10.3390/s22186878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Tissue engineering is a multidisciplinary approach focused on the development of innovative bioartificial substitutes for damaged organs and tissues. For skeletal muscle, the measurement of contractile capability represents a crucial aspect for tissue replacement, drug screening and personalized medicine. To date, the measurement of engineered muscle tissues is rather invasive and not continuous. In this context, we proposed an innovative sensor for the continuous monitoring of engineered-muscle-tissue contractility through an embedded technique. The sensor is based on the calibrated deflection of one of the engineered tissue's supporting pins, whose movements are measured using a noninvasive optical method. The sensor was calibrated to return force values through the use of a step linear motor and a micro-force transducer. Experimental results showed that the embedded sensor did not alter the correct maturation of the engineered muscle tissue. Finally, as proof of concept, we demonstrated the ability of the sensor to capture alterations in the force contractility of the engineered muscle tissues subjected to serum deprivation.
Collapse
Affiliation(s)
- Ludovica Apa
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Marianna Cosentino
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Flavia Forconi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| |
Collapse
|
27
|
Vann CG, Zhang X, Khodabukus A, Orenduff MC, Chen YH, Corcoran DL, Truskey GA, Bursac N, Kraus VB. Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle. Front Physiol 2022; 13:937899. [PMID: 36091396 PMCID: PMC9452896 DOI: 10.3389/fphys.2022.937899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise affects the expression of microRNAs (miR/s) and muscle-derived extracellular vesicles (EVs). To evaluate sarcoplasmic and secreted miR expression in human skeletal muscle in response to exercise-mimetic contractile activity, we utilized a three-dimensional tissue-engineered model of human skeletal muscle ("myobundles"). Myobundles were subjected to three culture conditions: no electrical stimulation (CTL), chronic low frequency stimulation (CLFS), or intermittent high frequency stimulation (IHFS) for 7 days. RNA was isolated from myobundles and from extracellular vesicles (EVs) secreted by myobundles into culture media; miR abundance was analyzed by miRNA-sequencing. We used edgeR and a within-sample design to evaluate differential miR expression and Pearson correlation to evaluate correlations between myobundle and EV populations within treatments with statistical significance set at p < 0.05. Numerous miRs were differentially expressed between myobundles and EVs; 116 miRs were differentially expressed within CTL, 3 within CLFS, and 2 within IHFS. Additionally, 25 miRs were significantly correlated (18 in CTL, 5 in CLFS, 2 in IHFS) between myobundles and EVs. Electrical stimulation resulted in differential expression of 8 miRs in myobundles and only 1 miR in EVs. Several KEGG pathways, known to play a role in regulation of skeletal muscle, were enriched, with differentially overrepresented miRs between myobundle and EV populations identified using miEAA. Together, these results demonstrate that in vitro exercise-mimetic contractile activity of human engineered muscle affects both their expression of miRs and number of secreted EVs. These results also identify novel miRs of interest for future studies of the role of exercise in organ-organ interactions in vivo.
Collapse
Affiliation(s)
- Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Melissa C. Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David L. Corcoran
- Department of Genetics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Mosqueira M, Scheid LM, Kiemel D, Richardt T, Rheinberger M, Ollech D, Lutge A, Heißenberg T, Pfitzer L, Engelskircher L, Yildiz U, Porth I. nNOS-derived NO modulates force production and iNO-derived NO the excitability in C2C12-derived 3D tissue engineering skeletal muscle via different NO signaling pathways. Front Physiol 2022; 13:946682. [PMID: 36045747 PMCID: PMC9421439 DOI: 10.3389/fphys.2022.946682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide (NO) is a bioactive gas produced by one of the three NO synthases: neuronal NOS (nNOS), inducible (iNOS), and endothelial NOS (eNOS). NO has a relevant modulatory role in muscle contraction; this takes place through two major signaling pathways: (i) activation of soluble guanylate cyclase and, thus, protein kinase G or (ii) nitrosylation of sulfur groups of cysteine. Although it has been suggested that nNOS-derived NO is the responsible isoform in muscle contraction, the roles of eNOS and iNOS and their signaling pathways have not yet been clarified. To elucidate the action of each pathway, we optimized the generation of myooids, an engineered skeletal muscle tissue based on the C2C12 cell line. In comparison with diaphragm strips from wild-type mice, 180 myooids were analyzed, which expressed all relevant excitation–contraction coupling proteins and both nNOS and iNOS isoforms. Along with the biochemical results, myooids treated with NO donor (SNAP) and unspecific NOS blocker (L-NAME) revealed a comparable NO modulatory effect on force production as was observed in the diaphragm strips. Under the effects of pharmacological tools, we analyzed the myooids in response to electrical stimulation of two possible signaling pathways and NO sources. The nNOS-derived NO exerted its negative effect on force production via the sGG-PKG pathway, while iNOS-derived NO increased the excitability in response to sub-threshold electrical stimulation. These results strengthen the hypotheses of previous reports on the mechanism of action of NO during force production, showed a novel function of iNOS-derived NO, and establish the myooid as a novel and robust alternative model for pathophysiological skeletal muscle research.
Collapse
Affiliation(s)
- Matias Mosqueira
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Matias Mosqueira,
| | - Lisa-Mareike Scheid
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- PromoCell GmbH, Heidelberg, Germany
| | - Dominik Kiemel
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Talisa Richardt
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Mona Rheinberger
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Dirk Ollech
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Applied Physics Department, Science for Life Laboratory and KTH Royal Technical University, Solna, Sweden
| | - Almut Lutge
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Life Science at the University of Zürich, Zürich, Switzerland
| | - Tim Heißenberg
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Lena Pfitzer
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- myNEO NV, Ghent, Belgium
| | - Lisa Engelskircher
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Immatics Biotechnology GmbH, Tübingen, Germany
| | - Umut Yildiz
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Isabel Porth
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
29
|
Paci C, Iberite F, Arrico L, Vannozzi L, Parlanti P, Gemmi M, Ricotti L. Piezoelectric nanocomposite bioink and ultrasound stimulation modulate early skeletal myogenesis. Biomater Sci 2022; 10:5265-5283. [PMID: 35913209 DOI: 10.1039/d1bm01853a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in bioprinting for skeletal muscle tissue engineering, new stimuli-responsive bioinks to boost the myogenesis process are highly desirable. In this work, we developed a printable alginate/Pluronic-based bioink including piezoelectric barium titanate nanoparticles (nominal diameter: ∼60 nm) for the 3D bioprinting of muscle cell-laden hydrogels. The aim was to investigate the effects of the combination of piezoelectric nanoparticles with ultrasound stimulation on early myogenic differentiation of the printed structures. After the characterization of nanoparticles and bioinks, viability tests were carried out to investigate three nanoparticle concentrations (100, 250, and 500 μg mL-1) within the printed structures. An excellent cytocompatibility was confirmed for nanoparticle concentrations up to 250 μg mL-1. TEM imaging demonstrated the internalization of BTNPs in intracellular vesicles. The combination of piezoelectric nanoparticles and ultrasound stimulation upregulated the expression of MYOD1, MYOG, and MYH2 and enhanced cell aggregation, which is a crucial step for myoblast fusion, and the presence of MYOG in the nuclei. These results suggest that the direct piezoelectric effect induced by ultrasound on the internalized piezoelectric nanoparticles boosts myogenesis in its early phases.
Collapse
Affiliation(s)
- Claudia Paci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Arrico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
30
|
R-spondin3 is a myokine that differentiates myoblasts to type I fibres. Sci Rep 2022; 12:13020. [PMID: 35906363 PMCID: PMC9338073 DOI: 10.1038/s41598-022-16640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/β-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.
Collapse
|
31
|
Terrie L, Burattini M, Van Vlierberghe S, Fassina L, Thorrez L. Enhancing Myoblast Fusion and Myotube Diameter in Human 3D Skeletal Muscle Constructs by Electromagnetic Stimulation. Front Bioeng Biotechnol 2022; 10:892287. [PMID: 35814025 PMCID: PMC9256958 DOI: 10.3389/fbioe.2022.892287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscle tissue engineering (SMTE) aims at the in vitro generation of 3D skeletal muscle engineered constructs which mimic the native muscle structure and function. Although native skeletal muscle is a highly dynamic tissue, most research approaches still focus on static cell culture methods, while research on stimulation protocols indicates a positive effect, especially on myogenesis. A more mature muscle construct may be needed especially for the potential applications for regenerative medicine purposes, disease or drug disposition models. Most efforts towards dynamic cell or tissue culture methods have been geared towards mechanical or electrical stimulation or a combination of those. In the context of dynamic methods, pulsed electromagnetic field (PEMF) stimulation has been extensively used in bone tissue engineering, but the impact of PEMF on skeletal muscle development is poorly explored. Here, we evaluated the effects of PEMF stimulation on human skeletal muscle cells both in 2D and 3D experiments. First, PEMF was applied on 2D cultures of human myoblasts during differentiation. In 2D, enhanced myogenesis was observed, as evidenced by an increased myotube diameter and fusion index. Second, 2D results were translated towards 3D bioartificial muscles (BAMs). BAMs were subjected to PEMF for varying exposure times, where a 2-h daily stimulation was found to be effective in enhancing 3D myotube formation. Third, applying this protocol for the entire 16-days culture period was compared to a stimulation starting at day 8, once the myotubes were formed. The latter was found to result in significantly higher myotube diameter, fusion index, and increased myosin heavy chain 1 expression. This work shows the potential of electromagnetic stimulation for enhancing myotube formation both in 2D and 3D, warranting its further consideration in dynamic culturing techniques.
Collapse
Affiliation(s)
- Lisanne Terrie
- Tissue Engineering Lab, Dep. Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium
| | - Margherita Burattini
- Tissue Engineering Lab, Dep. Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium
- Dept. of Surgical Sciences, Dentistry and Maternity, University of Verona, Verona, Italy
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Dep. of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Lorenzo Fassina
- Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Lieven Thorrez
- Tissue Engineering Lab, Dep. Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium
- *Correspondence: Lieven Thorrez,
| |
Collapse
|
32
|
Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. eLife 2022; 11:e77204. [PMID: 35604384 PMCID: PMC9126583 DOI: 10.7554/elife.77204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last few years, there has been growing interest in measuring the contractile force (CF) of engineered muscle tissues to evaluate their functionality. However, there are still no standards available for selecting the most suitable experimental platform, measuring system, culture protocol, or stimulation patterns. Consequently, the high variability of published data hinders any comparison between different studies. We have identified that cantilever deflection, post deflection, and force transducers are the most commonly used configurations for CF assessment in 2D and 3D models. Additionally, we have discussed the most relevant emerging technologies that would greatly complement CF evaluation with intracellular and localized analysis. This review provides a comprehensive analysis of the most significant advances in CF evaluation and its critical parameters. In order to compare contractile performance across experimental platforms, we have used the specific force (sF, kN/m2), CF normalized to the calculated cross-sectional area (CSA). However, this parameter presents a high variability throughout the different studies, which indicates the need to identify additional parameters and complementary analysis suitable for proper comparison. We propose that future contractility studies in skeletal muscle constructs report detailed information about construct size, contractile area, maturity level, sarcomere length, and, ideally, the tetanus-to-twitch ratio. These studies will hopefully shed light on the relative impact of these variables on muscle force performance of engineered muscle constructs. Prospective advances in muscle tissue engineering, particularly in muscle disease models, will require a joint effort to develop standardized methodologies for assessing CF of engineered muscle tissues.
Collapse
Affiliation(s)
- Camila Vesga-Castro
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
| | - Javier Aldazabal
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation, and UniversitiesMadridSpain
| | - Jacobo Paredes
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| |
Collapse
|
33
|
Fan T, Wang S, Jiang Z, Ji S, Cao W, Liu W, Ji Y, Li Y, Shyh-Chang N, Gu Q. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 2021; 14. [PMID: 34788746 DOI: 10.1088/1758-5090/ac3aca] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
3D printing is an effective technology for recreating skeletal muscle tissuein vitro. To achieve clinical skeletal muscle injury repair, relatively large volumes of highly aligned skeletal muscle cells are required; obtaining these is still a challenge. It is currently unclear how individual skeletal muscle cells and their neighbouring components co-ordinate to establish anisotropic architectures in highly homogeneous orientations. Here, we demonstrated a 3D printing strategy followed by sequential culture processes to engineer skeletal muscle tissue. The effects of confined printing on the skeletal muscle during maturation, which impacted the myotube alignment, myogenic gene expression, and mechanical forces, were observed. Our findings demonstrate the dynamic changes of skeletal muscle tissue duringin vitro3D construction and reveal the role of physical factors in the orientation and maturity of muscle fibres.
Collapse
Affiliation(s)
- Tingting Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
34
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
35
|
Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021; 10:cells10082112. [PMID: 34440881 PMCID: PMC8394675 DOI: 10.3390/cells10082112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.
Collapse
|