1
|
Wang H, Bao G, Tian L, Chen S, Xu Y, Li G. Exogenous γ-aminobutyric acid (GABA) effectively alleviates the synergistic inhibitory effect of freeze-thaw and copper combined stress on rye seedling growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125362. [PMID: 40228473 DOI: 10.1016/j.jenvman.2025.125362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Rye (Secale cereale L.) may suffer from combined stress due to freeze-thaw cycles and copper (Cu) pollution during cultivation in grasslands. This study aims to investigate the effects of combined freeze-thaw and Cu stress on the physiological characteristics of rye seedlings and to assess the potential of exogenous GABA in mitigating these effects. The results indicated that root length, shoot length, fresh weight, and dry weight of rye seedlings were significantly reduced under combined stress, indicating synergistic inhibition. Combined stress impaired photosynthesis, increased MDA and H2O2 levels, and reduced endogenous GABA, thereby exacerbating physiological damage in rye seedlings. Treatment with exogenous GABA effectively alleviated growth inhibition and enhanced photosynthesis. Furthermore, exogenous GABA underscores its role in adaptation to combined stress by increasing soluble protein content, activating the antioxidant system, regulating GABA metabolism, and enhancing metal detoxification capacity, thereby improving stress tolerance. This finding not only contributes to enhancing the stability of grassland ecosystems but also provides a theoretical foundation for the future application of GABA in agricultural production, particularly in crop protection under environmental pollution and extreme climatic conditions.
Collapse
Affiliation(s)
- Huixin Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Lingzhi Tian
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Simeng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yanan Xu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guomei Li
- Yushu forestry and grassland comprehensive service center, NO.89, Qionglong East Road, Yushu City, Yushu Tibetan Autonomous Prefecture, 815000, China
| |
Collapse
|
2
|
Lei W, Liu J, Zhang W, Xu J, Bo T, Wang Z, Wang W. Photocatalytic degradation of methylene blue by CdS quantum dots biosynthesized by cysteine synthetase TtCsa1 from Tetrahymena thermophila. Int J Biol Macromol 2025; 305:141166. [PMID: 39971067 DOI: 10.1016/j.ijbiomac.2025.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
H2S is a crucial endogenous gaseous signaling molecule involved in various metabolic pathways and is associated with the biological response to heavy metal stress. The biomineralization of CdS serves as a critical mechanism for responding to cadmium stress and removing Cd2+ in different organisms. CdS is also a widely utilized semiconductor material for the photocatalytic degradation of dyes. In this study, we found that cysteine synthetase 1 (TtCsa1) is involved in CdS formation under cadmium stress in Tetrahymena thermophila. TtCsa1 also catalyzed CdS formation in vitro, and the synthesized CdS material exhibited controllable particle size and photoluminescence. Concurrently, cysteine and glutathione functioned as capping agents to regulate CdS particle size. The biosynthetically produced CdS degraded 90 % of methylene blue under UV light. Furthermore, CdS-ZnS nanocomposites were synthesized by adding Zn2+ into the CdS biosynthetic system, which decreased the size of CdS particles and increased the degradation rate of methylene blue. The results indicate that the CdS biosynthesized by TtCsa1 from Tetrahymena thermophila is effective in the photocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Juan Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhiwen Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| |
Collapse
|
3
|
Lei W, Liu J, Liu Y, Xu J, Wang W. Overexpression of Tetrahymena Cysteine Synthetase 1 Promotes Cadmium Removal by Biosynthesizing Cadmium Sulfide Quantum Dots in Escherichia coli. Int J Mol Sci 2025; 26:3685. [PMID: 40332176 PMCID: PMC12028156 DOI: 10.3390/ijms26083685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Heavy metal cadmium causes significant contamination in aquatic ecosystems. The biomineralization of cadmium represents a vital biological mechanism for handling cadmium stress in diverse microorganisms. To improve the biomineralization capacity of cadmium by microorganisms in aquatic environments, Tetrahymena cysteine synthetase 1 (TtCsa1) was overexpressed in E. coli. The tolerance of E. coli/pET-28a-TtCSA1 to cadmium was enhanced by expressing TtCsa1. Upon addition of cysteine, E. coli/pET-28a-TtCSA1 generated more H2S, which reacted with Cd2+ to form CdS quantum dots (QDs), resulting in a stronger fluorescence signal. The UV-visible absorption and fluorescence spectra of the culture supernatant of E. coli/pET-28a-TtCSA1 showed characteristic peaks corresponding to CdS QDs. Transmission Electron Microscopy (TEM) images confirmed that the formation of CdS QDs and their agglomeration in the E. coli cells. X-ray Diffraction Analysis (XRD) analysis further confirmed the presence of QDs and their crystalline nature. In rich medium, E. coli/pET-28a-TtCSA1 achieved removal rates of 99.5%, 98.2%, 56.5%, and 49.4%, respectively, for Cd2+ concentrations of 0.15, 0.3, 0.45, and 0.6 mM within 48 h. In simulated wastewater, E. coli/pET-28a-TtCSA1 achieved removal rates of 99.4%, 94.3%, 90.1%, and 89.8%, respectively, for Cd2+ concentrations of 0.3, 0.45, 0.6, and 0.75 mM within 12 h. These results demonstrate that overexpressing TtCsa1 in E. coli can significantly enhance its ability to biomineralize Cd2+ in rich medium and simulated wastewater, which has potential applications in bioremediation of aquatic environments contaminated with heavy metals.
Collapse
Affiliation(s)
- Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (J.L.); (Y.L.)
| | - Juan Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (J.L.); (Y.L.)
| | - Yiwei Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (J.L.); (Y.L.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (J.L.); (Y.L.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (J.L.); (Y.L.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
4
|
Niu L, Zhao H, Tang Y, Zhu B, Zhao Y, Wang Q, Yu J. Methyl Jasmonate Was Involved in Hydrogen Sulfide-Alleviated Cadmium Stress in Cucumber Plants Through ROS Homeostasis and Chlorophyll Metabolism. Int J Mol Sci 2025; 26:475. [PMID: 39859190 PMCID: PMC11765157 DOI: 10.3390/ijms26020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cadmium (Cd), as one of the most toxic nonessential elements, severely prohibits plant growth and development. Hydrogen sulfide (H2S) and methyl jasmonate (MeJA) play essential roles in plant response to abiotic stress. However, the potential mechanism of H2S and MeJA in alleviating Cd stress in plants remains unclear. In the current study, the importance and crosstalk of H2S and MeJA in the Cd tolerance of cucumber seedlings have been investigated. Our results revealed that Cd stress obviously prohibited the growth of cucumber seedlings. Optimal concentrations of H2S donor sodium hydrosulfide (NaHS) or MeJA treatment, respectively, or in combination, significantly enhanced seedling growth under Cd stress. However, the positive effects of H2S during seedling growth were obviously reversed by the application of MeJA biosynthesis inhibitors, which implied that MeJA might be involved in the H2S-improved growth of cucumber seedlings under Cd stress. Moreover, Cd stress resulted in the increase in hydrogen peroxide (H2O2), superoxide radical (O2·-) accumulation, and impaired the functioning of the ascorbate-glutathione cycle. Both H2S and MeJA decreased the reactive oxygen species (ROS) level and ameliorated the negative effects of Cd stress through significantly increasing the ratio of ascorbate (AsA)/dehydroascorbic acid (DHA) and reduced glutathione (GSH)/oxidized glutathione (GSSG). Besides that, the expression level of ROS scavenge genes was significantly upregulated by the application of exogenous H2S or MeJA treatment. Moreover, H2S and MeJA significantly enhanced the chlorophyll concentration and inhibited chlorophyll degradation through decreasing the expression levels of chlorophyll catabolic enzymes. Additionally, exogenous H2S and MeJA obviously enhanced the chlorophyll fluorescence. However, MeJA biosynthesis inhibitors significantly suppressed the positive role of H2S. The above results suggested MeJA is involved in H2S-induced Cd stress alleviation in cucumber seedlings through enhancing ROS-scavenge capacity and improving the photosynthesis system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (L.N.); (H.Z.)
| |
Collapse
|
5
|
Alvi AF, Khan S, Khan NA. Hydrogen sulfide and ethylene regulate photosynthesis, sugar metabolism, and tolerance to heat stress in the presence of sulfur in rice. PHYSIOLOGIA PLANTARUM 2024; 176:e70013. [PMID: 39673289 DOI: 10.1111/ppl.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Heat stress impacts photosynthesis and carbohydrate metabolism, challenging food security. To comprehend the mechanisms of thermotolerance, we examined the role of ethylene (ET) and hydrogen sulfide (H2S) with or without sulfur (S) in rice (Oryza sativa L.). Both ET and H2S promoted heat stress tolerance more conspicuously in the presence of S, restoring the balance between carbon assimilation and utilization. The enhanced photosynthesis in ET and H2S-treated plants under heat stress was linked with increased relative expression of Rubisco subunits rbcS and rbcL and carbohydrate metabolizing, including Sucrose Synthase 2 (SuSy2) and Sucrose transport 1 (SUT1). Notably, the H2S application showed the highest increase of 2.3, 3.2, 3.0, and 2.4-fold expression of the rbcS, rbcL, SuSy2, and SUT1, respectively, compared to the heat stress alone. The application of H2S with S more prominently increased starch content, total soluble sugar, and soluble invertase activity by 59.3%, 35.7%, and 25.9%, and also activity of soluble starch synthase and granule-bound starch synthase by 47.2% and 32.8%, respectively, compared to heat-stressed plants. The treatment (H2S plus S) elevated cysteine and GSH content and the activity of the antioxidant enzymes to maintain cellular redox potential under heat stress. These observed tolerance responses were less pronounced in plants treated with hypotaurine (HT; H2S scavenger) than those treated with norbornadiene (NBD; ET inhibitor), underscoring the superior role of H2S over ET in mitigating heat stress. The present study's findings explain that H2S is crucial for the ET-mediated response in augmenting photosynthesis and heat stress tolerance in rice.
Collapse
Affiliation(s)
- Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Bhadwal SS, Verma S, Hassan S, Kaur S. Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108730. [PMID: 38763004 DOI: 10.1016/j.plaphy.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.
Collapse
Affiliation(s)
- Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shagun Verma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
7
|
Bai X, Bol R, Chen H, Cui Q, Qiu T, Zhao S, Fang L. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134370. [PMID: 38688214 DOI: 10.1016/j.jhazmat.2024.134370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Plant growth-promoting bacteria (PGPB) offer a promising solution for mitigating heavy metals (HMs) stress in crops, yet the mechanisms underlying the way they operate in the soil-plant system are not fully understood. We therefore conducted a meta-analysis with 2037 observations to quantitatively evaluate the effects and determinants of PGPB inoculation on crop growth and HMs accumulation in contaminated soils. We found that inoculation increased shoot and root biomass of all five crops (rice, maize, wheat, soybean, and sorghum) and decreased metal accumulation in rice and wheat shoots together with wheat roots. Key factors driving inoculation efficiency included soil organic matter (SOM) and the addition of exogenous fertilizers (N, P, and K). The phylum Proteobacteria was identified as the keystone taxa in effectively alleviating HMs stress in crops. More antioxidant enzyme activity, photosynthetic pigment, and nutrient absorption were induced by it. Overall, using PGPB inoculation improved the growth performance of all five crops, significantly increasing crop biomass in shoots, roots, and grains by 33 %, 35 %, and 20 %, respectively, while concurrently significantly decreasing heavy metal accumulation by 16 %, 9 %, and 37 %, respectively. These results are vital to grasping the benefits of PGPB and its future application in enhancing crop resistance to HMs.
Collapse
Affiliation(s)
- Xiaohan Bai
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100 Yangling, China
| | - Roland Bol
- Institute of Bio‑ and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm Johnen Str, 52425 Jülich, Germany
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, 712100 Yangling, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, 712100 Yangling, China
| | - Linchuan Fang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100 Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 430070 Wuhan, China.
| |
Collapse
|
8
|
Cao H, Song K, Hu Y, Li Q, Ma T, Li R, Chen N, Zhu S, Liu W. The role of exogenous hydrogen sulfide in mitigating cadmium toxicity in plants: A comprehensive meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30273-30287. [PMID: 38613761 DOI: 10.1007/s11356-024-33298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 μM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.
Collapse
Affiliation(s)
- Hanping Cao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Kejin Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Qingxiao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
9
|
Yang J, Luo H, Wang H, Qin T, Yang M, Chen L, Wu X, He BJ. Removal effect of pollutants from stormwater runoff in shallow bioretention system with gramineous plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1946-1960. [PMID: 38678401 DOI: 10.2166/wst.2024.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/24/2024] [Indexed: 04/30/2024]
Abstract
The bioretention system is one of the most widely used low impact development (LID) facilities with efficient purification capacity for stormwater, and its planting design has been a hot spot for research at home and abroad. In this paper, ryegrass (Lolium perenne L.), bermuda (Cynodon dactylon Linn.), bahiagrass (Paspalum notatum Flugge), and green grass (Cynodon dactylon × C .transadlensis 'Tifdwarf') were chosen as plant species to construct a shallow bioretention system. The growth traits and nutrient absorption ability of four gramineous plants were analyzed. Their tolerance, enrichment, and transportation capacity were also evaluated to compare plant species and their absorptive capacity of heavy metals (Cu, Pb, and Zn). Results showed that the maximum absorption rate (Imax) ranged from 22.1 to 42.4 μg/(g·h) for P and ranged from 65.4 to 104.8 μg/(g·h) for NH4+-N; ryegrass had the strongest absorption capacity for heavy metals and the maximum removal rates of Cu, Pb, and Zn by four grasses were 78.4, 59.4, and 51.3%, respectively; the bioretention cell with ryegrass (3#) was significantly more effective in purifying than the unplanted bioretention cell (1#) during the simulated rainfall test. Overall, the system parameters were optimized to improve the technical application of gramineous plants in the bioretention system.
Collapse
Affiliation(s)
- Jing Yang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Luo
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China E-mail:
| | - Huiteng Wang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Teng Qin
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingyu Yang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Limin Chen
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xi Wu
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bao-Jie He
- Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia; Centre for Climate-Resilient and Low-Carbon Cities, School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China; Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima University, Hiroshima 739-8530, Japan
| |
Collapse
|
10
|
Zhang H, Li Y, Li R, Wu W, Abdelrahman H, Wang J, Al-Solaimani SG, Antoniadis V, Rinklebe J, Lee SS, Shaheen SM, Zhang Z. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168387. [PMID: 37952661 DOI: 10.1016/j.scitotenv.2023.168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Remediation of soils contaminated with toxic metal(loid)s (TMs) and mitigation of the associated ecological and human health risks are of great concern. Sodium sulfide (Na2S) can be used as an amendment for the immobilization of TMs in contaminated soils; however, the effects of Na2S on the leachability, bioavailability, and uptake of TMs in highly-contaminated soils under field conditions have not been investigated yet. This is the first field-scale research study investigating the effect of Na2S application on soils with Hg, Pb and Cu contents 70-to-7000-fold higher than background values and also polluted with As, Cd, Ni, and Zn. An ex situ remediation project including soil replacement, immobilization with Na2S, and safe landfilling was conducted at Daiziying and Anle (China) with soils contaminated with As, Cd, Cu, Hg, Ni, Pb and Zn. Notably, Na2S application significantly lowered the sulfuric-nitric acid leachable TMs below the limits defined by Chinese regulations. There was also a significant reduction in the DTPA-extractable TMs in the two studied sites up to 85.9 % for Hg, 71.4 % for Cu, 71.9 % for Pb, 48.1 % for Cd, 37.1 % for Zn, 34.3 % for Ni, and 15.7 % for As compared to the untreated controls. Moreover, Na2S treatment decreased the shoot TM contents in the last harvest to levels lower than the TM regulation limits concerning fodder crops, and decreased the TM root-to-shoot translocation, compared to the untreated control sites. We conclude that Na2S has great potential to remediate soils heavily tainted with TMs and mitigate the associated ecological and human health risks.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - You Li
- Key laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Yadav PK, Kumar A, Pandey P, Kumar D, Singh A. Modulations of functional traits of Spinacia oleracea plants exposed to cadmium stress by using H 2S as an antidote: a regulatory mechanism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2021-2033. [PMID: 38222276 PMCID: PMC10784438 DOI: 10.1007/s12298-023-01389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
The present study is based on the application of H2S as an exogenous antidote in Spinacia oleracea (spinach) plants grown in Cd-contaminated (50 ppm) soil. The different doses of H2S in the form of NaHS (10, 50, 100, 200, and 500 μM) have been applied as a foliar spray to regulate the physiological attributes under Cd toxicity. Over to control, the plants grown in Cd alone showed a reduction in the fresh biomass by 48% with more production of oxidative biomarkers (H2O2, SOR, and MDA content) and antioxidative enzymes (SOD, POD, APX, and GR). Further, with the exogenous application of H2S, among all the doses the fresh biomass was found to be maximally increased at 100 μM dose by 76%, and the Cd content was reduced significantly by 25% in the shoot compared to plants grown in Cd treated soil alone. With the decrease in Cd content in the shoot, the production of H2O2, SOR, and MDA content was reduced by 52%, 40%, and 38% respectively, at 100 μM compared to the plants grown in Cd-treated soil. The activities of estimated antioxidative enzymes showed a reduction in their activities up to 100 μM. Whereas, Glutathione reductase (GR) and Phytochelatins (PCs) showed different trends with their higher values in plants treated with NaHS in the presence of Cd. At 100 μM the GR and PCs, respectively showed 48% and 37% increment over Cd-treated plants alone. At this dose, the relative expression of SOD, POD, APX, GR, and PCS5 (Phytochelatin synthetase enzyme) genes, and other functional activities (SEM and fluorescence kinetics) supported the best performance of plants at 100 μM. Therefore, among all the doses, 100 μM dose of H2S has significantly reduced the Cd toxicity by maintaining the growth and other functional traits of plants. The correlation analysis also supported the result by showing a relationship between H2S application and Cd uptake. So, with this strategy, the plants grown in metal-contaminated fields can be improved qualitatively as well as quantitatively. With further experimentation, the mode of application could be explored to increase its efficiency and to promote this strategy at a wider scale. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01389-3.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Arun Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Prashasti Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Anita Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
12
|
Saini S, Sharma P, Singh P, Kumar V, Yadav P, Sharma A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023; 140-141:58-76. [PMID: 37848156 DOI: 10.1016/j.niox.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The natural environment of plants comprises a complex set of various abiotic stresses and their capability to react and survive under this anticipated changing climate is highly flexible and involves a series of balanced interactions between signaling molecules where nitric oxide becomes a crucial component. In this article, we focussed on the role of nitric oxide (NO) in various signal transduction pathways of plants and its positive impact on maintaining cellular homeostasis under various abiotic stresses. Besides this, the recent data on interactions of NO with various phytohormones to control physiological and biochemical processes to attain abiotic stress tolerance have also been considered. These crosstalks modulate the plant's defense mechanism and help in alleviating the negative impact of stress. While focusing on the diverse functions of NO, an effort has been made to explore the functions of NO-mediated post-translational modifications, such as the N-end rule pathway, tyrosine nitration, and S-nitrosylation which revealed the exact mechanism and characterization of proteins that modify various metabolic processes in stressed conditions. Considering all of these factors, the present review emphasizes the role of NO and its interlinking with various phytohormones in maintaining developmental processes in plants, specifically under unfavorable environments.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
13
|
Matkowski H, Daszkowska-Golec A. Update on stomata development and action under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1270180. [PMID: 37849845 PMCID: PMC10577295 DOI: 10.3389/fpls.2023.1270180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Stomata, key gatekeepers of plant hydration, have long been known to play a pivotal role in mitigating the impacts of abiotic stressors. However, the complex molecular mechanisms underscoring this role remain unresolved fully and continue to be the subject of research. In the context of water-use efficiency (WUE), a key indicator of a plant's ability to conserve water, this aspect links intrinsically with stomatal behavior. Given the pivotal role of stomata in modulating water loss, it can be argued that the complex mechanisms governing stomatal development and function will significantly influence a plant's WUE under different abiotic stress conditions. Addressing these calls for a concerted effort to strengthen plant adaptability through advanced, targeted research. In this vein, recent studies have illuminated how specific stressors trigger alterations in gene expression, orchestrating changes in stomatal pattern, structure, and opening. This reveals a complex interplay between stress stimuli and regulatory sequences of essential genes implicated in stomatal development, such as MUTE, SPCH, and FAMA. This review synthesizes current discoveries on the molecular foundations of stomatal development and behavior in various stress conditions and their implications for WUE. It highlights the imperative for continued exploration, as understanding and leveraging these mechanisms guarantee enhanced plant resilience amid an ever-changing climatic landscape.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
14
|
Zhu Y, Xu Y, Xu J, Meidl P, He Y. Contrasting response strategies of microbial functional traits to polycyclic aromatic hydrocarbons contamination under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131548. [PMID: 37141779 DOI: 10.1016/j.jhazmat.2023.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
PAHs (Polycyclic aromatic hydrocarbons) are widely distributed in soil ecosystems, but our knowledge regarding the impacts of PAHs effects on soil microbial functional traits is limited. In this study, we evaluated the response and regulating strategies of microbial functional traits that are associated with the typical C, N, P, S cycling processes in a pristine soil under aerobic and anaerobic conditions after the addition of PAHs. Results revealed that indigenous microorganisms had strong degradation potential and adaptability to PAHs especially under aerobic conditions, while anaerobic conditions favored the degradation of high molecular weight PAHs. PAHs exhibited contrasting effects on soil microbial functional traits under different aeration conditions. It would probably change microbial carbon source utilization preference, stimulate inorganic P solubilization and strengthen the functional interactions between soil microorganisms under aerobic conditions, while might cause the increase of H2S and CH4 emissions under anaerobic conditions. This research provides an effective theoretical support for the ecological risk assessment of soil PAHs pollution.
Collapse
Affiliation(s)
- Yanjie Zhu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China; College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
15
|
Jurado-Flores A, Gotor C, Romero LC. Proteome Dynamics of Persulfidation in Leaf Tissue under Light/Dark Conditions and Carbon Deprivation. Antioxidants (Basel) 2023; 12:antiox12040789. [PMID: 37107163 PMCID: PMC10135009 DOI: 10.3390/antiox12040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) acts as a signaling molecule in plants, bacteria, and mammals, regulating various physiological and pathological processes. The molecular mechanism by which hydrogen sulfide exerts its action involves the posttranslational modification of cysteine residues to form a persulfidated thiol motif. This research aimed to study the regulation of protein persulfidation. We used a label-free quantitative approach to measure the protein persulfidation profile in leaves under different growth conditions such as light regimen and carbon deprivation. The proteomic analysis identified a total of 4599 differentially persulfidated proteins, of which 1115 were differentially persulfidated between light and dark conditions. The 544 proteins that were more persulfidated in the dark were analyzed, and showed significant enrichment in functions and pathways related to protein folding and processing in the endoplasmic reticulum. Under light conditions, the persulfidation profile changed, and the number of differentially persulfidated proteins increased up to 913, with the proteasome and ubiquitin-dependent and ubiquitin-independent catabolic processes being the most-affected biological processes. Under carbon starvation conditions, a cluster of 1405 proteins was affected by a reduction in their persulfidation, being involved in metabolic processes that provide primary metabolites to essential energy pathways and including enzymes involved in sulfur assimilation and sulfide production.
Collapse
Affiliation(s)
- Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Espinosa F, Ortega A, Espinosa-Vellarino FL, Garrido I. Effect of Thallium(I) on Growth, Nutrient Absorption, Photosynthetic Pigments, and Antioxidant Response of Dittrichia Plants. Antioxidants (Basel) 2023; 12:678. [PMID: 36978926 PMCID: PMC10045270 DOI: 10.3390/antiox12030678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Dittrichia plants were exposed to thallium (Tl) stress (10, 50, and 100 µM) for 7 days. The Tl toxicity altered the absorption and accumulation of other nutrients. In both the roots and the leaves, there was a decline in K, Mg, and Fe content, but an increase in Ca, Mn, and Zn. Chlorophylls decreased, as did the photosynthetic efficiency, while carotenoids increased. Oxidative stress in the roots was reflected in increased lipid peroxidation. There was more production of superoxide (O2.-), hydrogen peroxide (H2O2), and nitric oxide (NO) in the roots than in the leaves, with increases in both organs in response to Tl toxicity, except for O2.- production in the roots, which fluctuated. There was increased hydrogen sulfide (H2S) production, especially in the leaves. Superoxide dismutase (SOD), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) showed increased activities, except for APX and MDHAR in the roots and GR in the leaves. The components of the ascorbate-glutathione cycle were affected. Thus, ascorbate (AsA) increased, while dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) decreased, except for in the roots at 100 µM Tl, which showed increased GSH. These Tl toxicity-induced alterations modify the AsA/DHA and GSH/GSSG redox status. The NO and H2S interaction may act by activating the antioxidant system. The effects of Tl could be related to its strong affinity for binding with -SH groups, thus altering the functionality of proteins and the cellular redox state.
Collapse
Affiliation(s)
- Francisco Espinosa
- Research Group FBCMP(BBB015), Faculty of Sciences, Campus Avenida de Elvas s/n, University of Extremadura, 06006 Badajoz, Spain
| | | | | | | |
Collapse
|
17
|
Kumar K, Shinde A, Aeron V, Verma A, Arif NS. Genetic engineering of plants for phytoremediation: advances and challenges. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2023; 32:12-30. [PMID: 0 DOI: 10.1007/s13562-022-00776-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
|
18
|
Cui Q, Liu D, Chen H, Qiu T, Zhao S, Duan C, Cui Y, Zhu X, Chao H, Wang Y, Wang J, Fang L. Synergistic interplay between Azospirillum brasilense and exogenous signaling molecule H 2S promotes Cd stress resistance and growth in pak choi (Brassica chinensis L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130425. [PMID: 36435046 DOI: 10.1016/j.jhazmat.2022.130425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Inoculation with growth-promoting rhizobacteria inoculation and the addition of exogenous signaling molecules are two distinct strategies for improving heavy metal resistance and promoting growth in crops through several mechanisms. However, whether rhizobacteria and phyllosphere signaling molecules can act synergistically alleviate heavy metal stress and promote growth and the mechanisms underlying these effects remain unclear. Here, a novel strategy involving the co-application of growth-promoting rhizobacteria and an exogenous signaling molecule was developed to reduce cadmium (Cd) phytotoxicity and promote pak choi growth in Cd-contaminated soil. We found that the co-application of Azospirillum brasilense and hydrogen sulfide (H2S) resulted in significant improvements in shoot biomass and antioxidant enzyme content and a decline in the levels of Cd translocation factors. In addition, this co-application significantly improved pak choi Cd resistance. Furthermore, we observed a significant negative correlation between abscisic acid concentration and Cd content of pak choi and a positive correlation between H2S concentration and biomass. These findings revealed that the co-application of rhizobacteria and exogenous signaling molecules synergistically promoted the growth of vegetable crops subjected to heavy metal stress. Our results may serve as a guide for improving the food safety of crops grown in soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hansong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Herong Chao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuhan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China.
| |
Collapse
|
19
|
Zhang S, Tan X, Zhou Y, Liu N. Effects of a heavy metal (cadmium) on the responses of subtropical coastal tree species to drought stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12682-12694. [PMID: 36114969 DOI: 10.1007/s11356-022-22696-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
With global climate change and increased industrialization, drought and heavy metals have become common abiotic stress factors for coastal vegetation. In this study, we investigated the ecophysiological responses of the seedlings of three subtropical coastal tree species (Barringtonia racemosa, Hibiscus tiliaceus, and Terminalia neotaliala) to drought stress (D), cadmium addition (Cd), and their combined effects (Cd + D). The results showed that, for all three plant species, treatment D significantly decreased Amax, Y(II), qP, and ETR; increased the concentrations of PRO, soluble sugars, ABA, MDA, and O2-; and increased the activity of Rubisco. The concentrations of soluble sugars, MDA, and O2- were similar for treatments D and Cd; the only difference was that qP, Amax, and ETR values of B. racemosa and the Amax value of H. tiliaceus were significantly lower in treatment Cd than in control. The concentrations of PRO, soluble sugars, ABA, and MDA were significantly lower for treatment Cd + D than for treatment D. The O2- concentration was positively correlated with the concentrations of soluble sugars and PRO, indicating that osmoregulation was important for the responses of the plants to oxidative stress. ABA was positively correlated with MDA, indicating that ABA was involved in the response to oxidative stress. These results, which show that Cd may weaken the physiological responses of coastal plants to drought stress by increasing ABA accumulation, may provide guidance for coastal ecosystem management in South China.
Collapse
Affiliation(s)
- Shike Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuan Tan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuheng Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- College of Life Sciences, Gannan Normal University, 341000, Ganzhou, China.
| |
Collapse
|
20
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
21
|
Medrano-Macías J, Flores-Gallegos AC, Nava-Reyna E, Morales I, Tortella G, Solís-Gaona S, Benavides-Mendoza A. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3203. [PMID: 36501243 PMCID: PMC9740111 DOI: 10.3390/plants11233203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
This review highlights the relationship between the metabolism of reactive oxygen species (ROS), reactive nitrogen species (RNS), and H2S-reactive sulfur species (RSS). These three metabolic pathways, collectively termed reactive oxygen, nitrogen, and sulfur species (RONSS), constitute a conglomerate of reactions that function as an energy dissipation mechanism, in addition to allowing environmental signals to be transduced into cellular information. This information, in the form of proteins with posttranslational modifications or signaling metabolites derived from RONSS, serves as an inducer of many processes for redoxtasis and metabolic adjustment to the changing environmental conditions to which plants are subjected. Although it is thought that the role of reactive chemical species was originally energy dissipation, during evolution they seem to form a cluster of RONSS that, in addition to dissipating excess excitation potential or reducing potential, also fulfils essential signaling functions that play a vital role in the stress acclimation of plants. Signaling occurs by synthesizing many biomolecules that modify the activity of transcription factors and through modifications in thiol groups of enzymes. The result is a series of adjustments in plants' gene expression, biochemistry, and physiology. Therefore, we present an overview of the synthesis and functions of the RONSS, considering the importance and implications in agronomic management, particularly on the biostimulation of crops.
Collapse
Affiliation(s)
- Julia Medrano-Macías
- Department of Horticulture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Adriana Carolina Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Erika Nava-Reyna
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, National Center for Disciplinary Research in Water, Soil, Plants and Atmosphere Relations, Gomez Palacio 35150, Mexico
| | - Isidro Morales
- Instituto Politécnico Nacional, Interdisciplinary Research Center for Regional Integral Development, Oaxaca 71230, Mexico
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
22
|
Saud S, Wang D, Fahad S, Javed T, Jaremko M, Abdelsalam NR, Ghareeb RY. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:994785. [PMID: 36388512 PMCID: PMC9651928 DOI: 10.3389/fpls.2022.994785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/27/2023]
Abstract
In recent years, heavy metals-induced soil pollution has increased due to the widespread usage of chromium (Cr) in chemical industries. The release of Cr into the environment has reached its peak causing hazardous environmental pollution. Heavy metal-induced soil pollution is one of the most important abiotic stress affecting the dynamic stages of plant growth and development. In severe cases, it can kill the plants and their derivatives and thereby pose a potential threat to human food safety. The chromium ion effect on plants varies and depends upon its severity range. It mainly impacts the numerous regular activities of the plant's life cycle, by hindering the germination of plant seeds, inhibiting the growth of hypocotyl and epicotyl parts of the plants, as well as damaging the chloroplast cell structures. In this review article, we tried to summarize the possible effects of chromium-induced stress on plant growth, developmental physiology, biochemistry, and molecular regulation and provided the important theoretical basis for selecting remedial plants in chromium-induced contaminated soils, breeding of low toxicity tolerant varieties, and analyzing the mechanism of plant resistance mechanisms in response to heavy metal stress.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Sciences, Linyi University, Linyi, China
| | - Depeng Wang
- College of Life Sciences, Linyi University, Linyi, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, Smart-Health Initiative and Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| |
Collapse
|
23
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022; 55:481-487. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver. [BMB Reports 2022; 55(10): 481-487].
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
24
|
Du M, Zhang P, Wang G, Zhang X, Zhang W, Yang H, Bao Z, Ma F. H 2 S improves salt-stress recovery via organic acid turn-over in apple seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2923-2942. [PMID: 35906186 DOI: 10.1111/pce.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xinyi Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiwei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongqiang Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
25
|
Singh D, Singh CK, Siddiqui MH, Alamri S, Sarkar SK, Rathore A, Prasad SK, Singh D, Sharma NL, Kalaji HM, Brysiewicz A. Hydrogen Sulfide and Silicon Together Alleviate Chromium (VI) Toxicity by Modulating Morpho-Physiological and Key Antioxidant Defense Systems in Chickpea ( Cicer arietinum L.) Varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:963394. [PMID: 35971511 PMCID: PMC9374685 DOI: 10.3389/fpls.2022.963394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 05/31/2023]
Abstract
Extensive use of chromium (Cr) in anthropogenic activities leads to Cr toxicity in plants causing serious threat to the environment. Cr toxicity impairs plant growth, development, and metabolism. In the present study, we explored the effect of NaHS [a hydrogen sulfide; (H2S), donor] and silicon (Si), alone or in combination, on two chickpea (Cicer arietinum) varieties (Pusa 2085 and Pusa Green 112), in pot conditions under Cr stress. Cr stress increased accumulation of Cr reduction of the plasma membrane (PM) H+-ATPase activity and decreased in photosynthetic pigments, essential minerals, relative water contents (RWC), and enzymatic and non-enzymatic antioxidants in both the varieties. Exogenous application of NaHS and Si on plants exposed to Cr stress mitigated the effect of Cr and enhanced the physiological and biochemical parameters by reducing Cr accumulation and oxidative stress in roots and leaves. The interactive effects of NaHS and Si showed a highly significant and positive correlation with PM H+-ATPase activity, photosynthetic pigments, essential minerals, RWC, proline content, and enzymatic antioxidant activities (catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase, and monodehydroascorbate reductase). A similar trend was observed for non-enzymatic antioxidant activities (ascorbic acid, glutathione, oxidized glutathione, and dehydroascorbic acid level) in leaves while oxidative damage in roots and leaves showed a negative correlation. Exogenous application of NaHS + Si could enhance Cr stress tolerance in chickpea and field studies are warranted for assessing crop yield under Cr-affected area.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Susheel Kumar Sarkar
- Division of Design of Experiments (DE), ICAR-Indian Agricultural Statistics Research Institute, ICAR Library Avenue, Pusa, New Delhi, India
| | - Abhishek Rathore
- Regional Breeding Informatics Lead, Excellence in Breeding Platform (EiB)-CIMMYT Building ICRISAT Campus, Patancheru, Hyderabad, India
| | - Saroj Kumar Prasad
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Adam Brysiewicz
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| |
Collapse
|
26
|
Kaur H, Hussain SJ, Al-Huqail AA, Siddiqui MH, Al-Huqail AA, Khan MIR. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:660-669. [PMID: 34516728 DOI: 10.1111/plb.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a pervasive noxious heavy metal, is a key threat to agricultural system. It is rapidly translocated and has detrimental effects on plant growth and development. Hydrogen sulphide (H2 S) is emerging as a potential messenger molecule for modulating plant tolerance to Cd. Salicylic acid (SA), a phenolic signalling molecule, can alleviate Cd toxicity in plants. The present study investigated the mediatory role of H2 S (100 µM) and SA (0.5 mM), individually and in combination, in modulating antioxidant defence machinery and nutrient balance to impart Cd (50 µM) resistance to mustard. Accumulation of Cd resulted in oxidative stress (TBARS and H2 O2 ), mineral nutrient imbalance (N, P, K, Ca), decreased leaf gas exchange and PSII efficiency, ultimately reducing plant growth. Both H2 S and SA independently attenuated phytotoxic effects of Cd by triggering antioxidant systems, enhancing the nutrient pool, eventually leading to improved photosynthesis and biomass of mustard plants. The positive effects were more pronounced under combined application of H2 S and SA, indicating a synergistic relationship between these two signalling molecules in mitigating the detrimental effects of Cd on nutrient homeostasis and overall health of mustard, primarily by boosting antioxidant pathway. Our findings provide new insights into H2 S- and SA-induced protective mechanisms in mustard plants subjected to Cd stress and suggest their combined use as a feasible strategy to confer Cd tolerance.
Collapse
Affiliation(s)
- H Kaur
- Department of Botany, Akal University, Bathinda, India
| | - S J Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - A A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Al-Huqail
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
27
|
The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022; 12:biom12050678. [PMID: 35625606 PMCID: PMC9138313 DOI: 10.3390/biom12050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.
Collapse
|
28
|
Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland; Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical, Bio Resource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | | |
Collapse
|
29
|
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. TRENDS IN PLANT SCIENCE 2021; 26:1270-1285. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters, which are involved in almost all plant physiological and stress-related processes. With its antioxidant regulatory properties, NO on its own ameliorates plant stress, while H2S, a foul-smelling gas, has differential effects. Recent studies have shown that these signaling molecules are involved in intertwined pathway networks. This is due to the contrasting effects of NO and H2S depending on cell type, subcellular compartment, and redox status, as well as the flux and dosage of NO and H2S in different plant species and cellular contexts. Here, we provide a comprehensive review of the complex networks of these molecules, with particular emphasis on root development, stomatal movement, and plant cell death.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| |
Collapse
|
30
|
Wang J, Xie H, Li H, Wang R, Zhang B, Ren T, Hua J, Chen N. NIR Fluorescent Probe for In Situ Bioimaging of Endogenous H 2S in Rice Roots under Al 3+ and Flooding Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14330-14339. [PMID: 34802240 DOI: 10.1021/acs.jafc.1c05247] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is one of the typical reactive sulfur species, which exhibits an important role in regulating both physiological and pathological processes. Recent studies indicate that H2S also serves as a key signaling molecule in a broad range of regulatory processes in plants. However, in situ imaging and detection of the levels of H2S in plant tissues remains a challenge. In this work, a NIR fluorescent probe (HBTP-H2S) was synthesized to achieve H2S imaging in living plant tissues. HBTP-H2S exhibited high sensitivity toward H2S with a large Stokes shift (250 nm). HBTP-H2S could be applied to HeLa cells to detect the fluctuation of endogenous H2S levels in response to physiological stimulations. Importantly, HBTP-H2S was utilized for direct H2S imaging of rice roots and revealed the upregulation of H2S signaling in response to aluminum ions and flooding stresses. Our work thus provides a new tool to investigate H2S-involved signal interaction and protective resistance of crops under environmental stresses.
Collapse
Affiliation(s)
- Jian Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Hui Xie
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Haoyang Li
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Rong Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Tianrui Ren
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Nan Chen
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| |
Collapse
|
31
|
Chen S, Chang Y, Ding Y. Roles of H 2S and NO in regulating the antioxidant system of Vibrio alginolyticus under norfloxacin stress. PeerJ 2021; 9:e12255. [PMID: 34707937 PMCID: PMC8500093 DOI: 10.7717/peerj.12255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Antioxidant system is of great importance for organisms to regulate the level of excessive reactive oxygen species (ROS) under the environmental stresses including antibiotics stress. Effects of norfloxacin (NOR) on cystathionine-β-synthase (CBS), nitric oxide synthase (NOS) and antioxidant enzymes were investigated, and interaction between NO and H2S and their regulation on the antioxidant system of Vibrio alginolyticus under NOR were determined as well in the present study. After treated with 2 µg/mL NOR (1/2 MIC), CBS content, H2S and NO contents decreased while H2O2 accumulation and the antioxidant-related genes mRNA level increased. Additionally, the endogenous H2S content in V. alginolyticus was increased by the exogenous NO, while H2O2 accumulation and the relative expression level of SOD (Superoxide dismutase gene) decreased under exogenous NO or H2S. And the content of endogenous NO and NOS in V. alginolyticus increased under the exogenous H2S as well. Taken together, these results showed that anti-oxidative ability in V. alginolyticus was respectively enhanced by the gas molecules of H2S and NO under NOR-induced stress, and there may be a crosstalk regulative mechanism between H2S and NO. These results lay a foundation for the research of regulation network of H2S and NO, and provide a hint to synthesize anti-vibrio drugs in the future.
Collapse
Affiliation(s)
- Shuhe Chen
- Fisheries College, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yunsheng Chang
- Fisheries College, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yu Ding
- Fisheries College, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
32
|
Alam I, Alam M, Khan A, Haq SU, Ayaz A, Jalal A, Bhat JA. Biochar supplementation regulates growth and heavy metal accumulation in tomato grown in contaminated soils. PHYSIOLOGIA PLANTARUM 2021; 173:340-351. [PMID: 33840098 DOI: 10.1111/ppl.13414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Biochar application has recently gained increased attention to reclaim heavy metal degraded soils. In this context, the present study investigated the effects of biochar on the growth regulation and heavy metal accumulation in tomato grown on contaminated soils. A two-factorial design with factor A including three treatments with mine (contaminated soil) and garden soil in the following ratio viz., T1 = 1:2, T2 = 1:1, and T3 = 2:1, and garden soil only as control; whereas factor B consists of biochar amendments at three levels viz., B1 (3%), B2 (6%), and B3 (9%). Our results revealed significant negative effects of heavy metal-contaminated soil on plant growth, and besides resulted heavy metal accumulation in tomato fruit. Tomato plants showed maximum reduction of growth in T3 followed by T2, and lowest in T1, a similar pattern was found for accumulation of heavy metals in the fruit. However, the application of biochar reduced the bioavailability and accumulation of heavy metals in the tomato fruit, as well as improved plant growth in contaminated soils. Overall, among the three biochar treatments, B2 was determined as the optimum level for improved growth coupled with reduced heavy metal accumulation in the tomato fruit. Besides, biochar application decreased the daily intake of metals and human health risk index values, thus alleviating the health risk. Hence, the present study demonstrated a positive role of biochar in reclaiming heavy metal-contaminated soils and in increasing the plant growth.
Collapse
Affiliation(s)
- Intikhab Alam
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Mehboob Alam
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Anwarzeb Khan
- Department of Environmental and Conservation Sciences, University of Swat, Mingora, Pakistan
| | - Saeed-Ul Haq
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Aliya Ayaz
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Abdul Jalal
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA. Hydrogen sulfide (H 2S) and potassium (K +) synergistically induce drought stress tolerance through regulation of H +-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. PLANT CELL REPORTS 2021; 40:1543-1564. [PMID: 34142217 DOI: 10.1007/s00299-021-02731-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Exogenous potassium (K+) and endogenous hydrogen sulfide (H2S) synergistically alleviate drought stress through regulating H+-ATPase activity, sugar metabolism and redox homoeostasis in tomato seedlings. Present work evaluates the role of K+ in the regulation of endogenous H2S signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to drought stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K+ content which was associated with reduced H+-ATPase activity. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K+ channel blocker) suggests that exogenous K+ stimulated H+-ATPase activity that further regulated endogenous K+ content in tomato seedlings subjected to drought stress. Moreover, reduction in H+-ATPase activity by hypotaurine (HT; H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K+ content enhanced the biosynthesis of H2S through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K+ effectively neutralized drought stress by regulating sugar metabolism and redox homoeostasis that resulted in osmotic adjustment, as witnessed by reduced water loss, and improved hydration level of the stressed seedlings. The integrative role of endogenous H2S in K+ homeostasis was validated using HT and TEA which weakened the protection against drought stress induced impairments. In conclusion, exogenous K+ and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K+ homeostasis. Thus, present work reveals that K+ and H2S crosstalk is essential for modulation of drought stress tolerance in tomato seedlings.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Riyadh A Basahi
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Ibrahim A A Almohisen
- Department of Biology, Faculty of Science and Humanities, Shaqra University, Shaqra, P. O. Box 33, Quwayiyah, 11961, Saudi Arabia
| |
Collapse
|
34
|
Activated Bio-Carbons Prepared from the Residue of Supercritical Extraction of Raw Plants and Their Application for Removal of Nitrogen Dioxide and Hydrogen Sulfide from the Gas Phase. MATERIALS 2021; 14:ma14123192. [PMID: 34207885 PMCID: PMC8227169 DOI: 10.3390/ma14123192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
The waste materials left after supercritical extraction of hop cones and marigold flowers were tested as precursors of activated bio-carbons. Adsorbents were produced by means of the physical (also called thermal) activation method using CO2 as the gasifying agent. All the activated bio-carbons were tested for the removal of NO2 and H2S from the gas phase under dry and wet conditions. The effects of the type of precursor and the activation procedure on the porous structure development, the acid-base properties of the surface, as well as the sorption capacities of the materials produced were also checked. The final products were bio-carbons of medium developed surface area with a basic surface nature, characterized by their high effectiveness in removal of gas pollutants of acidic character, especially nitrogen dioxide (sorption capacities in the range from 12.5 to 102.6 mg/g). It was proved that the toxic gas removal efficiency depends considerably on the sorption conditions and the activation procedure. All materials showed greater effectiveness in gas removal when the process of adsorption was carried out in the presence of steam.
Collapse
|