Unique nutritional features that distinguish Amaranthus cruentus L. and Chenopodium quinoa Willd seeds.
Food Res Int 2023;
164:112160. [PMID:
36737889 DOI:
10.1016/j.foodres.2022.112160]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Univariate (Analysis of Variance_ANOVA) and multivariate (Principal Component Analysis (PCA) and Canonical Discriminant Analysis (CDA)) analyses were performed in order to classify and authenticate the seeds from different varieties of quinoa (Chenopodium quinoa Will.), and amaranth (Amaranthus cruentus L.). The univariate analysis showed differences between species for sucrose, K, Ca, unsaturated fatty acids, and the ω6/ω3 ratio. Nevertheless, to strengthen this classification, a PCA was applied separating the samples in 2 groups; group 1, formed by quinoa seeds, presented higher contents of margaroleic, eicosadienoic, behenic, erucic, linolenic, linoleic, and gadoleic acids, proteins, sucrose, and total sugars. Group 2, formed by amaranth seeds, showed positive values for Mn, Mg, Fe, P, Zn, Ca, fiber, glucose, and ω6/ω3 ratio. Furthermore, the CDA models developed resulted in a probability of event of 100% when classifying the samples in the groups quinoa or amaranth, highlighting the good sensitivity of the models used.
Collapse