1
|
Yan N, Qin Y, Wang H, Wang Q, Hu F, Wu Y, Zhang X, Li X. The Inversion of SPAD Value in Pear Tree Leaves by Integrating Unmanned Aerial Vehicle Spectral Information and Textural Features. SENSORS (BASEL, SWITZERLAND) 2025; 25:618. [PMID: 39943257 PMCID: PMC11820491 DOI: 10.3390/s25030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Chlorophyll is crucial for pear tree growth and fruit quality. In order to integrate the unmanned aerial vehicle (UAV) multispectral vegetation indices and textural features to realize the estimation of the SPAD value of pear leaves, this study used the UAV multispectral remote sensing images and ground measurements to extract the vegetation indices and textural features, and analyze their correlation with the SPAD value of leaves during the fruit expansion period of the pear tree. Finally, four machine learning methods, namely XGBoost, random forest (RF), back-propagation neural network (BPNN), and optimized integration algorithm (OIA), were used to construct inversion models of the SPAD value of pear trees, with different feature inputs based on vegetation indices, textural features, and their combinations, respectively. Moreover, the differences among these models were compared. The results showed the following: (1) both vegetation indices and textural features were significantly correlated with SPAD values, which were important indicators for estimating the SPAD values of pear leaves; (2) combining vegetation indices and textural features significantly improved the accuracy of SPAD value estimation compared with a single feature type; (3) the four machine learning algorithms demonstrated good predictive ability, and the OIA model outperformed the single model, with the model based on the OIA inversion model combining vegetation indices and textural features having the best accuracy, with R2 values of 0.931 and 0.877 for the training and validation sets, respectively. This study demonstrated the efficacy of integrating multiple models and features to accurately invert SPAD values, which, in turn, supported the refined management of pear orchards.
Collapse
Affiliation(s)
- Ning Yan
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alaer 843300, China
| | - Yasen Qin
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alaer 843300, China
| | - Haotian Wang
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alaer 843300, China
| | - Qi Wang
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alaer 843300, China
| | - Fangyu Hu
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alaer 843300, China
| | - Yuwei Wu
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alaer 843300, China
| | - Xuedong Zhang
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
| | - Xu Li
- College of Information Engineering, Tarim University, Alaer 843300, China; (N.Y.); (Y.Q.); (H.W.); (Q.W.); (F.H.); (Y.W.)
| |
Collapse
|
2
|
Li WX, Fang QT, Han QO, Huang HH, Zheng XQ, Lu JL, Liang YR, Ye JH. Different performance of tea plants to shade based on key metabolites and transcriptome profiles: case study of cultivars Longjing 43 and Yabukita. PHYSIOLOGIA PLANTARUM 2025; 177:e70103. [PMID: 39905973 DOI: 10.1111/ppl.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Shading is widely used in tea cultivation to improve quality by modulating various metabolic pathways in tea plants. However, the differential sensitivity of specific metabolites and the cultivar-dependent responses to shading are not yet fully understood. This study examined the impact of shading on the chemical composition and transcriptional profiles of cv. Longjing 43 and cv. Yabukita. Among the main quality-related compounds, flavonol glycosides were highly responsive to shading, while catechins displayed distinct cultivar-specific responses. KEGG enrichment analysis revealed that flavonoid biosynthesis was the key secondary metabolic difference between cv. Longjing and cv. Yabukita plants under the sunlight, and shading regulated flavonoid biosynthetic pathways in both cultivars. The genes such as ANTHOCYANIDIN REDUCTASE (CsANR) and ANTHOCYANIDIN SYNTHASE (CsANS) were less sensitive to shade in cv. Longjing 43 than cv. Yabukita, leading to relatively higher levels of epi-type catechins in the shade-treated cv. Longjing 43 sample. Additionally, the UVR8-mediated light signaling pathway demonstrated cultivar-specific expression patterns, although the functional roles of key signaling proteins were conserved across both cultivars. The insights into the chemical and molecular responses of tea plants to shading deepen our understanding of the mechanisms driving the cultivar-dependent behaviors of flavonoids, which offers valuable applications for maintaining consistent matcha quality and informing breeding programs of matcha.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qi-Ting Fang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qian-Ou Han
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Hui-Hui Huang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang Q, Li M, Wang J, Ma X, Liu L, Wang P, Hu J, Zhang X, Qu F. Exploring the effect of greenhouse covering cultivation on the changes of sensory quality and flavor substances of green tea. Food Chem X 2024; 24:101885. [PMID: 39483358 PMCID: PMC11525458 DOI: 10.1016/j.fochx.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
To protect tea plant (Camellia sinensis (L.) O. Kuntze) from freezing injury, plastic greenhouse covering is widely used in northern tea areas of China. Currently, there was few researches about the effect of greenhouse covering on tea quality. Our results showed greenhouse covering increased tea yield, changed leaf phenotype and decreased green tea quality. Further analysis revealed greenhouse increased the content of soluble sugars and decreased the content of EGCG and 14 amino acids. Besides, there were 223 differential volatile components were identified in green tea produced by fresh leaves with plastic greenhouse covering (GT) and green tea produced by fresh leaves without plastic greenhouse covering (TT). 81 key aroma components were contributors to the bean-like aroma of TT. 98 key aroma components contributed to the clean aroma of GT. Based on these results, the flavor wheels were constructed, providing a visual presentation of flavor between TT and GT.
Collapse
Affiliation(s)
- Qian Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueming Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Liu
- Bureau of Agriculture and Rural Affairs of Laoshan District, Qingdao 266061, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengfeng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Shen Y, Han X, Wang H, Shen J, Sun L, Fan K, Wang Y, Ding S, Song D, Ding Z. Full-length transcriptome sheds light into the molecular mechanism of tea leaf yellowing induced by red light. Sci Rep 2024; 14:29901. [PMID: 39622966 PMCID: PMC11612301 DOI: 10.1038/s41598-024-81886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Light, as an energy source for plant photosynthesis, can not only affect the growth and development of plants, but also affect their leaf color. This study used white (WL), red (RL), and blue light (BL) to treat tea cuttings, aiming to investigate the effect of light quality on the color of tea leaves. The results showed that tea leaves turned yellow under red light, the SPAD and Fv/Fm values were significantly lower than WL and BL. Full-length transcriptome was analyzed, photosynthesis and chlorophyll biosynthesis related genes such as PsbS, Psb28, HemL, and POR had the lowest expression levels under RLCarotenoid biosynthesis related genes ZEP, ABA2, and CRTISO had the higher expression levels under RL. This study revealed the molecular mechanism of RL induced leaf yellowing in tea plants, providing new insights for the application of light quality in tea plants.
Collapse
Affiliation(s)
- Yaozong Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA, 6150, Australia
| | - Xiao Han
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA, 6150, Australia
| | - Hui Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Shibo Ding
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Dapeng Song
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA, 6150, Australia.
| |
Collapse
|
5
|
Hirono H, Yamashita S, Hirono Y. Influence of steaming duration, chlorophyll-a and -b content and ratio, and pH on the color of green tea processed from multiple tea (Camellia sinensis L.) cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9410-9422. [PMID: 39101245 DOI: 10.1002/jsfa.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND The color of green tea is an important quality indicator. In recent years, shading of tea (Camellia sinensis L.) plants has been widely adopted for green tea production to enhance its green color and umami taste. In this study, we identified factors that influence green tea color by (i) examining variation in the chlorophyll content of fresh new tea shoots among cultivars, cropping seasons, and the degree of shading, (ii) investigating the rate of conversion of chlorophyll to pheophytin during the tea manufacturing process, specifically with steaming duration, and (iii) analyzing the effects of the new tea shoot properties and the steaming process on colorimetric values of the steamed new tea shoots. RESULTS Multiple regression analysis revealed that three factors contributed to the rate of conversion of each chlorophyll type to pheophytin in steamed new tea shoots (ranked by importance): steaming duration > each chlorophyll type (chlorophyll-a and chlorophyll-b) content of fresh new tea shoots > pH. The colorimetric hue angle (h) value of steamed new tea shoots was influenced by four factors (ranked by importance): steaming duration > total chlorophyll (chlorophyll-a + chlorophyll-b) content in fresh new tea shoots > pH > chlorophyll-a/chlorophyll-b ratio in fresh new tea shoots. CONCLUSION Differences in the color of new tea shoots can be explained by the aforementioned four factors. The findings will be useful for cultivar selection, and determining the appropriate degree of shading and steaming duration, to produce high-quality green teas with a good appearance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hisako Hirono
- Division of Tea Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimada, Japan
| | - Shuya Yamashita
- Division of Tea Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Makurazaki, Japan
| | - Yuhei Hirono
- Division of Tea Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimada, Japan
| |
Collapse
|
6
|
Yáñez MA, Espinoza SE, Magni CR, Martínez-Herrera E. Early Growth and Physiological Acclimation to Shade and Water Restriction of Seven Sclerophyllous Species of the Mediterranean Forests of Central Chile. PLANTS (BASEL, SWITZERLAND) 2024; 13:2410. [PMID: 39273894 PMCID: PMC11397454 DOI: 10.3390/plants13172410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The success of using active restoration in Mediterranean-type climate zones mostly depends on an appropriate matching of plant species and specific management prescriptions upon establishment. In this study, we assessed the early growth and short-term physiological acclimation of seven common species found in the sclerophyllous forests in central Chile to water restriction and shading. We established a nursery experiment that included three treatments (T0: sun-exposed and water-restricted, T1: sun-exposed and fully irrigated, and T2: shaded and fully irrigated) and seven tree species differing in their shade and drought tolerance (Quillaja saponaria Molina, Aristotelia chilensis (Mol.) Stuntz, Peumus boldus Molina, Lithraea caustica (Mol.) Hook. and Arn, Luma apiculata (DC.) Burret, Colliguaja odorifera Molina, and Escallonia pulverulenta (Ruiz and Prav.) Pers). We measured the increment in seedling height and different leaf morpho-physiological traits during two months in the dry season. Based on the measured traits, none of the species took advantage of the higher water availability in T1 relative to T0, but most of the species responded to the shade in T2, regardless of their shade or drought tolerance. Height increments due to shade varied from 0% in P. boldus to 203% in L. apiculata. Overall, all the species responded similarly to the treatments in specific leaf area, chlorophyll content index, photosynthetic rate, stomatal conductance, and intrinsic water use efficiency. This suggests that the species exhibited similar acclimation patterns of these parameters to shade and drought, even regarding the variation in midday xylem water potential found in the water-restricted treatment T0 (from -1.5 MPa in P. boldus to -3.1 MPa in E. pulverulenta). In this study, shading had a higher positive effect on the seedling performance of sclerophyllous species than watering, which at operational level highlights the need for investing in tree shelters when using these species in restoration programs.
Collapse
Affiliation(s)
- Marco A Yáñez
- College of Forestry, Agriculture, and Natural Resources, University of Arkansas at Monticello, 110 University Ct., Monticello, AR 71656, USA
| | - Sergio E Espinoza
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| | - Carlos R Magni
- Centro Productor de Semillas y Árboles Forestales (CESAF), Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Avenida Santa Rosa 11365, La Pintana 8820808, Chile
| | - Eduardo Martínez-Herrera
- Centro Productor de Semillas y Árboles Forestales (CESAF), Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Avenida Santa Rosa 11365, La Pintana 8820808, Chile
| |
Collapse
|
7
|
Wei L, Ji L, Rico C, He C, Shakoor I, Fakunle M, Lu X, Xia Y, Hou Y, Hong J. Transcriptomics Reveals the Pathway for Increasing Brassica chinensis L. Yield under Foliar Application of Titanium Oxide Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18957-18970. [PMID: 39137250 DOI: 10.1021/acs.jafc.4c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this study, Brassica chinensis L seedlings after 6 weeks of soil cultivation were treated with foliar application of TiO2 NPs (20 mg/L) for different times. Transcriptomics analysis was employed to investigate the impact of TiO2 NPs on the physiology, growth, and yield of B. chinensis L. Results showed that TiO2 NPs' exposure significantly increased the biomass, total phosphorus, and catalase enzyme activity by 23.60, 23.72, and 44.01%, respectively, compared to the untreated ones (not bulk or ion).TiO2 NPs increased the leaf chlorophyll content by 4.9% and photosynthetic rate by 16.62%, which was attributed to the upregulated expression of seven genes (PetH, PetF, PsaF, PsbA, PsbB, PsbD, and Lhcb) associated with electron transport in photosystem I and light-harvesting in leaves. The water balance of B. chinensis was improved correlating with the altered expressions of 19 aquaporin genes (e.g., PIP2;1 and NIP6;1). The expressions of 58 genes related to plant hormone signaling and growth were dysregulated, with notable downregulations in GA20, SnRK2, and PP2C and upregulations of DELLAs, SAM, and ETR. Moreover, the 11 tricarboxylic acid cycle genes and 13 glycolysis genes appear to stimulate pathways involved in promoting the growth and physiology of B. chinensis. This research contributes valuable insights into new strategies for increasing the yield of B. chinensis.
Collapse
Affiliation(s)
- Lan Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Lei Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Cyren Rico
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Changyu He
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Iqra Shakoor
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Mary Fakunle
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Xiaohua Lu
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Yuhong Xia
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Ying Hou
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Jie Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
8
|
Wu Z, Liu K, Zhang X, Tang Q, Zeng L. CsNYC1a Mediates Chlorophyll Degradation and Albino Trait Formation in the Arbor-Type Tea Plant Camellia nanchuanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38848450 DOI: 10.1021/acs.jafc.4c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Albino germplasms are prized tea plant mutants with yellow/white leaves. However, understanding of the albino mechanisms in non-Camellia sinensis tea species remains limited. This study elucidated the albino trait formation in Nanchuan Dachashu (C. nanchuanica), an arbor-type tea species, and its association with tea quality. The yellow-leaved albino individual NH1 exhibited abnormal chloroplast ultrastructure and reduced chlorophyll/carotenoid levels compared to green-leaved NL1. Integrating transcriptomics, metabolomics, yeast one-hybrid, and transgenic approaches identified the chlorophyll b reductase gene CsNYC1a as a key regulator, which was significantly up-regulated in NH1, and its overexpression in Arabidopsis recapitulated the albino phenotype. In yeast, histone CsH1.2 binds to the CsNYC1a promoter. These findings suggest that CsH1.2-CsNYC1a-mediated chlorophyll degradation may be a key mechanism underlying albino formation in Nanchuan Dachashu. In addition, as a germplasm with higher polyphenol-to-amino acid ratio than NL1, NH1 offers more possibilities for breeding and application.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Ma X, Liu J, Li H, Wang W, Liu L, Wang P, Hu J, Zhang X, Qu F. Greenhouse covering cultivation promotes chlorophyll accumulation of tea plant (Camellia sinensis) by activating relevant gene expression and enzyme activity. BMC PLANT BIOLOGY 2024; 24:455. [PMID: 38789917 PMCID: PMC11127325 DOI: 10.1186/s12870-024-05149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Plastic greenhouse covering cultivation has been widely used in tea areas of northern China. Chlorophyll is not only the crucial pigment for green tea, but also plays an important role in the growth and development of tea plants. Currently, little is known about the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves. RESULTS To investigate the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves, color difference values, chlorophyll contents, gene expression, enzyme activities and photosynthetic parameters were analyzed in our study. Sensory evaluation showed the color of appearance, liquor and infused leaves of greenhouse tea was greener than field tea. Color difference analysis for tea liquor revealed that the value of ∆L, ∆b and b/a of greenhouse tea was significantly higher than field tea. Significant increase in chlorophyll content, intracellular CO2, stomatal conductance, transpiration rate, and net photosynthetic rate was observed in greenhouse tea leaves. The gene expression and activities of chlorophyll-metabolism-related enzymes in tea leaves were also activated by greenhouse covering. CONCLUSION The higher contents of chlorophyll a, chlorophyll b and total chlorophyll in greenhouse tea samples were primarily due to higher gene expression and activities of chlorophyll-metabolism-related enzymes especially, chlorophyll a synthetase (chlG), pheophorbide a oxygenase (PAO) and chlorophyllide a oxygenase (CAO) in tea leaves covered by greenhouse. In general, our results revealed the molecular basis of chlorophyll metabolism in tea leaves caused by plastic greenhouse covering cultivation, which had great significance in production of greenhouse tea.
Collapse
Affiliation(s)
- Xueming Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jixian Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenzhuo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Liu
- Bureau of Agriculture and Rural Affairs of Laoshan District, Qingdao, 266061, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengfeng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Li X, Zhang W, Niu D, Liu X. Effects of abiotic stress on chlorophyll metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112030. [PMID: 38346561 DOI: 10.1016/j.plantsci.2024.112030] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Chlorophyll, an essential pigment in the photosynthetic machinery of plants, plays a pivotal role in the absorption of light energy and its subsequent transfer to reaction centers. Given that the global production of chlorophyll reaches billions of tons annually, a comprehensive understanding of its biosynthetic pathways and regulatory mechanisms is important. The metabolic pathways governing chlorophyll biosynthesis and catabolism are complex, encompassing a series of interconnected reactions mediated by a spectrum of enzymes. Environmental fluctuations, particularly abiotic stressors such as drought, extreme temperature variations, and excessive light exposure, can significantly perturb these processes. Such disruptions in chlorophyll metabolism have profound implications for plant growth and development. This review delves into the core aspects of chlorophyll metabolism, encompassing both biosynthetic and degradative pathways. It elucidates key genes and enzymes instrumental in these processes and underscores the impact of abiotic stress on chlorophyll metabolism. Furthermore, the review aims to deepen the understanding of the interplay between chlorophyll metabolic dynamics and stress responses, thereby shedding light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Shu Z, Ji Q, He T, Zhou D, Zheng S, Zhou H, He W. Combined metabolome and transcriptome analyses reveal that growing under Red shade affects secondary metabolite content in Huangjinya green tea. Front Genet 2024; 15:1365243. [PMID: 38660681 PMCID: PMC11039865 DOI: 10.3389/fgene.2024.1365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Shading treatments impact the tea (Camellia sinensis L.) quality. The sunlight sensitive varieties can be grown under shading nets for better growth and secondary metabolite content. Here, we studied the responses of a sunlight sensitive green tea variety "Huangjinya" by growing under colored shading nets (red, yellow, blue, and black (75% and 95%) shading rates) to find out the most suitable color of the shading net. Red shading was the most promising treatment as it positively affected the weight and length of 100 one-bud-three leaves and reduced the degree and rate of new shoots burn compared to control (natural sunlight). We then explored the comparative metabolomic changes in response to red shading by using UPLC-ESI-MS/MS system. The amino acids and derivatives, flavonoids, and alkaloids were downaccumulated whereas lipids, organic acids, and lignans were upaccumulated in Red shade grown tea samples. The red shading nets caused a decreased catechin, epicatechin, dopamine, and L-tyramine contents but increased caffeine content. We then employed transcriptome sequencing to find key changes in expressions of related genes and pathways. Notably, key genes associated with the phenylpropanoid and flavonoid biosynthesis pathways exhibited complex regulation. These expression changes suggested a potential trend of polymerization or condensation of simple molecules like catechin or pelargonidin into larger molecules like glucoside or proanthocyanidins. Here, Red shading net triggered higher expression of genes enriched in lipid biosynthesis and jasmonic acid biosynthesis, suggesting an interplay of fatty acids and JA in improving tea performance. These findings contribute to the metabolic responses of Huangjinya tea to red shading nets which might have implications for flavor and health benefits. Our data provide a foundation for further exploration and optimization of cultivation practices for this unique tea variety.
Collapse
Affiliation(s)
| | | | | | | | | | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
12
|
Ge S, Wang Y, Shen K, Wang Q, Ahammed GJ, Han W, Jin Z, Li X, Shi Y. Effects of Differential Shading on Summer Tea Quality and Tea Garden Microenvironment. PLANTS (BASEL, SWITZERLAND) 2024; 13:202. [PMID: 38256755 PMCID: PMC10821519 DOI: 10.3390/plants13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control. Among the four shading treatments, double-layer-net shadings had the most positive impact on the tea quality, resulting in higher levels of amino acids but lower levels of tea polyphenols. Additionally, double-layer-net shadings provided more suitable microenvironments for tea plants. The tea leaves in T4 (double nets 50 cm above the plant canopy) contained 16.13 mg∙g-1 of umami and sweet amino acids, which was significantly higher than in other treatments. T4 had the lowest air temperature and the most suitable and stable soil water content. Interestingly, the ratio of red light to far-red light in T4 was only 1.65, much lower than other treatments, which warrants further study. In conclusion, the microenvironment induced by shading can greatly affect the tea quality, and double-layer-net shading is better for improving the quality of summer tea.
Collapse
Affiliation(s)
- Shibei Ge
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| | - Yameng Wang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| | - Keyin Shen
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| | - Qianying Wang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China;
| | - Wenyan Han
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| | - Zhifeng Jin
- Zhejiang Climate Center, Hangzhou 310056, China;
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| | - Yuanzhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China; (S.G.); (W.H.)
| |
Collapse
|
13
|
Liu C, Li J, Li H, Xue J, Wang M, Jian G, Zhu C, Zeng L. Differences in the quality of black tea ( Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chem X 2023; 20:100998. [PMID: 38144863 PMCID: PMC10739754 DOI: 10.1016/j.fochx.2023.100998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Spring green tea is usually considered to be better than summer green tea. Whether this phenomenon applies to black tea is unknown. Black tea produced using Camellia sinensis var. Yinghong No. 9 leaves is popular in South China and analyzed in the study. The taste and color quality of the infusion was higher for spring tea than for summer tea. Compared with summer tea, the main catechin contents were lower in spring tea, whereas caffeine and total amino acid contents were higher, especially glutamic acid, which may be responsible for the differences between teas. Moreover, spring tea had a higher theabrownin content and a lower L* value. The compounds contributing to the infusion taste and color were correlated with the chromaticity value (i.e., useful indicator of black tea quality). This study revealed the seasonal differences in Yinghong No. 9 black tea quality and the key underlying factors.
Collapse
Affiliation(s)
- Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jinghua Xue
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
14
|
Zhang H, He Q, Yang C, Lu M, Liu Z, Zhang X, Li X, Dong C. Research on the Detection Method of Organic Matter in Tea Garden Soil Based on Image Information and Hyperspectral Data Fusion. SENSORS (BASEL, SWITZERLAND) 2023; 23:9684. [PMID: 38139529 PMCID: PMC10748152 DOI: 10.3390/s23249684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Soil organic matter is an important component that reflects soil fertility and promotes plant growth. The soil of typical Chinese tea plantations was used as the research object in this work, and by combining soil hyperspectral data and image texture characteristics, a quantitative prediction model of soil organic matter based on machine vision and hyperspectral imaging technology was built. Three methods, standard normalized variate (SNV), multisource scattering correction (MSC), and smoothing, were first used to preprocess the spectra. After that, random frog (RF), variable combination population analysis (VCPA), and variable combination population analysis and iterative retained information variable (VCPA-IRIV) algorithms were used to extract the characteristic bands. Finally, the quantitative prediction model of nonlinear support vector regression (SVR) and linear partial least squares regression (PLSR) for soil organic matter was established by combining nine color features and five texture features of hyperspectral images. The outcomes demonstrate that, in comparison to single spectral data, fusion data may greatly increase the performance of the prediction model, with MSC + VCPA-IRIV + SVR (R2C = 0.995, R2P = 0.986, RPD = 8.155) being the optimal approach combination. This work offers excellent justification for more investigation into nondestructive methods for determining the amount of organic matter in soil.
Collapse
Affiliation(s)
- Haowen Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (C.Y.); (M.L.); (Z.L.); (X.Z.)
| | - Qinghai He
- Shandong Academy of Agricultural Machinery Science, Jinan 250100, China;
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310008, China;
| | - Chongshan Yang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (C.Y.); (M.L.); (Z.L.); (X.Z.)
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (C.Y.); (M.L.); (Z.L.); (X.Z.)
| | - Zhongyuan Liu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (C.Y.); (M.L.); (Z.L.); (X.Z.)
| | - Xiaojia Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (C.Y.); (M.L.); (Z.L.); (X.Z.)
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310008, China;
| | - Chunwang Dong
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (C.Y.); (M.L.); (Z.L.); (X.Z.)
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China
| |
Collapse
|
15
|
Xie A, Lv M, Zhang D, Shi Y, Yang L, Yang X, Du J, Sun L, Sun X. Effects of slight shading in summer on the leaf senescence and endogenous hormone and polyamine contents in herbaceous peony. Sci Rep 2023; 13:18714. [PMID: 37907675 PMCID: PMC10618196 DOI: 10.1038/s41598-023-46192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
Herbaceous peony is a perennial root plant that likes light and is cold-resistant. During summer, high temperature and strong light intensity advance its entry into the leaf wilting stage, which limits the accumulation of nutrients and formation of strong buds and severely affects its growth and development the following year. In this study, the wild herbaceous peony species and two main cultivars, 'Zifengyu' and 'Hongfengyu', were subjected to slight shading and strong light environments in summer, and their effects on leaf senescence and endogenous hormone and polyamine contents were explored. Slight shading treatment significantly delayed withering, increased the leaf net photosynthetic rate, and increased the chlorophyll, soluble sugar, indole-3-acetic acid, zeatin, gibberellin, spermine, spermidine, putrescine, and polyamine contents. Additionally, slight shading significantly reduced the proline and abscisic acid contents. Slight shading during summer prolonged the green period and delayed leaf senescence. The tolerance of tested materials to strong light intensity in summer was ranked as follows: 'Zifengyu' > 'Hongfengyu' > wild species. In conclusion, this study revealed that summer leaf senescence is delayed in herbaceous peony through shading and growth regulators. Additional varieties should be evaluated to provide reference for high-efficiency, high-quality, and high-yield cultivation of herbaceous peony.
Collapse
Affiliation(s)
- Anqi Xie
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China
| | - Mengwen Lv
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dongliang Zhang
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China
| | - Yajie Shi
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China
| | - Lijin Yang
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China
| | - Xiao Yang
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China
| | - Jie Du
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China.
- School of Bioengineering, Huainan Normal Unversity, Huainan, 232038, Anhui, China.
| | - Limin Sun
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xia Sun
- College of Horticulture, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Wu L, Song L, Cao L, Meng L. Alleviation of Shade Stress in Chinese Yew ( Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA). PLANTS (BASEL, SWITZERLAND) 2023; 12:2333. [PMID: 37375957 DOI: 10.3390/plants12122333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
5-aminolevulinic acid (ALA) is a novel regulator that can promote plant growth, nitrogen uptake, and abiotic stress tolerance. Its underlying mechanisms, however, have not been fully investigated. In this study, the effects of ALA on morphology, photosynthesis, antioxidant systems, and secondary metabolites in two cultivars of 5-year-old Chinese yew (Taxus chinensis) seedlings, 'Taihang' and 'Fujian', were examined under shade stress (30% light for 30 days) using different doses of ALA (0, 30, and 60 mg/L). The findings from our study show that shade stress significantly reduced plant height, stem thickness, and crown width and increased malondialdehyde (MDA) levels. However, the application of 30 mg/L ALA effectively mitigated these effects, which further induced the activity of antioxidant enzymes under shade stress, resulting in the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) being increased by 10%, 16.4%, and 42.1%, and 19.8%, 20.1%, and 42% in 'Taihang' and 'Fujian', respectively. It also promoted their role in the absorption, conversion, and efficient use of light energy. Additionally, the use of 30 mg/L ALA caused a significant increase in the concentration of secondary metabolites, including polysaccharide (PC), carotenoid (CR), and flavonoids (FA), with increases of up to 46.1%, 13.4%, and 35.6% and 33.5%, 7.5%, and 57.5% in both yew cultivars, respectively, contributing to nutrient uptake. With ALA treatment, the yew seedlings showed higher chlorophyll (total chlorophyll, chlorophyll a and b) levels and photosynthesis rates than the seedlings that received the shade treatment alone. To conclude, the application of 30 mg/L ALA alleviated shade stress in yew seedlings by maintaining redox balance, protecting the photorespiratory system, and increasing organic metabolites, thus increasing the number of new branches and shoots and significantly promoting the growth of the seedlings. Spraying with ALA may be a sustainable strategy to improve the shade-resistant defense system of yew. As these findings increase our understanding of this shade stress response, they may have considerable implications for the domestication and cultivation of yew.
Collapse
Affiliation(s)
- Liuliu Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linlin Song
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lifan Cao
- Engineering and Technology Research Center of Paper Mulberry Industry, Henan Academy of Sciences, Zhengzhou 451451, China
| | - Li Meng
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
17
|
Zhang X, Liu K, Tang Q, Zeng L, Wu Z. Light Intensity Regulates Low-Temperature Adaptability of Tea Plant through ROS Stress and Developmental Programs. Int J Mol Sci 2023; 24:9852. [PMID: 37373002 DOI: 10.3390/ijms24129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Low-temperature stress limits global tea planting areas and production efficiency. Light is another essential ecological factor that acts in conjunction with temperature in the plant life cycle. However, it is unclear whether the differential light environment affects the low temperature adaptability of tea plant (Camellia sect. Thea). In this study, tea plant materials in three groups of light intensity treatments showed differentiated characteristics for low-temperature adaptability. Strong light (ST, 240 μmol·m-2·s-1) caused the degradation of chlorophyll and a decrease in peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities, as well as an increase in soluble sugar, soluble protein, malondialdehyde (MDA), and relative conductivity in tea leaves. In contrast, antioxidant enzyme activities, chlorophyll content, and relative conductivity were highest in weak light (WT, 15 μmol·m-2·s-1). Damage was observed in both ST and WT materials relative to moderate light intensity (MT, 160 μmol·m-2·s-1) in a frost resistance test. Chlorophyll degradation in strong light was a behavior that prevented photodamage, and the maximum photosynthetic quantum yield of PS II (Fv/Fm) decreased with increasing light intensity. This suggests that the browning that occurs on the leaf surface of ST materials through frost may have been stressed by the previous increase in reactive oxygen species (ROS). Frost intolerance of WT materials is mainly related to delayed tissue development and tenderness holding. Interestingly, transcriptome sequencing revealed that stronger light favors starch biosynthesis, while cellulose biosynthesis is enhanced in weaker light. It showed that light intensity mediated the form of carbon fixation in tea plant, and this was associated with low-temperature adaptability.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Ye JH, Fang QT, Zeng L, Liu RY, Lu L, Dong JJ, Yin JF, Liang YR, Xu YQ, Liu ZH. A comprehensive review of matcha: production, food application, potential health benefits, and gastrointestinal fate of main phenolics. Crit Rev Food Sci Nutr 2023; 64:7959-7980. [PMID: 37009832 DOI: 10.1080/10408398.2023.2194419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.
Collapse
Affiliation(s)
- Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qi-Ting Fang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Lin Zeng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Ru-Yi Liu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Lu Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jun-Jie Dong
- Research and Development Department, Zhejiang Camel Transworld (Organic Food) Co., Ltd, Hangzhou, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Zhong-Hua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Liu X, Cheng X, Cao J, Zhu W, Sun Y, Lin N, Wan X, Liu L. UV-B regulates seasonal greening of albino leaves by modulating CsHY5-inhibiting chlorophyll biosynthesis in Camellia sinensis cv. Huangkui. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111569. [PMID: 36529181 DOI: 10.1016/j.plantsci.2022.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Seasonal greening is crucial for albino plants but the underlying regulatory mechanism is unclear, especially concerning light regulation as one of the most important environmental factors for light-sensitive albino tea plants. Here, we report that the UV-B signal regulates the seasonal greening process of albino leaves by modulating CsHY5-inhibiting chlorophyll biosynthesis in Camellia sinensis cv. Huangkui. Reduction of solar UV-B in plantation promoted the seasonal greening of albino 'HK' leaves by inhibiting CsHY5 transcription and activating genes involved in light-harvesting CsLhlb and the chlorophyll biosynthetic pathway (CsCHLH, CsHEMA1, and CsPORA), leading to enrichment of chlorophyll accumulation and recovery of dysfunctional chloroplasts. In contrast, indoor supplementary UV-B exposure reduced chlorophylls by activating CsHY5 but inhibiting chlorophyll biosynthetic genes. In vivo and in vitro molecular analyses showed that CsHY5 can directly bind to the promoters of CsLhlb, CsCHLH, CsHEMA1, and CsPORA. These results indicate that CsHY5 acts as a repressor for the seasonal greening of the albino tea plants in response to the UV-B signal. This is the first study that investigates the regulatory role of the CsHY5-mediated UV-B signal in regulating the seasonal greening of the albino tea plant, which improves our understanding of light regulation in leaf phenotypes of higher plants.
Collapse
Affiliation(s)
- Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Jingjie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| |
Collapse
|
20
|
Zeng L, Zhou X, Fu X, Hu Y, Gu D, Hou X, Dong F, Yang Z. Effect of the biosynthesis of the volatile compound phenylacetaldehyde on chloroplast modifications in tea ( Camellia sinensis) plants. HORTICULTURE RESEARCH 2023; 10:uhad003. [PMID: 37786771 PMCID: PMC10541522 DOI: 10.1093/hr/uhad003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 10/03/2023]
Abstract
Plant volatile compounds have important physiological and ecological functions. Phenylacetaldehyde (PAld), a volatile phenylpropanoid/benzenoid, accumulates in the leaves of tea (Camellia sinensis) plants grown under continuous shading. This study was conducted to determine whether PAld production is correlated with light and to elucidate the physiological functions of PAld in tea plants. Specifically, the upstream mechanism modulating PAld biosynthesis in tea plants under different light conditions as well as the effects of PAld on chloroplast/chlorophyll were investigated. The biosynthesis of PAld was inhibited under light, whereas it was induced in darkness. The structural gene encoding aromatic amino acid aminotransferase 1 (CsAAAT1) was expressed at a high level in darkness, consistent with its importance for PAld accumulation. Additionally, the results of a transcriptional activation assay and an electrophoretic mobility shift assay indicated CsAAAT1 expression was slightly activated by phytochrome-interacting factor 3-2 (CsPIF3-2), which is a light-responsive transcription factor. Furthermore, PAld might promote the excitation of chlorophyll in dark-treated chloroplasts and mediate electron energy transfer in cells. However, the accumulated PAld can degrade chloroplasts and chlorophyll, with potentially detrimental effects on photosynthesis. Moreover, PAld biosynthesis is inhibited in tea leaves by red and blue light, thereby decreasing the adverse effects of PAld on chloroplasts during daytime. In conclusion, the regulated biosynthesis of PAld in tea plants under light and in darkness leads to chloroplast modifications. The results of this study have expanded our understanding of the biosynthesis and functions of volatile phenylpropanoids/benzenoids in tea leaves.
Collapse
Affiliation(s)
- Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiumin Fu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, No. 321 Longdongbei Road, Tianhe District, Guangzhou 510520, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
21
|
Zou Y, Zhong Y, Yu H, Pokharel SS, Fang W, Chen F. Impacts of Ecological Shading by Roadside Trees on Tea Foliar Nutritional and Bioactive Components, Community Diversity of Insects and Soil Microbes in Tea Plantation. BIOLOGY 2022; 11:biology11121800. [PMID: 36552309 PMCID: PMC9775167 DOI: 10.3390/biology11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Roadside trees not only add aesthetic appeal to tea plantations, but also serve important ecological purposes for the shaded tea plants. In this study, we selected tea orchards with two access roads, from east to west (EW-road) and from south to north (SN-road), and the roadside trees formed three types of ecological shading of the adjoining tea plants; i.e., south shading (SS) by the roadside trees on the EW-road, and east shading and west shading (ES and WS) by the roadside trees on the SN-road. We studied the impacts of ecological shading by roadside trees on the tea plants, insects, and soil microbes in the tea plantation, by measuring the contents of soluble nutrients, bioactive compounds in the tea, and tea quality indices; and by investigating the population occurrence of key species of insects and calculating insect community indexes, while simultaneously assaying the soil microbiome. The results vividly demonstrated that the shading formed by roadside tree lines on the surrounding tea plantation (SS, ES, and WS) had adverse effects on the concentration of tea soluble sugars but enhanced the foliar contents of bioactive components and improved the overall tea quality, in contrast to the no-shading control tea plants. In addition, the roadside tree lines seemed to be beneficial for the tea plantation, as they reduced pest occurrence, and ES shading enhanced the microbial soil diversity in the rhizosphere of the tea plants.
Collapse
Affiliation(s)
- Yan Zou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Zhong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Yu
- Department of Forest Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Sabin Saurav Pokharel
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- Department of Tea Science, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (W.F.); (F.C.); Tel.: +86-13512504245 (W.F.); +86-13675173286 (F.C.)
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (W.F.); (F.C.); Tel.: +86-13512504245 (W.F.); +86-13675173286 (F.C.)
| |
Collapse
|
22
|
Atzori G, Guidi Nissim W, Mancuso S, Palm E. Intercropping Salt-Sensitive Lactuca sativa L. and Salt-Tolerant Salsola soda L. in a Saline Hydroponic Medium: An Agronomic and Physiological Assessment. PLANTS (BASEL, SWITZERLAND) 2022; 11:2924. [PMID: 36365377 PMCID: PMC9658283 DOI: 10.3390/plants11212924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Competition for freshwater is increasing, with a growing population and the effects of climate change limiting its availability. In this experiment, Lactuca sativa plants were grown hydroponically with or without a 15% share of seawater (12 dS m-1) alone or intercropped with Salsola soda to demonstrate if L. sativa benefits from sodium removal by its halophyte companion. Contrary to the hypothesis, saline-grown L. sativa plants demonstrated reduced growth compared to the control plants regardless of the presence or absence of S. soda. Both limitations in CO2 supply and photosystem efficiency may have decreased CO2 assimilation rates and growth in L. sativa plants grown in the seawater-amended solutions. Surprisingly, leaf pigment concentrations increased in salt-treated L. sativa plants, and most notably among those intercropped with S. soda, suggesting that intercropping may have led to shade-induced increases in chlorophyll pigments. Furthermore, increased levels of proline indicate that salt-treated L. sativa plants were experiencing stress. In contrast, S. soda produced greater biomass in saline conditions than in control conditions. The mineral element, carbohydrate, protein, polyphenol and nitrate profiles of both species differed in their response to salinity. In particular, salt-sensitive L. sativa plants had greater accumulations of Fe, Ca, P, total phenolic compounds and nitrates under saline conditions than salt-tolerant S. soda. The obtained results suggest that intercropping salt-sensitive L. sativa with S. soda in a hydroponic system did not ameliorate the growing conditions of the salt-sensitive species as was hypothesized and may have exacerbated the abiotic stress by increasing competition for limited resources such as light. In contrast, the saline medium induced an improvement in the nutritional profile of S. soda. These results demonstrate an upper limit of the seawater share and planting density that can be used in saline agriculture when intercropping S. soda plants with other salt-sensitive crops.
Collapse
Affiliation(s)
- Giulia Atzori
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Stefano Mancuso
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
- Fondazione Futuro delle Città—FFC, 50125 Firenze, Italy
| | - Emily Palm
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| |
Collapse
|
23
|
Herrera M, Viera I, Roca M. HPLC–MS2 Analysis of Chlorophylls in Green Teas Establishes Differences among Varieties. Molecules 2022; 27:molecules27196171. [PMID: 36234707 PMCID: PMC9572584 DOI: 10.3390/molecules27196171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Green teas are nonfermented teas, the quality of which is measured by the green color. However, this category encompasses a high number of tea varieties that differ in cultivation and processing. For example, leaf or stem/bubble tea, plants cultivated under a light or shadow regime, powdered or unpowdered tea, etc. These variables determine the different qualities among green teas (Matcha, Sencha, Gyokuro, etc.) and consequently their different values on the market. Our purpose is to determine if these variables can exert an influence on the chlorophyll profile and to establish a characteristic profile for specific green teas. With such an aim, we analyzed the chlorophyll profiles of 6 different green tea varieties via HPLC-hr ESI/APCI–MS2 and identified up to 17 different chlorophyll compounds. For the first time, 132-hydroxy-chlorophylls, 132-hydroxy-pheophytins, and 151-hydroxy-lactone-pheophytins have been identified in green teas. Shadow teas (Matcha and Sencha) and light-regimen green teas can be statistically differentiated by the total chlorophyll content and the a/b ratio. However, only Matcha tea contains a higher proportion of chlorophylls a and b among the green tea varieties analyzed, justifying the higher quality and price of this variety. Other chlorophyll metabolites (pheophytins, pyropheophytins, and oxidized chlorophylls) are indicative of the various processing and storage conditions.
Collapse
|
24
|
Patel PK, Siddiqui SA, Kuča K, Sabhapondit S, Sarma R, Gogoi B, Singh SK, Bordoloi RK, Saikia JK, Gogoi RC, Bhardwaj K, Yang J, Tao Y, Manickam S, Das B. Physiological and biochemical evaluation of high anthocyanin pigmented tea ( Camellia sinensis L. O. Kuntze) germplasm for purple tea production. Front Nutr 2022; 9:990529. [PMID: 36118770 PMCID: PMC9471081 DOI: 10.3389/fnut.2022.990529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Finding promising purple tea germplasm that would target new tea products for diversification and value addition boost the tea industry's economic growth. Accordingly, 10 tea germplasm viz. TRA St. 817, TRA St. 293, TRA St. 400, TRA 177/3, TRA 376/2, TRA 376/3, TRA 427/7, TRA P7, TRA P8, and TV1 were evaluated in terms of gas exchange parameters, multiplication performance, and biochemical markers such as chlorophyll, carotenoids, and anthocyanin content, which are related to the purple tea quality. The investigated gas exchange and biochemical parameters revealed significant differences. Germplasm TRA St.817 was physiologically more efficient (24.7 μmol m-2 s-1), followed by TRA St. 293, exhibiting the highest net photosynthesis, water use efficiency (19.02 μmol mmol-1), carboxylation efficiency (0.73), chlorophyll fluorescence or photochemical efficiency of PSII (0.754) and mesophyll efficiency (ci/gs ratio: 2.54). Net photosynthesis was positively correlated with water use efficiency, carboxylation efficiency, mesophyll efficiency, and photochemical efficiency of PSII (r = 0.965**, 0.937**, 0.857**, 0.867**; P = 0.05), respectively, but negatively correlated with the transpiration ratio (r = -0.878**; P = 0.05) based on Pearson correlation analysis. The total anthocyanin content (4764.19 μg.g-1 fresh leaf weight) and carotenoid content (3.825 mg.g-1 fresh leaf weight) were highest in the TRA St.817 germplasm, followed by germplasm TRA St. 293 (2926.18 μg.g-1 FW). In contrast, total chlorophyll content was significantly low (1.779 mg.g-1 fresh weight), which is very suitable for manufacturing purple tea. The highest carotenoid concentration in TRA St. 817 was 3.825 mg.g-1 FW, followed by TRA P8 (3.475 mg.g-1 FW), favoring the formation of more volatile flavor constituents. The promising germplasm, TRA St 817, has a multiplication success rate of 91.4% through cleft grafting. The outcome reveals that TRA St.817 is a promising germplasm that can be used to make speciality teas, i.e., purple tea.
Collapse
Affiliation(s)
- Pradeep Kumar Patel
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL eV), Quakenbrück, Germany
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Santanu Sabhapondit
- Department of Biochemistry, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Rupak Sarma
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Boby Gogoi
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Shobhit Kumar Singh
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Ranjeet Kumar Bordoloi
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Jayanta Kumar Saikia
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Romen Chandra Gogoi
- Tea Testing Laboratory, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Buddhadeb Das
- North Bengal Regional R&D Centre, Tea Research Association, Nagrakata, India
| |
Collapse
|
25
|
Fu X, Chen J, Li J, Dai G, Tang J, Yang Z. Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chem X 2022; 14:100323. [PMID: 35571330 PMCID: PMC9097638 DOI: 10.1016/j.fochx.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Long-term shading treatment (14 days) increased carotenoid content in tea leaves. Long-term darkness (14 days) decreased carotenoid content in tea leaves. Long-term shading treatment increased carotenoid biosynthetic gene expression levels. Long-term darkness decreased carotenoid biosynthetic gene expression levels. The functions of CsDXS1, CsDXS3, CsPSY, CsLCYB and CsLCYE genes have been verified.
Carotenoids contribute to tea leaf coloration and are the precursors of important aromatic compounds. Shading can promote the accumulation of carotenoids in tea leaves, but the underlying mechanism remains unknown. In the study, we analyzed the content and composition of carotenoids, and transcript levels and functions of related genes in carotenoid biosynthesis using HPLC, qRT-PCR, and heterologous expression system. It was found that long-term shading (14 days, 90% shading) significantly increased the total carotenoid content in tea leaves, and increased the expression of non-mevalonate pathway (MEP) genes (CsDXS1 and CsDXS3) and key genes in carotenoid synthesis pathway (CsPSY, CsLCYB, and CsLCYE). Long-term exposure to darkness (14 days, 0 lx) decreased the transcription of most carotenoid biosynthetic genes and adversely affected carotenoid accumulation. Furthermore, CsDXS1, CsDXS3, CsPSY, CsLCYB, and CsLCYE were functionally identified and contributed to the enhanced accumulation of carotenoids in tea leaves in response to long-term shading.
Collapse
|
26
|
Shao C, Jiao H, Chen J, Zhang C, Liu J, Chen J, Li Y, Huang J, Yang B, Liu Z, Shen C. Carbon and Nitrogen Metabolism Are Jointly Regulated During Shading in Roots and Leaves of Camellia Sinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:894840. [PMID: 35498711 PMCID: PMC9051521 DOI: 10.3389/fpls.2022.894840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that plant shading can promote the quality of green tea. However, the association of shading with metabolic regulation in tea leaves and roots remains unelucidated. Here, the metabolic profiling of two tea cultivars ("Xiangfeicui" and "Jinxuan") in response to shading and relighting periods during the summer season was performed using non-targeted metabolomics methods. The metabolic pathway analyses revealed that long-term shading remarkably inhibit the sugar metabolism such as glycolysis, galactose metabolism, and pentose phosphate pathway in the leaves and roots of "Xiangfeicui," and "Jinxuan" were more sensitive to light recovery changes. The lipid metabolism in the leaves and roots of "Xiangfeicui" was promoted by short-term shading, while it was inhibited by long-term shading. In addition, the intensity of the flavonoid metabolites in the leaves and roots of "Jinxuan" were upregulated with a trend of rising first and then decreasing under shading, and five flavonoid synthesis genes showed the same trend (F3H, F3'5'H, DFR, ANS, and ANR). Simultaneously, the amino acids of the nitrogen metabolism in the leaves and roots of the two cultivars were significantly promoted by long-term shading, while the purine and caffeine metabolism was inhibited in the leaves of "Xiangfeicui." Interestingly, CsGS1.1 and CsTSI, amino acid synthase genes was upregulated in the leaves and roots of two cultivars. These results indicated that shading could participate in carbon and nitrogen metabolic regulation of both leaf and root, and root metabolism could have a positive association with leaf metabolism to promote the shaded tea quality.
Collapse
Affiliation(s)
- Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Haizhen Jiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jiahao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Tea Research Institution, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yunfei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jing Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Biao Yang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
27
|
Optimizing the Quality and Commercial Value of Gyokuro-Styled Green Tea Grown in Australia. BEVERAGES 2022. [DOI: 10.3390/beverages8020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gyokuro is a style of Japanese green tea produced by employing agricultural shading in the weeks before harvest. This method results in a tea product with different organoleptic and chemical properties than common Japanese green tea. In an effort to yield the highest quality and commercially valuable green tea product, the present study explores the influence of shading treatments and the duration of shading on the natural biochemistry of the green tea plant. This study applied shading treatments at light intensity conditions of 40%, 16%, 10% and 1% of available ambient light and the application of a red-colored shade cloth of 60% opacity. The Quality Index Tool was used to measure the quality and commercial value of the green tea, using individual target constituents (theanine, caffeine and the catechins) quantified from HPLC analysis. This study shows that very high levels of total visible spectrum light shading (~99%) is required to achieve improvements in quality and commercial value. Specifically, this improvement is a direct result of changes in the mood- modifying bioactive metabolites theanine and caffeine. This study concludes that in green tea growing regions with more hours of sunlight per year, such as on the Central Coast of Australia, more intense shading will achieve products with improved quality and commercial value, which has more potential to be marketed as a functional ingredient.
Collapse
|