1
|
Lamlom SF, Abdelghany AM, Farouk AS, Alwakel ES, Makled KM, Bukhari NA, Hatamleh AA, Ren H, El-Sorady GA, Shehab AA. Biochemical and yield response of spring wheat to drought stress through gibberellic and abscisic acids. BMC PLANT BIOLOGY 2025; 25:5. [PMID: 39748257 PMCID: PMC11694369 DOI: 10.1186/s12870-024-05879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes. Using a split-plot design, we tested three drought levels as main plots: normal irrigation (80% field capacity), moderate drought (60% field capacity), and severe drought (40% field capacity). Subplots consisted of GA3 and ABA treatments at 100 and 200 ppm concentrations. Results showed that 200 ppm GA3 treatment enhanced multiple growth parameters under normal irrigation, including plant height (25-30% increase), leaf area (30-35% increase), and reproductive traits (40% increase in number of number of spikes, 35% increase in grains per spike). In contrast, ABA treatment at 200 ppm resulted in reduced plant height (35% decrease) and greater leaf area reduction (40% vs. 20% in control) under drought conditions. GA3 at 200 ppm also improved physiological parameters including catalase and superoxide dismutase activities, protein content, and proline accumulation. These findings demonstrate the distinct roles of GA3 and ABA in regulating wheat growth and stress responses, providing valuable insights for drought management in wheat cultivation.
Collapse
Affiliation(s)
- Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Ahmed M Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - A S Farouk
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - E Sh Alwakel
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Khaled M Makled
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, 150086, China
| | - Gawhara A El-Sorady
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - A A Shehab
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Lamlom SF, Abdelghany AM, Ren H, Ali HM, Usman M, Shaghaleh H, Alhaj Hamoud Y, El-Sorady GA. Revitalizing maize growth and yield in water-limited environments through silicon and zinc foliar applications. Heliyon 2024; 10:e35118. [PMID: 39157312 PMCID: PMC11328083 DOI: 10.1016/j.heliyon.2024.e35118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Maize is an economically vital cereal crop. However, water deficiency can severely impact its productivity. Thus, it is necessary to implement an essential approach to increase maize yield while navigating the limitations imposed by scarce water supplies. The present study aimed to investigate whether foliar applications of silicon (Si) and zinc (Zn) could mitigate the adverse effects of water deficiency and improve maize growth and yield. Field experiments were conducted in Egypt during two growing seasons (2021-2022) under three irrigation regimes: full irrigation (ET0), moderate stress (ET1), and severe stress (ET2). The treatments comprised foliar sprays of Si, Zn, Si + Zn, and water control. Phenological, growth, physiological, chemical, and yield-related traits were assessed. Results showed that adequate irrigation (ET0) enhanced most parameters compared to water stress treatments. Under ET0, the combined silicon and zinc treatment resulted in the highest values for plant height, leaf area, chlorophyll content, grains per ear, kernel weight, ear size, and yield compared to other foliar treatments. Under drought stress (ET1, ET2), Si + Zn applications maintained superiority in mitigating yield losses. Proline accumulation was highest under severe stress (ET2) in the absence of foliar sprays, indicating greater drought impacts. Correlation analysis revealed positive associations of grain yield with ear size, leaf area, kernel weight, and biological yield. Cluster analysis separated irrigation regimes and visualized the consistently beneficial effects of Si + Zn across all water levels. Overall, the results demonstrate the synergistic potential of Si and Zn supplementation to sustain maize performance and yields under varying water availability.
Collapse
Affiliation(s)
- Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed M Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, 150086, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan
| | - Hiba Shaghaleh
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Gawhara A El-Sorady
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
3
|
Farouk AS, Abdelghany AM, Shehab AA, Alwakel SE, Makled KM, Naif E, Ren H, Lamlom SF. Optimizing wheat productivity through integrated management of irrigation, nutrition, and organic amendments. BMC PLANT BIOLOGY 2024; 24:548. [PMID: 38872106 DOI: 10.1186/s12870-024-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.
Collapse
Affiliation(s)
- A S Farouk
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - A A Shehab
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Sh E Alwakel
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Khaled M Makled
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Eman Naif
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, 150086, China
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
4
|
de Oliveira UA, do Amaral Junior AT, Leite JT, Kamphorst SH, de Lima VJ, Bispo RB, Ribeiro RM, Viana FN, Lamego DL, Carvalho CM, Simão BR, de Oliveira Santos T, Gonçalves GR, Campostrini E. Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation. Life (Basel) 2024; 14:743. [PMID: 38929726 PMCID: PMC11204607 DOI: 10.3390/life14060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Water stress can lead to physiological and morphological damage, affecting the growth and development of popcorn. The objective of this study was to identify the yield potential of 43 popcorn lines derived from a Latin American germplasm collection, based on agronomic and physiological traits, under full irrigation (WW) and water deficit conditions (WS), aiming to select superior germplasm. The evaluated agronomic traits included the ear length and diameter, number of grains per row (NGR) and rows per ear (NRE), grain yield (GY), popping expansion (EC), volume of expanded popcorn per hectare (VP), grain length (GL), width, and thickness. The physiological traits included the chlorophyll, anthocyanin, and flavonoid content in the leaves. The genetic variability and distinct behavior among the lines for all the agronomic traits under WW and WS conditions were observed. When comparing the water conditions, line L292 had the highest mean for the GY, and line L688 had the highest mean for the EC, highlighting them as the most drought-tolerant lines. A water deficit reduced the leaf greenness but increased the anthocyanin content as an adaptive response. The GY trait showed positive correlations with the VP, NGR, and GL under both water conditions, making the latter useful for indirect selection and thus of great interest for plant breeding targeting the simultaneous improvement of these traits.
Collapse
Affiliation(s)
| | - Antônio Teixeira do Amaral Junior
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (J.T.L.); (V.J.d.L.); (R.B.B.); (R.M.R.); (F.N.V.); (D.L.L.); (C.M.C.); (B.R.S.); (T.d.O.S.); (G.R.G.); (E.C.)
| | | | - Samuel Henrique Kamphorst
- Plant Breeding Laboratory, Center for Agricultural Science and Technologies (CCTA), State University of Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, RJ, Brazil; (U.A.d.O.); (J.T.L.); (V.J.d.L.); (R.B.B.); (R.M.R.); (F.N.V.); (D.L.L.); (C.M.C.); (B.R.S.); (T.d.O.S.); (G.R.G.); (E.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hajaji AN, Heikal YM, Hamouda RAEF, Abassi M, Ammari Y. Multivariate investigation of Moringa oleifera morpho-physiological and biochemical traits under various water regimes. BMC PLANT BIOLOGY 2024; 24:505. [PMID: 38840043 PMCID: PMC11155125 DOI: 10.1186/s12870-024-05040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The climatic changes crossing the world menace the green life through limitation of water availability. The goal of this study was to determine whether Moringa oleifera Lam. trees cultivated under Tunisian arid climate, retain their tolerance ability to tolerate accentuated environmental stress factors such as drought and salinity. For this reason, the seeds of M. oleifera tree planted in Bouhedma Park (Tunisian arid area), were collected, germinated, and grown in the research area at the National Institute of Research in Rural Engineering, Waters and Forests (INRGREF) of Tunis (Tunisia). The three years aged trees were exposed to four water-holding capacities (25, 50, 75, and 100%) for 60 days to realise this work. RESULTS Growth change was traduced by the reduction of several biometric parameters and fluorescence (Fv/Fm) under severe water restriction (25 and 50%). Whereas roots presented miraculous development in length face to the decrease of water availability (25 and 50%) in their rhizospheres. The sensitivity to drought-induced membrane damage (Malondialdehyde (MDA) content) and reactive oxygen species (ROS) liberation (hydrogen peroxide (H2O2) content) was highly correlated with ROS antiradical scavenging (ferric reducing antioxidant power (FRAP) and (2, 2'-diphenyl-1-picrylhydrazyle (DPPH)), phenolic components and osmolytes accumulation. The drought stress tolerance of M. oleifera trees was associated with a dramatic stimulation of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities. CONCLUSION Based on the several strategies adopted, integrated M. oleifera can grow under drought stress as accentuated adverse environmental condition imposed by climate change.
Collapse
Affiliation(s)
- Afef N Hajaji
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Bp 10, Ariana, 2080, Tunisia
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ragaa A E F Hamouda
- Department of Biology, Faculty of Sciences and Arts-Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mejda Abassi
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Bp 10, Ariana, 2080, Tunisia
| | - Youssef Ammari
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Bp 10, Ariana, 2080, Tunisia
| |
Collapse
|
6
|
Wirojsirasak W, Songsri P, Jongrungklang N, Tangphatsornruang S, Klomsa-ard P, Ukoskit K. Determination of Morpho-Physiological Traits for Assessing Drought Tolerance in Sugarcane. PLANTS (BASEL, SWITZERLAND) 2024; 13:1072. [PMID: 38674481 PMCID: PMC11054708 DOI: 10.3390/plants13081072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Drought is a significant constraint to sugarcane productivity. Therefore, understanding how different varieties of sugarcane respond to drought stress can facilitate breeding programs and set up criteria for selecting drought-tolerant varieties. In the present study, we examined eight morpho-physiological traits to distinguish 40 sugarcane genotypes categorized into four groups based on significant differences in cane yield under non-stressed conditions and reduction of cane yield under drought-stressed conditions. The study was conducted during the formative stage in a greenhouse, encompassing both control and drought conditions. Drought treatments resulted in significant changes and differences in the mean values of various morpho-physiological traits. The hierarchical clustering analysis, utilizing stay-green traits such as higher chlorophyll fluorescence ratio (Fv/Fm), leaf chlorophyll content (SPAD), leaf relative water content (RWC), and lower leaf rolling score (LR), leaf drying score (LD), and drought recovery score (DR), successfully grouped 40 sugarcane genotypes into four major clusters, similar to the previously categorized groups. Correlation analysis showed significant relationships among cane yield, reduction of cane yield under drought conditions, and the stay-green traits. Our results demonstrated that morpho-physiological traits contributing to the "stay-green" phenotypes could be useful as selection criteria for drought tolerance in sugarcane.
Collapse
Affiliation(s)
- Warodom Wirojsirasak
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand;
- Mitr Phol Innovation and Research Center, Chaiyaphum 36110, Thailand;
| | - Patcharin Songsri
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
- Northeast Thailand Cane and Sugar Research Center, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakorn Jongrungklang
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
- Northeast Thailand Cane and Sugar Research Center, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | | | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand;
| |
Collapse
|
7
|
Abdelghany AM, Lamlom SF, Naser M. Dissecting the resilience of barley genotypes under multiple adverse environmental conditions. BMC PLANT BIOLOGY 2024; 24:16. [PMID: 38163863 PMCID: PMC10759481 DOI: 10.1186/s12870-023-04704-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
As climate change increases abiotic stresses like drought and heat, evaluating barley performance under such conditions is critical for maintaining productivity. To assess how barley performs under normal conditions, drought, and heat stress, 29 different varieties were examined, considering agronomic, physiological, and disease-related characteristics. The research was conducted in five environments: two normal environments in 2020/2021 and 2021/2022, two drought stress environments in 2020/2021 and 2021/2022, and one heat stress environment in 2021/2022. The results demonstrated that genotype and environment significantly influenced all traits (p < 0.05), except canopy temperature, while genotype x environment interaction significantly influenced most traits, except total chlorophyll content and canopy temperature. Heat and drought stress environments often resulted in reduced performance for traits like plant height, spike length, grains per spike, and 100-grain weight compared to normal conditions. Based on individual traits, genotypes 07UT-44, 06WA-77, 08AB-09, and 07N6-57 exhibited the highest grain yield (4.1, 3.6, 3.6, and 3.6 t/ha, respectively). Also, these genotypes demonstrated enhanced stability in diverse drought and heat stress conditions, as assessed by the mean performance vs. stability index (Weighted Average of Absolute Scores, WAASB). The multi-trait stability index (MTSI) identified 07UT-44, 07UT-55, 07UT-71, and 08AB-09 as the most stable genotypes in terms of the performance of all traits. The imported lines demonstrated superior performance and stability, highlighting their potential as valuable genetic resources for developing climate-resilient barley.
Collapse
Affiliation(s)
- Ahmed M Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Mahmoud Naser
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Jahan N, Sarker U, Hasan Saikat MM, Hossain MM, Azam MG, Ali D, Ercisli S, Golokhvast KS. Evaluation of yield attributes and bioactive phytochemicals of twenty amaranth genotypes of Bengal floodplain. Heliyon 2023; 9:e19644. [PMID: 37809463 PMCID: PMC10558890 DOI: 10.1016/j.heliyon.2023.e19644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Twenty vegetable amaranth (VA) genotypes were evaluated to assess the variability, associations, path coefficient, and principal component analysis (PCA) of morpho-chemical traits. The genotypes exhibited adequate antioxidant colorants, phytochemicals, and antiradical capacity with significant variations across genotypes. Genetic parameters revealed selection criteria for the majority of the traits for improving amaranth foliage yield (FY). Based on correlation coefficient, stem weight, stem base diameter, root weight, plant height, and shoot weight for significant development of FY of VA. Observing significant genotypic correlation with high positive direct effects on FY, the path coefficient (PC) of root weight, stem base diameter, stem weight, and shoot weight could contribute to the noteworthy development of FY of VA. The genotypes AA5, AA6, AA8, AA10, AA11, AA19, and AA20 might be selected for high FY, antioxidant colorants, and antiradical phytochemicals to utilize as colorants and antiradical rich superior high yielding cultivars. The first PC accounted for 37.8% of the variances, which implies a larger proportion of variable information explained by PC1. The features that contributed more to PC1 were FY, SW, STW, RW, and PH, whereas Chl b, total Chl, and Chl a contributed to the second PC. This suggests that there are significant genetic differences between amaranths in terms of biochemical and agro-morphological characteristics. The findings of the current work support plant breeders to investigate the genetic potential of the amaranth germplasm, notably in biochemical parameters. High colorants enrich genotypes that can be selected for extracting natural colorants to use in food processing industries.
Collapse
Affiliation(s)
- Nishat Jahan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Mehfuz Hasan Saikat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Motaher Hossain
- Department of Plant Pathology, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Azam
- Pulses Research Centre, Bangladesh Agricultural Research Institute, Bangladesh, 6620
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2202
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkey
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Krasnoobsk, 630501, Russia
| |
Collapse
|
9
|
Ilyas MZ, Park H, Baek YS, Sa KJ, Kim MJ, Lee JK. Efficacy of Carbon Nanodots and Manganese Ferrite (MnFe 2O 4) Nanoparticles in Stimulating Growth and Antioxidant Activity in Drought-Stressed Maize Inbred Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2922. [PMID: 37631134 PMCID: PMC10458536 DOI: 10.3390/plants12162922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Despite being the third most-consumed crop, maize (Zea mays L.) is highly vulnerable to drought stress. The predominant secondary metabolite in plants is phenolic acids, which scavenge reactive oxygen species to minimize oxidative stress under drought stress. Herein, the effect of carbon nanodots (CND) and manganese ferrite (MnFe2O4) nanoparticles (NP) on the drought stress tolerance of maize has been studied. The experimental results revealed that the highest leaf blade length (54.0 cm) and width (3.9 cm), root length (45.2 cm), stem diameter (11.1 mm), root fresh weight (7.0 g), leaf relative water content (84.8%) and chlorogenic (8.7 µg/mL), caffeic (3.0 µg/mL) and syringic acid (1.0 µg/mL) contents were demonstrated by CND-treated (10 mg L-1) inbred lines (GP5, HW19, HCW2, 17YS6032, HCW3, HCW4, HW7, HCW2, and 16S8068-9, respectively). However, the highest shoot length (71.5 cm), leaf moisture content (83.9%), shoot fresh weight (12.5 g), chlorophyll content (47.3), and DPPH free radical scavenging activity (34.1%) were observed in MnFe2O4 NP-treated (300 mg L-1) HF12, HW15, 11BS8016-7, HW15, HW12, and KW7 lines, respectively. The results indicate that CND and MnFe2O4 NP can mitigate drought stress effects on different accessions of the given population, as corroborated by improvements in growth and physio-biochemical traits among several inbred lines of maize.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Young Sun Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
| | - Myong Jo Kim
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| |
Collapse
|
10
|
Lucas JA, Garcia-Villaraco A, Montero-Palmero MB, Montalban B, Ramos Solano B, Gutierrez-Mañero FJ. Physiological and Genetic Modifications Induced by Plant-Growth-Promoting Rhizobacteria (PGPR) in Tomato Plants under Moderate Water Stress. BIOLOGY 2023; 12:901. [PMID: 37508334 PMCID: PMC10376424 DOI: 10.3390/biology12070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Physiological, metabolic, and genetic changes produced by two plant growth promoting rhizobacteria (PGPR) Pseudomonas sp. (internal code of the laboratory: N 5.12 and N 21.24) inoculated in tomato plants subjected to moderate water stress (10% polyethylene glycol-6000; PEG) were studied. Photosynthesis efficiency, photosynthetic pigments, compatible osmolytes, reactive oxygen species (ROS) scavenging enzymes activities, oxidative stress level and expression of genes related to abscisic acid synthesis (ABA; 9-cis-epoxycarotenoid dioxygenase NCDE1 gene), proline synthesis (Pyrroline-5-carboxylate synthase P5CS gene), and plasma membrane ATPase (PM ATPase gene) were measured. Photosynthetic efficiency was compromised by PEG, but bacterial-inoculated plants reversed the effects: while N5.12 increased carbon fixation (37.5%) maintaining transpiration, N21.24 increased both (14.2% and 31%), negatively affecting stomatal closure, despite the enhanced expression of NCDE1 and plasma membrane ATPase genes, evidencing the activation of different adaptive mechanisms. Among all parameters evaluated, photosynthetic pigments and antioxidant enzymes guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) responded differently to both strains. N 5.12 increased photosynthetic pigments (70% chlorophyll a, 69% chlorophyll b, and 65% carotenoids), proline (33%), glycine betaine (4.3%), and phenolic compounds (21.5%) to a greater extent, thereby decreasing oxidative stress (12.5% in Malondialdehyde, MDA). Both bacteria have highly beneficial effects on tomato plants subjected to moderate water stress, improving their physiological state. The use of these bacteria in agricultural production systems could reduce the amount of water for agricultural irrigation without having a negative impact on food production.
Collapse
Affiliation(s)
- Jose Antonio Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668 Boadilla del Monte, Spain
| | - Ana Garcia-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668 Boadilla del Monte, Spain
| | - Maria Belen Montero-Palmero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668 Boadilla del Monte, Spain
| | - Blanca Montalban
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668 Boadilla del Monte, Spain
| | - Beatriz Ramos Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668 Boadilla del Monte, Spain
| | - Francisco Javier Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU-Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
11
|
Luo Q, Xie H, Chen Z, Ma Y, Yang H, Yang B, Ma Y. Morphology, photosynthetic physiology and biochemistry of nine herbaceous plants under water stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1147208. [PMID: 37063188 PMCID: PMC10098446 DOI: 10.3389/fpls.2023.1147208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Global climate warming and shifts in rainfall patterns are expected to trigger increases in the frequency and magnitude of drought and/or waterlogging stress in plants. To cope with water stress, plants develop diverse tactics. However, the adoption capability and mechanism vary depending upon the plant species identity as well as stress duration and intensity. The objectives of this study were to evaluate the species-dependent responses of alpine herbaceous species to water stress. Nine herbaceous species were subjected to different water stresses (including moderate drought and moderate waterlogging) in pot culture using a randomized complete block design with three replications for each treatment. We hypothesized that water stress would negatively impact plant growth and metabolism. We found considerable interspecies differences in morphological, physiological, and biochemical responses when plants were exposed to the same water regime. In addition, we observed pronounced interactive effects of water regime and plant species identity on plant height, root length, root/shoot ratio, biomass, and contents of chlorophyll a, chlorophyll b, chlorophyll (a+b), carotenoids, malondialdehyde, soluble sugar, betaine, soluble protein and proline, implying that plants respond to water regime differently. Our findings may cast new light on the ecological restoration of grasslands and wetlands in the Qinghai-Tibetan Plateau by helping to select stress-tolerant plant species.
Collapse
Affiliation(s)
- Qiaoyu Luo
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zhi Chen
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yonggui Ma
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Haohong Yang
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Bing Yang
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
12
|
Yue H, Olivoto T, Bu J, Li J, Wei J, Xie J, Chen S, Peng H, Nardino M, Jiang X. Multi-trait selection for mean performance and stability of maize hybrids in mega-environments delineated using envirotyping techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:1030521. [PMID: 36452111 PMCID: PMC9702090 DOI: 10.3389/fpls.2022.1030521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Under global climate changes, understanding climate variables that are most associated with environmental kinships can contribute to improving the success of hybrid selection, mainly in environments with high climate variations. The main goal of this study is to integrate envirotyping techniques and multi-trait selection for mean performance and the stability of maize genotypes growing in the Huanghuaihai plain in China. A panel of 26 maize hybrids growing in 10 locations in two crop seasons was evaluated for 9 traits. Considering 20 years of climate information and 19 environmental covariables, we identified four mega-environments (ME) in the Huanghuaihai plain which grouped locations that share similar long-term weather patterns. All the studied traits were significantly affected by the genotype × mega-environment × year interaction, suggesting that evaluating maize stability using single-year, multi-environment trials may provide misleading recommendations. Counterintuitively, the highest yields were not observed in the locations with higher accumulated rainfall, leading to the hypothesis that lower vapor pressure deficit, minimum temperatures, and high relative humidity are climate variables that -under no water restriction- reduce plant transpiration and consequently the yield. Utilizing the multi-trait mean performance and stability index (MTMPS) prominent hybrids with satisfactory mean performance and stability across cultivation years were identified. G23 and G25 were selected within three out of the four mega-environments, being considered the most stable and widely adapted hybrids from the panel. The G5 showed satisfactory yield and stability across contrasting years in the drier, warmer, and with higher vapor pressure deficit mega-environment, which included locations in the Hubei province. Overall, this study opens the door to a more systematic and dynamic characterization of the environment to better understand the genotype-by-environment interaction in multi-environment trials.
Collapse
Affiliation(s)
- Haiwang Yue
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Tiago Olivoto
- Department of Plant Science, Center of Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Junzhou Bu
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Jie Li
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Jianwei Wei
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Junliang Xie
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Shuping Chen
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Haicheng Peng
- Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Maicon Nardino
- Department of Agronomy, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Xuwen Jiang
- Maize Research Institute, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|