1
|
Mohanty D, Sharma GS. Function in disorder: A review on the roles of the disordered dehydrin proteins in conferring stress tolerance. Int J Biol Macromol 2025; 311:143672. [PMID: 40316120 DOI: 10.1016/j.ijbiomac.2025.143672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Water scarcity as a result of drought is considered to be among the most common forms of abiotic stress which directly hampers plant health. Such conditions often lead to various interlinked physiological conditions, including oxidative stress resulting from increased ROS levels that in turn, induce membranes dysfunction, leading to disruption in cellular ionic balance, and oxidation of macromolecules. Plants employ several mechanisms to counter these hostile conditions, which help them adapt to such unforgiving environments. Accumulation of specific types of proteins called dehydrins (DHNs) represents one such mechanism of adaptation. DHNs are ubiquitous in distribution and have been reported in different life forms; accumulating under a wide spectrum of stress. An important role of DHNs is to protect and maintain cell's macromolecular structure and function, thereby preserving membrane integrity, stabilizing proteins and nucleic acid, and conferring protection against oxidative stress. The present article explores different aspects of DHNs, including their structural compositions, architectures and conformational flexibility, and their role in combating a plethora of stress environments, with specific focus towards drought. Possible involvements of DHNs in intracellular biocondensates formation through phase separation and their role in stress sensing are also provided.
Collapse
Affiliation(s)
- Divya Mohanty
- Department of Botany, Hindu College, University of Delhi, North Campus, Delhi 110007, India
| | - Gurumayum Suraj Sharma
- Department of Botany, Hindu College, University of Delhi, North Campus, Delhi 110007, India.
| |
Collapse
|
2
|
Vaseva II, Balzhyk H, Trailova M, Nikolova T, Katerova Z, Galabova S, Todorova D, Sergiev I, Vassileva V. Ethylene Signaling Modulates Dehydrin Expression in Arabidopsis thaliana Under Prolonged Dehydration. Int J Mol Sci 2025; 26:4148. [PMID: 40362386 PMCID: PMC12071766 DOI: 10.3390/ijms26094148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Dehydrins are stress-inducible proteins with protective functions, characterized by high hydrophilicity, thermostability, and a low degree of secondary structure. They stabilize cellular membranes, preserve macromolecule conformation, and support enzymatic and structural protein functions. Their accumulation in plant tissues under drought is regulated by abscisic acid (ABA)-dependent and ABA-independent pathways. Ethylene plays a key role in stress adaptation, but its relationship with dehydrin accumulation remains unclear. This study investigates how ethylene influences dehydrin expression in Arabidopsis thaliana during prolonged dehydration using transcript profiling and immunodetection in wild-type (Col-0), ethylene-constitutive (ctr1-1), and ethylene-insensitive (ein3eil1) mutants. Comparative analyses showed increased survival of ctr1-1 plants under dehydration stress, likely due to reduced oxidative damage. Analysis of dehydrin-coding genes identified multiple Ethylene Response Factor (ERF) binding sites, flanking the transcription start sites, which suggests a fine-tuned ethylene-dependent regulation. The ability of ethylene signaling to either suppress or stabilize particular dehydrins was demonstrated by RT-qPCR and immunodetection experiments. Under drought stress, ethylene signaling appeared to suppress root-specific dehydrins. A Y-segment-containing protein with approximate molecular weight of 20 kDa showed decreased levels in ctr1-1 and higher accumulation in ein3eil1, indicating that ethylene signaling acts as a negative regulator. These results provide new information on the dual role of ethylene in dehydrin control, highlighting its function as a molecular switch in stress adaptive responses.
Collapse
Affiliation(s)
- Irina I. Vaseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (H.B.); (M.T.); (T.N.); (Z.K.); (S.G.); (D.T.); (I.S.); (V.V.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Franzoni G, Muto A, Bruno L, Madeo ML, Sirangelo TM, Ceverista Chiappetta AA, Bitonti MB, Müller CT, Ferrante A, Rogers HJ, Spadafora ND. Identification of potential molecular markers for detection of lengthy chilled storage of Prunus persica L. fruit. Heliyon 2024; 10:e40992. [PMID: 39720059 PMCID: PMC11667614 DOI: 10.1016/j.heliyon.2024.e40992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Low temperature is the main strategy to preserve fruit quality post-harvest, in the supply chain. Low temperatures reduce the respiration, ethylene emission, and enzymatic activities associated with senescence. Unfortunately, peaches are sensitive to low temperatures if exposed for long periods, resulting in physiological disorders that can compromise commercial quality. Maximum damage occurs at 5 °C while at 1 °C damage is reduced. Therefore, rapid early detection methods for the distribution chain to monitor length and temperature of fruit storage are needed. The aim of this work was to identify candidate genes to develop an antibody-based marker system in peach fruit to monitor chilled storage. Two cultivars were tested: 'Sagittaria', an early ripening peach, and 'Big Top' a mid-season ripening nectarine, with delayed softening and resistance to supply-chain conditions. Both cultivars were subjected to 1 or 5 °C chilled storage for different times to simulate typical supply-chain conditions. Identification and expression of potential marker genes was assessed using a previous transcriptomic study following storage at 1 °C. Fifteen candidate genes were selected, however only seven proteins encoded were suitable as protein markers as they lack a transmembrane domain. Real-time qPCR using fruit from the subsequent year to the transcriptome was used to assess expression at both 1 and 5 °C chilled storage of five candidate genes. Four genes and the related proteins were identified that would be suitable for the development of molecular markers: a Pathogenesis-Related Bet v I family protein, a dehydrin, a Glycosyl hydrase family 18 protein and a Late Embryogenesis abundant protein.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| | | | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Zhang X, Xia X, Sun Y, Wang R, Liang K, Wang Y, Ren L, Wang Q. Identification of dehydrin family genes in three Medicago species and insights into their tolerant mechanism to salt stress. PLANT CELL REPORTS 2024; 44:4. [PMID: 39671094 DOI: 10.1007/s00299-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE All ten dehydrin genes from three Medicago species are responsive to different kinds of abiotic stress, and CAS31 confers transgenic plants salt tolerance by down-regulating HKT1 expression. Dehydrins are protective proteins playing crucial roles in the tolerance of plants to abiotic stresses. However, a full-scale and systemic analysis of total dehydrin genes in Medicago at the genome level is still lacking. In this study, we identified ten dehydrin genes from three Medicago species (M. truncatula, M. ruthenica, and M. sativa), categorizing the coding proteins into four types. Genome collinearity analysis among the three Medicago species revealed six orthologous gene pairs. Promoter regions of dehydrin genes contained various phytohormone- and stress-related cis-elements, and transcriptome analysis showed up-regulation of all ten dehydrin genes under different stress conditions. Transformation of dehydrin gene CAS31 increased the tolerance of transgenic seedlings compared with wild-type seedlings under salt stress. Our study demonstrated that transgenic seedlings maintained the more chlorophyll, accumulated more proline and less hydrogen peroxide and malondialdehyde than wild-type seedlings under salt stress. Further study revealed that CAS31 reduced Na+ accumulation by down-regulating HKT1 expression under salt stress. These findings enhance our understanding of the dehydrin gene family in three Medicago species and provide insights into their mechanisms of tolerance.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiuzhi Xia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Runze Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, People's Republic of China
| | - Kemeng Liang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yarong Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lifei Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, People's Republic of China.
| |
Collapse
|
5
|
Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought Tolerance in Plants: Physiological and Molecular Responses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2962. [PMID: 39519881 PMCID: PMC11548289 DOI: 10.3390/plants13212962] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Drought, a significant environmental challenge, presents a substantial risk to worldwide agriculture and the security of food supplies. In response, plants can perceive stimuli from their environment and activate defense pathways via various modulating networks to cope with stress. Drought tolerance, a multifaceted attribute, can be dissected into distinct contributing mechanisms and factors. Osmotic stress, dehydration stress, dysfunction of plasma and endosome membranes, loss of cellular turgidity, inhibition of metabolite synthesis, cellular energy depletion, impaired chloroplast function, and oxidative stress are among the most critical consequences of drought on plant cells. Understanding the intricate interplay of these physiological and molecular responses provides insights into the adaptive strategies plants employ to navigate through drought stress. Plant cells express various mechanisms to withstand and reverse the cellular effects of drought stress. These mechanisms include osmotic adjustment to preserve cellular turgor, synthesis of protective proteins like dehydrins, and triggering antioxidant systems to counterbalance oxidative stress. A better understanding of drought tolerance is crucial for devising specific methods to improve crop resilience and promote sustainable agricultural practices in environments with limited water resources. This review explores the physiological and molecular responses employed by plants to address the challenges of drought stress.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, AREEO, Gachsaran 7589172050, Iran;
| | - Seyyedhamidreza Hashemipetroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari 4818166996, Iran;
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Korotaeva N, Shmakov V, Bel’kov V, Pyatrikas D, Moldavskaya S, Gorbenko I. The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine. PLANTS (BASEL, SWITZERLAND) 2024; 13:2752. [PMID: 39409624 PMCID: PMC11479203 DOI: 10.3390/plants13192752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Under a water deficit, the protective proteins known as dehydrins (DHNs) prevent nonspecific interactions in protein and membrane structures and their damage, in addition to playing an antioxidant role. The DHNs of a widespread xerophytic species Scots pine (Pinus sylvestris L.) have been poorly studied, and their role in resistance to water deficits has not been revealed. In this paper, we have expanded the list of DHNs that accumulate in the cells of Scots pine under the conditions of water deficits and revealed their relationship with the effects of water deficits. In this investigation, callus cultures of branches and buds of Scots pine were used. A weak water deficit was created by adding polyethylene glycol to the culture medium. Under the conditions of a water deficit, the activity of catalase and peroxidase enzymes increased in the callus cultures. A moderate decrease in the total water content was correlated with a decrease in the growth rate of the callus cultures, as well as with an increase in the activity of lipid peroxidation. The accumulation of Mr 72, 38, and 27 kDa DHNs occurred in the callus cultures of buds, and the accumulation of Mr 72 and 27 kDa DHNs positively correlated with the lipid peroxidation activity. An increase in the content of DHNs was observed in cultures that differed in origin, growth indicators, and biochemical parameters, indicating the universality of this reaction. Thus, previously undescribed DHNs were identified, the accumulation of which is caused by water deficiency and is associated with manifestations of oxidative stress in the kidney cells of Scots pine.
Collapse
Affiliation(s)
- Natalia Korotaeva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (V.S.); (V.B.); (D.P.); (S.M.); (I.G.)
| | | | | | | | | | | |
Collapse
|
7
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
8
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
9
|
Escudero V, Fuenzalida M, Rezende EL, González-Guerrero M, Roschzttardtz H. Perspectives on embryo maturation and seed quality in a global climate change scenario. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4394-4399. [PMID: 38597771 DOI: 10.1093/jxb/erae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Global climate change has already brought noticeable alterations to multiple regions of our planet, including increased CO2 concentrations and changes in temperature. Several important steps of plant growth and development, such as embryogenesis, can be affected by such environmental changes; for instance, they affect how stored nutrients are used during early stages of seed germination during the transition from heterotrophic to autotrophic metabolism-a critical period for the seedling's survival. In this article, we briefly describe relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change. Most of the nutrients stored in the seed during its development-including carbohydrates, lipids, and proteins, depending on the species-accumulate during the seed maturation stage. It is also known that iron, a key micronutrient for various electron transfer processes in plant cells, accumulates during embryo maturation. The existing literature indicates that climate change can not only affect the quality of the seed, in terms of total nutritional content, but also affect seed production. We discuss the potential effects of temperature and CO2 increases from an embryo-autonomous point of view, in an attempt to separate the effects on the parent plant from those on the embryo.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Spain
| | - Marlene Fuenzalida
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico L Rezende
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. Universidad Politécnica de Madrid, Spain
| | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Ge B, Dong K, Li R, Bi X, Liu Q, Zhang W, Chen Y, Lu C. Isolation and functional characterization of cold-induced gene (AmCIP) promoter from Ammopiptanthus mongolicus. Gene 2024; 909:148311. [PMID: 38401831 DOI: 10.1016/j.gene.2024.148311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AmCIP is a dehydrin-like protein which involved in abiotic stress tolerance in xerophytes evergreen woody plant A. mongolicus. AmCIP could be induced in the cotyledon and radicle during cold acclimation. To further elucidate the regulation of the upstream region of the gene, we isolated and characterized the promoter of AmCIP. Herein, a 1115 bp 5'-flanking region of AmCIP genomic DNA was isolated and cloned by genome walking from A. mongolicus and the segment sequence was identified as "PrAmCIP" promoter. Analysis of the promoter sequence revealed the presences of some basic cis-acting elements, which were related to various environmental stresses and plant hormones. GUS histochemical staining of transgene tobacco showed that PrAmCIP was induced by 4℃, 55℃, NaCl, mannitol and ABA, whereas it could hardly drive GUS gene expression under normal conditions. Furthermore, we constructed three deletion fragments and genetically transformed them into Arabidopsis thaliana. GUS histochemical staining showed that the MYCATERD1 element of the CP7 fragment (-189 ∼ -1) may be a key element in response to drought. In conclusion, we provide an inducible promoter, PrAmCIP, which can be applied to the development of transgenic plants for abiotic stresse tolerance.
Collapse
Affiliation(s)
- Bohao Ge
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kuo Dong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rongchen Li
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Bi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qianru Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhen Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Su J, Xu X, Cseke LJ, Whittier S, Zhou R, Zhang Z, Dietz Z, Singh K, Yang B, Chen SY, Picking W, Zou X, Gassmann W. Cell-specific polymerization-driven biomolecular condensate formation fine-tunes root tissue morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587845. [PMID: 38617336 PMCID: PMC11014531 DOI: 10.1101/2024.04.02.587845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Formation of biomolecular condensates can be driven by weak multivalent interactions and emergent polymerization. However, the mechanism of polymerization-mediated condensate formation is less studied. We found lateral root cap cell (LRC)-specific SUPPRESSOR OF RPS4-RLD1 (SRFR1) condensates fine-tune primary root development. Polymerization of the SRFR1 N-terminal domain is required for both LRC condensate formation and optimal root growth. Surprisingly, the first intrinsically disordered region (IDR1) of SRFR1 can be functionally substituted by a specific group of intrinsically disordered proteins known as dehydrins. This finding facilitated the identification of functional segments in the IDR1 of SRFR1, a generalizable strategy to decode unknown IDRs. With this functional information we further improved root growth by modifying the SRFR1 condensation module, providing a strategy to improve plant growth and resilience.
Collapse
|
12
|
Niu L, Wang W, Li Y, Wu X, Wang W. Maize multi-omics reveal leaf water status controlling of differential transcriptomes, proteomes and hormones as mechanisms of age-dependent osmotic stress response in leaves. STRESS BIOLOGY 2024; 4:19. [PMID: 38498254 PMCID: PMC10948690 DOI: 10.1007/s44154-024-00159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Drought-induced osmotic stress severely affects the growth and yield of maize. However, the mechanisms underlying the different responses of young and old maize leaves to osmotic stress remain unclear. To gain a systematic understanding of age-related stress responses, we compared osmotic-stress-induced changes in maize leaves of different ages using multi-omics approaches. After short-term osmotic stress, old leaves suffered more severe water deficits than young leaves. The adjustments of transcriptomes, proteomes, and hormones in response to osmotic stress were more dynamic in old leaves. Metabolic activities, stress signaling pathways, and hormones (especially abscisic acid) responded to osmotic stress in an age-dependent manner. We identified multiple functional clusters of genes and proteins with potential roles in stress adaptation. Old leaves significantly accumulated stress proteins such as dehydrin, aquaporin, and chaperones to cope with osmotic stress, accompanied by senescence-like cellular events, whereas young leaves exhibited an effective water conservation strategy mainly by hydrolyzing transitory starch and increasing proline production. The stress responses of individual leaves are primarily determined by their intracellular water status, resulting in differential transcriptomes, proteomes, and hormones. This study extends our understanding of the mechanisms underlying plant responses to osmotic stress.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenkang Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxue Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
13
|
Hu Z, Li Y, Yang J, Song S, Li X, Xiong C, Yi P, Liu C, Hu R, Huang X. The positive impact of the NtTAS14-like1 gene on osmotic stress response in Nicotiana tabacum. PLANT CELL REPORTS 2023; 43:25. [PMID: 38155260 DOI: 10.1007/s00299-023-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
KEY MESSAGE NtTAS14-like1 enhances osmotic tolerance through coordinately activating the expression of osmotic- and ABA-related genes. Osmotic stress is one of the most important limiting factors for tobacco (Nicotiana tabacum) growth and development. Dehydrin proteins are widely involved in plant adaptation to osmotic stress, but few of these proteins have been functionally characterized in tobacco. Here, to identify genes required for osmotic stress response in tobacco, an encoding dehydrin protein gene NtTAS14-like1 was isolated based on RNA sequence data. The expression of NtTAS14-like1 was obviously induced by mannitol and abscisic acid (ABA) treatments. Knock down of NtTAS14-like1 expression reduced osmotic tolerance, while overexpression of NtTAS14-like1 conferred tolerance to osmotic stress in transgenic tobacco plants, as determined by physiological analysis of the relative electrolyte leakage and malonaldehyde accumulation. Further expression analysis by quantitative real-time PCR indicated that NtTAS14-like1 participates in osmotic stress response possibly through coordinately activating osmotic- and ABA-related genes expression, such as late embryogenesis abundant (NtLEA5), early responsive to dehydration 10C (NtERD10C), calcium-dependent protein kinase 2 (NtCDPK2), ABA-responsive element-binding protein (NtAREB), ABA-responsive element-binding factor 1 (NtABF1), dehydration-responsive element-binding genes (NtDREB2A), xanthoxin dehydrogenase/reductase (NtABA2), ABA-aldehyde oxidase 3 (NtAAO3), 9-cis-epoxycarotenoid dioxygenase (NtNCED3). Together, this study will facilitate to improve our understandings of molecular and functional properties of plant TAS14 proteins and to improve genetic evidence on the involvement of the NtTAS14-like1 in osmotic stress response of tobacco.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Shurui Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, Hunan, China
| | | | - Pengfei Yi
- Changde Tobacco Company, Changde, 415000, Hunan, China
| | - Canhui Liu
- Changsha Tobacco Company, Changsha, 410019, Hunan, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China.
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|