1
|
Niu X, Lin L, Zhang T, An X, Li Y, Yu Y, Hong M, Shi H, Ding L. Research on antibiotic resistance genes in wild and artificially bred green turtles (Chelonia mydas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176716. [PMID: 39368512 DOI: 10.1016/j.scitotenv.2024.176716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Sea turtles, vital to marine ecosystems, face population decline. Artificial breeding is a recovery strategy, yet it risks introducing antibiotic resistance genes (ARGs) to wild populations and ecosystems. This study employed metagenomic techniques to compare the distribution characteristics of ARGs in the guts of wild and artificially bred green turtles (Chelonia mydas). The findings revealed that the total abundance of ARGs in C. mydas that have been artificially bred was significantly higher than that in wild individuals. Additionally, the abundance of mobile genetic elements (MGEs) co-occurring with ARGs in artificially bred C. mydas was significantly higher than in wild C. mydas. In the analysis of bacteria carrying ARGs, wild C. mydas exhibited greater bacterial diversity. Furthermore, in artificially bred C. mydas, we discovered 23 potential human pathogenic bacteria (HPB) that contain antibiotic resistance genes. In contrast, in wild C. mydas, only one type of HPB carrying an antibiotic resistance gene was found. The findings of this study not only enhance our understanding of the distribution and dissemination of ARGs within the gut microbial communities of C. mydas, but also provide vital information for assessing the potential impact of releasing artificially bred C. mydas on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Xin Niu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Xiaoyu An
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Yupei Li
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Yangfei Yu
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China.
| |
Collapse
|
2
|
Tsai MA, Chen IC, Chen ZW, Li TH. Further Evidence of Anthropogenic Impact: High Levels of Multiple-Antimicrobial-Resistant Bacteria Found in Neritic-Stage Sea Turtles. Antibiotics (Basel) 2024; 13:998. [PMID: 39596693 PMCID: PMC11591244 DOI: 10.3390/antibiotics13110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Marine turtles are globally threatened and face daily anthropogenic threats, including pollution. Water pollution from emerging contaminants such as antimicrobials is a major and current environmental concern. METHODS This study investigated the phenotypic antimicrobial resistance and heavy metal resistance genes of 47 Vibrio isolates from different stages of sea turtles (oceanic stage vs neritic stage) from the Taiwanese coast. RESULTS The results show that a high proportion (48.9%; 23/47) of the Vibrio species isolated from sea turtles in our study had a multiple antimicrobial resistance (MAR) pattern. It was found that Vibrio spp. isolates with a MAR pattern and those with a MAR index value greater than 0.2 were both more likely to be observed in neritic-stage sea turtles. Furthermore, isolates from neritic-stage sea turtles exhibited greater resistance to the majority of antimicrobials tested (with the exception of beta-lactams and macrolides) than isolates from the oceanic-stage groups. Isolates from neritic sea turtles were found to be more resistant to nitrofurans and aminoglycosides than isolates from oceanic sea turtles. Furthermore, isolates with a MAR pattern (p = 0.010) and those with a MAR index value greater than 0.2 (p = 0.027) were both found to be significantly positively associated with the mercury reductase (merA) gene. CONCLUSIONS The findings of our study indicate that co-selection of heavy metals and antimicrobial resistance may occur in aquatic bacteria in the coastal foraging habitats of sea turtles in Taiwan.
Collapse
Affiliation(s)
- Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - I-Chun Chen
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
| | - Zeng-Weng Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli 340401, Taiwan;
| | - Tsung-Hsien Li
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- IUCN Species Survival Commission, Marine Turtle Specialist Group for the East Asia Region, Taiwan
| |
Collapse
|
3
|
Esposito E, Pace A, Affuso A, Oliviero M, Iaccarino D, Paduano G, Maffucci F, Fusco G, De Carlo E, Hochscheid S, Di Nocera F. Antibiotic Resistance of Bacteria Isolated from Clinical Samples and Organs of Rescued Loggerhead Sea Turtles ( Caretta caretta) in Southern Italy. Animals (Basel) 2024; 14:2103. [PMID: 39061565 PMCID: PMC11273476 DOI: 10.3390/ani14142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance affects all environments, endangering the health of numerous species, including wildlife. Increasing anthropic pressure promotes the acquisition and dissemination of antibiotic resistance by wild animals. Sea turtles, being particularly exposed, are considered sentinels and carriers of potential zoonotic pathogens and resistant strains. Therefore, this study examined the antibiotic resistance profiles of bacteria isolated from loggerhead sea turtles hospitalised in a rescue centre of Southern Italy over a 9-year period. Resistance to ceftazidime, doxycycline, enrofloxacin, flumequine, gentamicin, oxytetracycline and sulfamethoxazole-trimethoprim was evaluated for 138 strains isolated from the clinical samples or organs of 60 animals. Gram-negative families were the most isolated: Vibrionaceae were predominant, followed by Shewanellaceae, Pseudomonadaceae, Enterobacteriaceae and Morganellaceae. These last three families exhibited the highest proportion of resistance and multidrug-resistant strains. Among the three Gram-positive families isolated, Enterococcaceae were the most represented and resistant. The opportunistic behaviour of all the isolated species is particularly concerning for diseased sea turtles, especially considering their resistance to commonly utilised antibiotics. Actually, the multiple antibiotic resistance was higher when the sea turtles were previously treated. Taken together, these findings highlight the need to improve antimicrobial stewardship and monitor antibiotic resistance in wildlife, to preserve the health of endangered species, along with public and environmental health.
Collapse
Affiliation(s)
- Emanuele Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Antonino Pace
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Andrea Affuso
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Maria Oliviero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Gianluigi Paduano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Fulvio Maffucci
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| | - Sandra Hochscheid
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, Italy; (A.A.); (F.M.); (S.H.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy; (M.O.); (D.I.); (G.P.); (G.F.); (E.D.C.); (F.D.N.)
| |
Collapse
|
4
|
Capobianco CM, Bosch SN, Stacy NI, Wellehan JFX. Lactococcus garvieae-associated septicemia in a central bearded dragon. J Vet Diagn Invest 2024; 36:477-480. [PMID: 38516722 PMCID: PMC11110774 DOI: 10.1177/10406387241239912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Lactococcus garvieae is the causative agent of lactococcosis in fish and an emerging zoonotic pathogen with high levels of antimicrobial resistance. We report a case of L. garvieae-associated septicemia in a central bearded dragon (Pogona vitticeps) confirmed via whole-blood PCR and direct sequencing. Following a 30-d course of ceftazidime (20 mg/kg IM q72h), the animal's clinical condition had not resolved; leukopenia persisted, with heterophil toxic change. Coelomic ultrasound findings were consistent with preovulatory follicular stasis, folliculitis, and coelomitis. Following surgical ovariectomy and an additional 30-d course of ceftazidime, the animal's behavior and appetite returned to normal, the animal tested negative via whole-blood PCR assay, and the CBC was unremarkable. To our knowledge, L. garvieae with L. garvieae-associated clinical disease has not been reported previously in a bearded dragon. We conclude that L. garvieae should be considered as a possible etiologic agent in cases of septicemia in bearded dragons, with the potential for zoonotic transmission warranting further investigation.
Collapse
Affiliation(s)
- Christian M. Capobianco
- Departments of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah N. Bosch
- Departments of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole I. Stacy
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - James F. X. Wellehan
- Departments of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|