1
|
Ros E, Pérez-Martínez P, Estruch R, López-Miranda J, Ferrer CS, Delgado-Lista J, Gómez-Delgado F, Solà R, Pascual V. Recommendations of the Spanish Arteriosclerosis Society: The diet in cardiovascular prevention - 2024 Update. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025; 37:100741. [PMID: 39578128 DOI: 10.1016/j.arteri.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Emilio Ros
- Institut d'Investigacions Biomèdiqiues August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Pablo Pérez-Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Ramón Estruch
- Institut d'Investigacions Biomèdiqiues August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Interna, Hospital Clínic, Universidad de Barcelona, Barcelona, España
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Cristina Soler Ferrer
- Servicio de Medicina Interna, Unidad de Lípidos y Riesgo Vascular, Hospital de Santa Caterina de Salt, Salt, Girona, España
| | - Javier Delgado-Lista
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Francisco Gómez-Delgado
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario, Jaén, España
| | - Rosa Solà
- Grupo de Nutrición Funcional, Oxidación y Enfermedades Cardiovasculares (NFOCSalut), Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Hospital Universitario Sant Joan, Reus, Tarragona, España
| | - Vicente Pascual
- Centro Salud Palleter, Universidad CEU-Cardenal Herrera, Castellón, España
| |
Collapse
|
2
|
Wu X, Yan H, Cao Y, Yuan Y. Prediction acrylamide contents in fried dough twist based on the application of artificial neural network. Food Chem X 2024; 24:102007. [PMID: 39634520 PMCID: PMC11616517 DOI: 10.1016/j.fochx.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Acrylamide forms through the reaction between reducing sugars and asparagine in the thermal processing of food. Detection measures like LC-MS, HPLC are time-consuming and costly, which inspired us to use back propagation-artificial neural networks (BP-ANN) based on a genetic algorithm to establish an acrylamide prediction model in fried dough twist. The effects of frying time and temperature on acrylamide contents, as well as the color difference and acid value at different time and temperature were determined. Acrylamide content was found significantly correlated with temperature (P < 0.01) and was correlated with acid value and color difference (P < 0.05). Thus, temperature, acid value, and the color difference were set as input layers, and acrylamide content was set as an output layer to establish a BP-ANN network prediction model. The weight and threshold values in the BP-ANN network prediction model were optimized with a multi-population genetic algorithm and the test data were set to obtain an optimized BP neural network predicting model. The results showed that the Levenberg-Marquardt back-propagation training algorithm of the BP-ANN model with 5 hidden layer neurons and 0.005 learning rate was the best predictive performance, which the correlation coefficients (R) of test and validation were 0.9640 and 0.8999, suggesting a good fitting and strong approximation ability. The BP-ANN model is expected to accurately predict the content of acrylamide in fried dough twist.
Collapse
Affiliation(s)
- Xinyu Wu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yue Cao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
3
|
Klisović D, Novoselić A, Lukić M, Kraljić K, Brkić Bubola K. Thermal-Induced Alterations in Phenolic and Volatile Profiles of Monovarietal Extra Virgin Olive Oils. Foods 2024; 13:3525. [PMID: 39517309 PMCID: PMC11545581 DOI: 10.3390/foods13213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, the influence of heating on the evolution of oxidative indices, antioxidant activity, phenolic and volatile compounds in monovarietal extra virgin olive oils (EVOOs) obtained from Leccino, Istarska bjelica, and Buža cultivars was investigated. The samples were submitted to heating in an air oven (180 °C and 220 °C), simulating usual roasting conditions typical for Mediterranean cuisine. The decreases in the oxidative indicators, phenolic and volatile compounds were more pronounced at higher heating temperatures, underlining the temperature dependency of the oxidative degradation during heating conditions. Despite this, it must be emphasized that a significant amount of phenolic compounds and antioxidative activity remained preserved after the heating treatment. Each oil cultivar showed some specificity during the course of the thermal degradation. Hydroxytyrosol acetate among phenolic compounds and octanal, (E)-2-octenal, hexanal, 3-pentanone, and 1-penten-3-one among the volatiles were underlined as possible markers of thermal oxidation. Principal component analysis revealed that the content of volatile compounds in monovarietal EVOO samples distinguished samples primarily by the heating temperature, while the changes in the phenolic compounds were cultivar-dependent aside from being influenced by the temperature of heating.
Collapse
Affiliation(s)
- Dora Klisović
- Institute of Agriculture and Tourism, K. Huguesa 8, HR-52440 Poreč, Croatia; (D.K.); (A.N.); (M.L.)
| | - Anja Novoselić
- Institute of Agriculture and Tourism, K. Huguesa 8, HR-52440 Poreč, Croatia; (D.K.); (A.N.); (M.L.)
| | - Marina Lukić
- Institute of Agriculture and Tourism, K. Huguesa 8, HR-52440 Poreč, Croatia; (D.K.); (A.N.); (M.L.)
| | - Klara Kraljić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia;
| | - Karolina Brkić Bubola
- Institute of Agriculture and Tourism, K. Huguesa 8, HR-52440 Poreč, Croatia; (D.K.); (A.N.); (M.L.)
| |
Collapse
|
4
|
Gagour J, Hallouch O, Asbbane A, Bijla L, Laknifli A, Lee LH, Zengin G, Bouyahya A, Sakar EH, Gharby S. A Review of Recent Progresses on Olive Oil Chemical Profiling, Extraction Technology, Shelf-life, and Quality Control. Chem Biodivers 2024; 21:e202301697. [PMID: 38345352 DOI: 10.1002/cbdv.202301697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Olive oil (OO) is widely recognized as a main component in the Mediterranean diet owing to its unique chemical composition and associated health-promoting properties. This review aimed at providing readers with recent results on OO physicochemical profiling, extraction technology, and quality parameters specified by regulations to ensure authentic products for consumers. Recent research progress on OO adulteration were outlined through a bibliometric analysis mapping using Vosviewer software. As revealed by bibliometric analysis, richness in terms of fatty acids, pigments, polar phenolic compounds, tocopherols, squalene, sterols, and triterpenic compounds justify OO health-promoting properties and increasing demand on its global consumption. OO storage is a critical post-processing operation that must be optimized to avoid oxidation. Owing to its great commercial value on markets, OO is a target to adulteration with other vegetable oils. In this context, different chemometric tools were developed to deal with this problem. To conclude, increasing demand and consumption of OO on the global market is justified by its unique composition. Challenges such as oxidation and adulteration stand out as the main issues affecting the OO market.
Collapse
Affiliation(s)
- Jamila Gagour
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Otmane Hallouch
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Abderrahim Asbbane
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Laila Bijla
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Abdellatif Laknifli
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| | - Learn-Han Lee
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, 315100>, China
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 >, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10090>, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology, and Health, FS, Abdelmalek Essaadi University, 93002, Tetouan, Morocco
| | - Said Gharby
- Biotechnology Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn-Zohr University, 83000, Taroudant, Morocco
| |
Collapse
|
5
|
Lozano-Castellón J, Olmo-Cunillera A, Casadei E, Valli E, Domínguez-López I, Miliarakis E, Pérez M, Ninot A, Romero-Aroca A, Bendini A, Lamuela-Raventós RM, Vallverdú-Queralt A. A targeted foodomic approach to assess differences in extra virgin olive oils: Effects of storage, agronomic and technological factors. Food Chem 2024; 435:137539. [PMID: 37742466 DOI: 10.1016/j.foodchem.2023.137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Extra virgin olive oil (EVOO) quality and composition are mainly affected by genetics, agronomic and technological parameters, undergoing further modifications during storage. In this work, a chemometric approach was applied to study the impact of olive maturity, malaxation time/temperature, and oil storage on the quality and compositional parameters of Arbequina EVOO (basic quality indices, volatile and sensory profiles, contents in phenolic compounds, squalene, vitamin E and fatty acids). Storage emerged as the most influential factor, followed by olive maturity and malaxation temperature, while malaxation time had almost no effect. Storage at room temperature had a significant impact on the phenolic profile and quality parameters, mainly the peroxide value and K270. The determination of K270, an indicator of secondary oxidation products, was relevant to analyze the effect of storage conditions. Volatile compounds and fatty acids were good markers of ripeness, and the volatile profile was highly affected by malaxation temperature.
Collapse
Affiliation(s)
- Julián Lozano-Castellón
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alexandra Olmo-Cunillera
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Enrico Casadei
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy
| | - Enrico Valli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy
| | - Inés Domínguez-López
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Eleftherios Miliarakis
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antònia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Agustí Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, 47521 Cesena, Italy
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Winstead D, Di Gioia F, Jauregui M, Jacobson M. Nutritional properties of raw and cooked Azolla caroliniana Willd., an aquatic wild edible plant. Food Sci Nutr 2024; 12:2050-2060. [PMID: 38455165 PMCID: PMC10916663 DOI: 10.1002/fsn3.3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/09/2024] Open
Abstract
Azolla caroliniana Willd. is an understudied wild edible plant native to the Eastern United States. Other species of Azolla have been used across the world for several thousand years as a livestock feed and as "green manure." The use of Azolla for human consumption is thought to be limited by its high total polyphenolic content (TPC). However, the TPC and nutritional content of A. caroliniana has not been thoroughly studied. We measured TPC and other nutrients before and after cooking methods designed to lower TPC. We found that TPC was 4.26 g gallic acid equivalent (GAE) kg-1 DW in raw A. caroliniana. All cooking methods significantly lowered TPC. Protein content was 19% DW, and the apparent protein digestibility was 78.45%. Our yield was 173 g FW m-2 day-1 and 5.53 g DW m-2 day-1. Azolla caroliniana is a high-yielding plant with great potential for cultivation and domestication.
Collapse
Affiliation(s)
- Daniel Winstead
- Department of Ecosystem Science and Management, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Marjorie Jauregui
- Department of Food Science, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michael Jacobson
- Department of Ecosystem Science and Management, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
7
|
Olmo-Cunillera A, Pérez M, López-Yerena A, Abuhabib MM, Ninot A, Romero-Aroca A, Vallverdú-Queralt A, Lamuela-Raventós RM. Oleacein and Oleocanthal: Key Metabolites in the Stability of Extra Virgin Olive Oil. Antioxidants (Basel) 2023; 12:1776. [PMID: 37760079 PMCID: PMC10525235 DOI: 10.3390/antiox12091776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The oxidative stability of extra virgin olive oil (EVOO) depends on its composition, primarily, phenolic compounds and tocopherols, which are strong antioxidants, but also carotenoids, squalene, and fatty acids contribute. The aim of this study was to evaluate the effect of malaxation conditions and olive storage on the composition of 'Corbella' EVOO produced in an industrial mill to determine which parameters and compounds could give more stable oils. Although a longer malaxation time at a higher temperature and olive storage had a negative effect on the content of α-tocopherol, squalene, flavonoids, lignans, phenolic acids, and phenolic alcohols, the antioxidant capacity and oxidative stability of the oil were improved because of an increase in the concentration of oleacein (56-71%) and oleocanthal (42-67%). Therefore, these two secoiridoids could be crucial for better stability and a longer shelf life of EVOOs, and their enhancement should be promoted. A synergistic effect between secoiridoids and carotenoids could also contribute to EVOO stability. Additionally, 'Corbella' cultivar seems to be a promising candidate for the production of EVOOs with a high oleic/linoleic ratio. These findings signify a notable advancement and hold substantial utility and significance in addressing and enhancing EVOO stability.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Catalonia Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (M.P.); (A.L.-Y.); (M.M.A.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Catalonia Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (M.P.); (A.L.-Y.); (M.M.A.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anallely López-Yerena
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Catalonia Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (M.P.); (A.L.-Y.); (M.M.A.); (A.V.-Q.)
| | - Mohamed M. Abuhabib
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Catalonia Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (M.P.); (A.L.-Y.); (M.M.A.); (A.V.-Q.)
| | - Antònia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain; (A.N.); (A.R.-A.)
| | - Agustí Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain; (A.N.); (A.R.-A.)
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Catalonia Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (M.P.); (A.L.-Y.); (M.M.A.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Catalonia Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (M.P.); (A.L.-Y.); (M.M.A.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Al-Dabbas MM, Al-Jaloudi R, Abdullah MA, Abughoush M. Characterization of Olive Oil Volatile Compounds after Elution through Selected Bleaching Materials-Gas Chromatography-Mass Spectrometry Analysis. Molecules 2023; 28:6444. [PMID: 37764219 PMCID: PMC10537359 DOI: 10.3390/molecules28186444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Using different bleaching materials to eliminate or reduce organic volatiles in deteriorated olive oils will positively affect its characteristics. This study aims to identify the volatiles of oxidized olive oil after physical bleaching using selected immobilized adsorbents. Oxidized olive oil was eluted using open-column chromatography packed with silica gel, bentonite, resin, Arabic gum, and charcoal at a 1:5 eluent system (w/v, adsorbent: oxidized olive oil). The smoke point was determined. The collected distilled vapor was injected into GC-MS to identify the volatiles eluted after partial refining with each of these bleaching compounds. The results showed that volatile compounds were quantitatively and qualitatively affected by the type of adsorbents used for the elution of olive oil and the smoking points of eluted oils. The most prominent detected volatile compounds were limonene (14.53%), piperitone (10.35%), isopropyl-5-methyl-(2E)-hexenal (8.6%), methyl octadecenoate (6.57%), and citronellyl acetate (5.87%). Both bentonite and resin were superior in decreasing the ratio of volatile compounds compared with other bleaching materials used. Resin immobilized medium was significantly affected (p < 0.05), raising the smoke point. These results highlighted some information regarding the characteristics of volatile compounds that result after the physical elution of olive oil through selected adsorbents.
Collapse
Affiliation(s)
- Maher M. Al-Dabbas
- Department of Nutrition and Food Technology, The University of Jordan, Amman 11942, Jordan;
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates;
| | - Rawan Al-Jaloudi
- Department of Medical Science Support, Zarqa University College, Al-Balqa Applied University, As-Salt 19117, Jordan;
| | - Mai Adnan Abdullah
- Department of Nutrition and Food Technology, The University of Jordan, Amman 11942, Jordan;
| | - Mahmoud Abughoush
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates;
| |
Collapse
|
9
|
Domínguez-López I, Lozano-Castellón J, Vallverdú-Queralt A, Jáuregui O, Martínez-González MÁ, Hu FB, Fitó M, Ros E, Estruch R, Lamuela-Raventós RM. Urinary metabolomics of phenolic compounds reveals biomarkers of type-2 diabetes within the PREDIMED trial. Biomed Pharmacother 2023; 162:114703. [PMID: 37062219 DOI: 10.1016/j.biopha.2023.114703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Phenolic compounds have been associated with protective effects against type-2 diabetes (T2D). We used a metabolomics approach to determine urinary phenolic metabolites associated with T2D and fasting plasma glucose. METHODS This case-control study within the PREDIMED trial included 200 participants at high cardiovascular risk, 102 of whom were diagnosed with T2D. A panel of urinary phenolic compounds were analysed using a novel method based on liquid chromatography coupled to mass spectrometry. Multivariate statistics and adjusted logistic regressions were applied to determine the most discriminant compounds and their association with T2D. The relationship between the discriminant phenolic compounds and plasma glucose was assessed using multivariable linear regressions. RESULTS A total of 41 phenolic compounds were modeled in the orthogonal projection to latent structures discriminant analysis, and after applying adjusted logistic regressions two were selected as discriminant: dihydrocaffeic acid (OR = 0.22 (CI 95 %: 0.09; 0.52) per 1-SD, p-value = 0.021) and genistein diglucuronide (OR = 0.72 (CI 95%: 0.59; 0.88) per 1-SD, p-value = 0.021). Both metabolites were associated with a lower risk of suffering from T2D, but only dihydrocaffeic acid was inversely associated with plasma glucose (β = -17.12 (95 % CI: -29.92; -4.32) mg/dL per 1-SD, p-value = 0.009). CONCLUSIONS A novel method using a metabolomics approach was developed to analyse a panel of urinary phenolic compounds for potential associations with T2D, and two metabolites, dihydrocaffeic acid and genistein diglucuronide, were found to be associated with a lower risk of this condition.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julián Lozano-Castellón
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Jáuregui
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), 08028 Barcelona, Spain
| | - Miguel Ángel Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Ramon Estruch
- Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
10
|
Lozano-Castellón J, Rinaldi de Alvarenga JF, Vallverdú-Queralt A, Lamuela-Raventós RM. Cooking with extra-virgin olive oil: A mixture of food components to prevent oxidation and degradation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Lozano-Castellón J, Rocchetti G, Vallverdú-Queralt A, Lucchini F, Giuberti G, Torrado-Prat X, Illán M, Mª Lamuela-Raventós R, Lucini L. New insights into the lipidomic response of CaCo-2 cells to differently cooked and in vitro digested extra-virgin olive oils. Food Res Int 2022; 155:111030. [DOI: 10.1016/j.foodres.2022.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/18/2023]
|
12
|
Lozano‐Castellón J, López‐Yerena A, Domínguez‐López I, Siscart‐Serra A, Fraga N, Sámano S, López‐Sabater C, Lamuela‐Raventós RM, Vallverdú‐Queralt A, Pérez M. Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety. Compr Rev Food Sci Food Saf 2022; 21:2639-2664. [DOI: 10.1111/1541-4337.12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Julián Lozano‐Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Anallely López‐Yerena
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Inés Domínguez‐López
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Aina Siscart‐Serra
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Nathalia Fraga
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Samantha Sámano
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Carmen López‐Sabater
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Rosa M Lamuela‐Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Anna Vallverdú‐Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| |
Collapse
|
13
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
14
|
Renoldi N, Lucci P, Peressini D. Impact of oleuropein on rheology and breadmaking performance of wheat doughs, and functional features of bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Niccolò Renoldi
- Department of Agricultural, Food, Environmental and Animal Sciences University of Udine Via Sondrio 2/A Udine 33100 Italy
| | - Paolo Lucci
- Department of Agricultural, Food, Environmental and Animal Sciences University of Udine Via Sondrio 2/A Udine 33100 Italy
| | - Donatella Peressini
- Department of Agricultural, Food, Environmental and Animal Sciences University of Udine Via Sondrio 2/A Udine 33100 Italy
| |
Collapse
|
15
|
A Review of the Effects of Olive Oil-Cooking on Phenolic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030661. [PMID: 35163926 PMCID: PMC8838846 DOI: 10.3390/molecules27030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
The fate of phenolic compounds in oil and food during cooking vary according to the type of cooking. From a nutritional point of view, reviews largely suggest a preference for using extra-virgin olive oil at a low temperature for a short time, except for frying and microwaving, for which there appears to be no significant advantages compared to olive oil. However, due to the poorly pertinent use of terminology, the different protocols adopted in studies aimed at the same objective, the different type and quality of oils used in experiments, and the different quality and quantity of PC present in the used oils and in the studied vegetables, the evidence available is mainly contradictory. This review tries to reanalyse the main experimental reports on the fate, accessibility and bioavailability of phenolic compounds in cooking oils and cooked vegetables, by considering different cooking techniques and types of oil and foods, and distinguishing experimental findings obtained using oil alone from those in combination with vegetables. The re-analysis indicates that incomplete and contradictory observations have been published in the last few years and suggests that further research is necessary to clarify the impact of cooking techniques on the phenolic compounds in oil and vegetables during cooking, especially when considering their nutritional properties.
Collapse
|
16
|
Barbieri S, Mercatante D, Balzan S, Esposto S, Cardenia V, Servili M, Novelli E, Taticchi A, Rodriguez-Estrada MT. Improved Oxidative Stability and Sensory Quality of Beef Hamburgers Enriched with a Phenolic Extract from Olive Vegetation Water. Antioxidants (Basel) 2021; 10:antiox10121969. [PMID: 34943072 PMCID: PMC8750197 DOI: 10.3390/antiox10121969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims at evaluating the effect of a phenol-rich extract obtained from the concentration and purification of olive mill wastewaters (added at a ratio of 87.5 and 175 mg of phenols/kg meat) on the stability and sensory quality of beef hamburgers packed under modified atmosphere and stored under alternating exposure to fluorescent light at 4 ± 2 °C for 9 days. The hamburgers were sampled at different times (0, 6, and 9 days) and grilled at 200 °C. After 9 days, more than 56% of the added phenols in the raw burgers and more than 20% the grilled ones were retained. The results show that both concentrations of phenolic extract proved to effectively reduce primary and secondary lipid oxidation, as well as cholesterol oxidation products (COPs), during the shelf-life of raw hamburgers. Peroxide value, thiobarbituric acid reactive substances, and total COPs were up to 1.4-, 4.5-, and 8.8-fold lower in phenol-enriched raw hamburgers, respectively, than in the control samples; a similar trend was noted also in phenol-enriched cooked hamburgers (1.3-, 5.7-, and 4-fold lower). The sensory analysis also confirmed the effectiveness of the addition of phenolic extract, resulting in a positive effect on the red color intensity (raw product) and thus reducing browning during storage.
Collapse
Affiliation(s)
- Sara Barbieri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy;
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; (S.B.); (E.N.)
| | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; (S.B.); (E.N.)
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
- Correspondence: ; Tel.: +39-075-585-7909
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
17
|
Başaran B, Turk H. The influence of consecutive use of different oil types and frying oil in French fries on the acrylamide level. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Samaniego-Sánchez C, Martín-del-Campo ST, Castañeda-Saucedo MC, Blanca-Herrera RM, Quesada-Granados JJ, Ramírez-Anaya JDP. Migration of Avocado Virgin Oil Functional Compounds during Domestic Cooking of Eggplant. Foods 2021; 10:1790. [PMID: 34441567 PMCID: PMC8391506 DOI: 10.3390/foods10081790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Avocado virgin oil (AVO) was used during eggplant deep-frying, boil, and boil in a water-oil mixture (W/O). There were measured the contents of moisture, dry matter, fat, total (TPC) and ten individual phenols, antioxidant activity (ABTS and DPPH), and total sterols; as well as the profiles of eight fatty acids and fourteen sterols/stanols. The values of raw and processed foods were compared and studied with multivariate analysis. The antioxidant capacity of AVO lowered after deep frying but augmented in eggplant and water after all treatments. The TPC was steady in AVO and raised in fried eggplant. Thermal treatments added to the initial profiles of the AVO, eggplant and water, nine, eight, and four phenols, respectively. Percentages of the main fatty acids (oleic, palmitic and linoleic), and sterols (β-sitosterol, campesterol, and Δ5-avenasterol), remained unchanged between the raw and treated AVO; and the lipidic fractions from processed eggplant. Cooking leads to the movement of hydrophilic and lipophilic functional compounds between AVO, eggplant and water. Migration of sterols and unsaturated fatty acids from AVO to eggplant during deep frying and W/O boiling improved the functional properties of eggplant by adding the high biological value lipophilic fraction to the naturally occurring polyphenols.
Collapse
Affiliation(s)
- Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain; (C.S.-S.); (R.M.B.-H.); (J.J.Q.-G.)
| | | | - Ma. Claudia Castañeda-Saucedo
- Department of Nature Sciences, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, Mexico;
| | - Rosa María Blanca-Herrera
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain; (C.S.-S.); (R.M.B.-H.); (J.J.Q.-G.)
| | - José Javier Quesada-Granados
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain; (C.S.-S.); (R.M.B.-H.); (J.J.Q.-G.)
| | - Jessica del Pilar Ramírez-Anaya
- Department of Computational Sciences and Technological Innovation, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, Mexico
| |
Collapse
|
19
|
Lozano-Castellón J, Rocchetti G, Vallverdú-Queralt A, Illán M, Torrado-Prat X, Lamuela-Raventós RM, Lucini L. New vacuum cooking techniques with extra-virgin olive oil show a better phytochemical profile than traditional cooking methods: A foodomics study. Food Chem 2021; 362:130194. [PMID: 34091169 DOI: 10.1016/j.foodchem.2021.130194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/25/2021] [Accepted: 05/23/2021] [Indexed: 01/19/2023]
Abstract
In this work, the major changes in extra-virgin olive oil (EVOO) composition during cooking were assessed. A foodomics approach based on both metabolomics and lipidomics was used to evaluate the impact of six different cooking techniques, three traditional and three more innovative (Crock-pot®, Roner® and Gastrovac®), and the effect of temperature and cooking time. The lipophilic and hydrophilic fractions of EVOO that underwent different cooking processes were characterized by untargeted high-resolution mass spectrometry approaches. Multivariate statistics were used to unravel the differences in chemical signatures. The different cooking methods resulted in broadly different phytochemical profiles, arising from thermally driven reactions accounting for hydrolysis, synthesis, and oxidation processes. The innovative cooking techniques marginally altered the phytochemical profile of EVOO, whereas sauteing was the cooking method determining the most distinctive profile. Conventional cooking methods (oven, pan-frying, and deep-frying) produced more oxidation products (epoxy- and hydroxy-derivatives of lipids) and markedly induced degradation processes.
Collapse
Affiliation(s)
- Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Montserrat Illán
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Xavier Torrado-Prat
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa María Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy.
| |
Collapse
|
20
|
Oleacein may intensify the efflux of oxLDL from human macrophages by increasing the expression of the SRB1 receptor, as well as ABCA1 and ABCG1 transporters. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Rinaldi de Alvarenga JF, Quifer-Rada P, Hurtado-Barroso S, Illan M, Torrado-Prat X, Lamuela-Raventós RM. Cuisinomics: MS-based untargeted approach reveals chemical modulation by a recipe during home cooking. Food Res Int 2020; 138:109787. [PMID: 33288173 DOI: 10.1016/j.foodres.2020.109787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022]
Abstract
Most of daily eaten food are cooked, which helps in absorbing nutrients and phytochemicals, but at the same time it can decrease its content. Currently, the impact of cooking has been studied that could influence food health related compounds, but they have a limited view of compounds by not consider molecular structural modifications and new compounds formation. An untargeted approach using LC-ESI-LQT-Orbitrap-MS/MS and univariate/multivariate statistical analysis was applied to understand how the preparation of a recipe, varying its ingredients (olive oil, 5-10%; onion, 20-40%; and garlic, 2-4%) and cooking time, could modulate the chemical profile of a tomato sofrito sauce. The presence of unexplored compounds that may have a beneficial effect on health, such as phytoprostanes, hydroxycinnamic acid amides and compounds such as 3,4 dihydroxyphenylglycone was revealed. Moreover, cooking was able to modulate the content of compounds like aminoacids, thiosulfates or phenolics and could be used as a tool to increase these molecules. The untargeted approach on cooking allows to use a recipe as a tool to improve a chemical profile of a dish, which opens the view for new dietary recommendations by cuisine to improve our diet, habits and health.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Food Research Center (FoRC), Departament of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, 05508-080 São Paulo, Brazil.
| | - Paola Quifer-Rada
- Departament of Endocrinology & Nutrition, CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintin, 77, 08041 Barcelona, Spain; LactApp Women Health, Barcelona, Carrer Valencia 263, 08007 Barcelona, Spain
| | - Sara Hurtado-Barroso
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Montserrat Illan
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Xavier Torrado-Prat
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
To Be or Not to Be… An Antioxidant? That Is the Question. Antioxidants (Basel) 2020; 9:antiox9121234. [PMID: 33291380 PMCID: PMC7762054 DOI: 10.3390/antiox9121234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
|
23
|
The Fat Flip - Sensory profiles of four dishes in which butter was replaced with extra virgin olive oil. Int J Gastron Food Sci 2020. [DOI: 10.1016/j.ijgfs.2020.100250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|