1
|
Zheng L, Ding Y, Fang S, Yang W, Chen J, Ma J, Wang M, Wang J, Zhang F, Guo X, Zhang K, Shu GF, Weng Q, Wu F, Zhao Z, Chen M, Jiansong J. Potentiated Calcium Carbonate with Enhanced Calcium Overload Induction and Acid Neutralization Capabilities to Boost Chemoimmunotherapy against Liver Cancer. ACS NANO 2024; 18:27597-27616. [PMID: 39342637 DOI: 10.1021/acsnano.4c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Unfavorable phenotypes characterized by low immunogenicity and acidity within the tumor microenvironment (TME) contribute to immunosuppression and therapeutic resistance. Herein, we rationally synthesized a multifunctional nanoregulator by encapsulating DOX and erianin into calcium carbonate (CaCO3)-based nanoparticles using a modified double emulsion method. The DOX and erianin-loaded CaCO3-based nanoparticles, termed DECaNPs, could effectively induce the calcium overload by triggering calcium influx and absorbing CaCO3 nanoparticles. Additionally, DECaNPs also neutralize the acidic TME by interacting with extracellular protons and limiting lactic acid production, a result of metabolic remodeling in cancer cells. As a result, DECaNPs elicit cellular oxidative stress damage, which mediates the activation of ferroptosis/apoptosis hybrid pathways, and profound immunogenic cell death. Treatment with DECaNPs could inhibit the growth of tumors by promoting oxidative stress, acid neutralization, metabolic remodeling, and protective antitumor immunity in vivo. In addition, DECaNPs could synergistically amplify the antitumor effects of αPD-L1 in a bilateral tumor model by eliciting systemic immune responses. In all, our work presents the preparation of CaCO3-based nanoregulators designed to reverse the unfavorable TME and enhance αPD-L1 immunotherapy through multiple mechanisms.
Collapse
Affiliation(s)
- Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yiming Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Wenjing Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiale Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ji Ma
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Mengyuan Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiaoli Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoju Guo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Kun Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Gao-Feng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Ji Jiansong
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
2
|
Suda K, Moriyama Y, Razali N, Chiu Y, Masukagami Y, Nishimura K, Barbee H, Takase H, Sugiyama S, Yamazaki Y, Sato Y, Higashiyama T, Johmura Y, Nakanishi M, Kono K. Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts. NATURE AGING 2024; 4:319-335. [PMID: 38388781 PMCID: PMC10950784 DOI: 10.1038/s43587-024-00575-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Plasma membrane damage (PMD) occurs in all cell types due to environmental perturbation and cell-autonomous activities. However, cellular outcomes of PMD remain largely unknown except for recovery or death. In this study, using budding yeast and normal human fibroblasts, we found that cellular senescence-stable cell cycle arrest contributing to organismal aging-is the long-term outcome of PMD. Our genetic screening using budding yeast unexpectedly identified a close genetic association between PMD response and replicative lifespan regulations. Furthermore, PMD limits replicative lifespan in budding yeast; upregulation of membrane repair factors ESCRT-III (SNF7) and AAA-ATPase (VPS4) extends it. In normal human fibroblasts, PMD induces premature senescence via the Ca2+-p53 axis but not the major senescence pathway, DNA damage response pathway. Transient upregulation of ESCRT-III (CHMP4B) suppressed PMD-dependent senescence. Together with mRNA sequencing results, our study highlights an underappreciated but ubiquitous senescent cell subtype: PMD-dependent senescent cells.
Collapse
Affiliation(s)
- Kojiro Suda
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yohsuke Moriyama
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Nurhanani Razali
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yatzu Chiu
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Hunter Barbee
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinju Sugiyama
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuta Yamazaki
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biological Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Keiko Kono
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
3
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
4
|
Muacevic A, Adler JR. The Effect of Nano Calcium Carbonate and/or Recombinant Bone Morphogenetic Protein as a Biological Orthodontic Retainer on the Body Weight of Experimental Rat. Cureus 2023; 15:e34200. [PMID: 36843753 PMCID: PMC9956351 DOI: 10.7759/cureus.34200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Retention after orthodontic tooth movement (OTM) is essential to prevent relapse. This study examined the effects of a fixed orthodontic device and Nano Calcium Carbonate (CaCO3) nanoparticles with or without recombinant human bone morphogenetic protein (rhBMP) on rat body weight. MATERIALS AND METHODS OTM was administered for 21 days to 80 Wistar Albino rats. First molar mesialization was active then forming two 40-rat groups which were subdivided into four subgroups of 10 rats each. These subgroups received 5 µg/kg rhBMP, 75 µg/kg CaCO3, 80 µg/kg rhBMP-loaded CaCO3 and one control. The relapse rate was examined weekly over the second 21 days when the second group exhibited mechanical retention and the first did not. Group 1 rats were murdered after 21 days (day 42), whereas group 2 rats entered a third 21-day post-retention period and then murdered (day 63). BW and OTM were measured on days 1, 21, 28, 35, 42, and 63. RESULTS Within each group, the animal body weight was reduced significantly after the intervention and continued over time with a higher average reduction in the 9-week group than the 6-week group. However, there were no significant (P-value ˃0.05) differences in the BW between the groups of the two (6-week and 9-week) sets and the subgroups of the 6-week set across each time point. In contrast, there was a significant (P-value ˂0.05) difference between the BW of the conjugate subgroup and the other three subgroups in the 9-week set, particularly on 63rd day. CONCLUSION CaCO3 nanoparticles and/or BMP with orthodontic treatment collectively or individually cause a reduction of body weight in rats.
Collapse
|
5
|
Proteomics-Based Identification of Dysregulated Proteins in Breast Cancer. Proteomes 2022; 10:proteomes10040035. [PMID: 36278695 PMCID: PMC9590004 DOI: 10.3390/proteomes10040035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Immunohistochemistry (IHC) is still widely used as a morphology-based assay for in situ analysis of target proteins as specific tumor antigens. However, as a very heterogeneous collection of neoplastic diseases, breast cancer (BC) requires an accurate identification and characterization of larger panels of candidate biomarkers, beyond ER, PR, and HER2 proteins, for diagnosis and personalized treatment, without the limited availability of antibodies that are required to identify specific proteins. Top-down, middle-down, and bottom-up mass spectrometry (MS)-based proteomics approaches complement traditional histopathological tissue analysis to examine expression, modification, and interaction of hundreds to thousands of proteins simultaneously. In this review, we discuss the proteomics-based identification of dysregulated proteins in BC that are essential for the following issues: discovery and validation of new biomarkers by analysis of solid and liquid/non-invasive biopsies, cell lines, organoids and xenograft models; identification of panels of biomarkers for early detection and accurate discrimination between cancer, benign and normal tissues; identification of subtype-specific and stage-specific protein expression profiles in BC grading and measurement of disease progression; characterization of new subtypes of BC; characterization and quantitation of post-translational modifications (PTMs) and aberrant protein-protein interactions (PPI) involved in tumor development; characterization of the global remodeling of BC tissue homeostasis, diagnosis and prognostic information; and deciphering of molecular functions, biological processes and mechanisms through which the dysregulated proteins cause tumor initiation, invasion, and treatment resistance.
Collapse
|
6
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|