1
|
Hwang S, Park MS, Koo AJ, Yoo E, Song SH, Kim HK, Park MH, Kang JS. Compound K Promotes Megakaryocytic Differentiation by NLRP3 Inflammasome Activation. Biomolecules 2024; 14:1257. [PMID: 39456190 PMCID: PMC11506438 DOI: 10.3390/biom14101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Platelets are essential blood components that maintain hemostasis, prevent excessive bleeding, and facilitate wound healing. Reduced platelet counts are implicated in various diseases, including leukemia, hepatitis, cancer, and Alzheimer's disease. Enhancing megakaryocytic differentiation is a promising strategy to increase platelet production. Compound K (CK), a major bioactive metabolite of ginsenosides from Panax ginseng, has demonstrated anti-cancer and neuroprotective properties. In this study, we investigated the effects of CK on megakaryocytic differentiation and apoptosis in chronic myeloid leukemia (CML) cell lines K562 and Meg-01. CK treatment significantly upregulated the mRNA expression of key megakaryocytic differentiation markers, including CD61, CD41, and CD42a, and promoted the formation of large, multinucleated cells in K562 cells. Additionally, flow cytometry analysis revealed that CK at 5 µM induced apoptosis, a critical process in thrombocytopoiesis, in both K562 and Meg-01 cells. RT2 Profiler PCR array analysis further identified a marked increase in the expression of genes associated with the activation of the NLRP3 inflammasome in CK-treated K562 and Meg-01 cells. This study is the first to demonstrate that CK promotes megakaryocytic differentiation and apoptosis through the activation of the ERK/EGR1 and NLRP3 inflammasome pathways. These findings suggest that CK may enhance platelet production, indicating its potential as a therapeutic candidate for platelet-related disorders and other associated diseases.
Collapse
MESH Headings
- Humans
- Megakaryocytes/drug effects
- Megakaryocytes/metabolism
- Megakaryocytes/cytology
- Cell Differentiation/drug effects
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Inflammasomes/drug effects
- K562 Cells
- Apoptosis/drug effects
- Ginsenosides/pharmacology
- Platelet Membrane Glycoprotein IIb/metabolism
- Integrin beta3/metabolism
- Integrin beta3/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
Collapse
Affiliation(s)
- Seonhwa Hwang
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (S.H.); (M.-S.P.); (S.-H.S.); (H.-K.K.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Min-Seo Park
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (S.H.); (M.-S.P.); (S.-H.S.); (H.-K.K.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Anthony Junhoe Koo
- College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Eunsoo Yoo
- Chemical, Biological, and Bioengineering Department, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Seh-Hyon Song
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (S.H.); (M.-S.P.); (S.-H.S.); (H.-K.K.)
| | - Hye-Kyung Kim
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (S.H.); (M.-S.P.); (S.-H.S.); (H.-K.K.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Min-Hi Park
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (S.H.); (M.-S.P.); (S.-H.S.); (H.-K.K.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Jae-Seon Kang
- College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea; (S.H.); (M.-S.P.); (S.-H.S.); (H.-K.K.)
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
2
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Gupta M, Hussain MS, Thapa R, Bhat AA, Kumar N. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis. PHARMANUTRITION 2024; 29:100406. [DOI: 10.1016/j.phanu.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
4
|
Piekarz J, Picheta N, Burdan O, Kurek M, Chrościńska-Krawczyk M. Phytotherapy in Alzheimer's Disease-A Narrative Review. Biomedicines 2024; 12:1812. [PMID: 39200276 PMCID: PMC11351709 DOI: 10.3390/biomedicines12081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) affects 50-70% of patients with dementia, making it the leading cause of dementia. The condition is classified as a neurodegenerative, progressive and incurable disease. The disease is affecting more and more people around the world. AD has a multifactorial nature, spreading from beta-amyloid deposition to inflammation in patients' brains. Patients experience cognitive impairment and functional decline. Although it is a disease that occurs mainly in the elderly, it is increasingly being diagnosed in young people between the ages of 30 and 40. It not only affects the patient themself but also reduces the quality of life of their closest caregivers. According to the WHO, the treatment of AD consumes USD 1.3 trillion globally, but it is only symptomatic, as there are no drugs to prevent the onset of AD or treat the cause of its onset. Due to the numerous side effects of therapy and the lack of proactive drugs that act on the pathomechanism of AD, alternative therapies are being sought. One possible option that has many studies confirming its effect is phytotherapy. Many herbs have pharmacological properties, such as antioxidant, anti-inflammatory, or neuroprotective effects, making them the future of cognitive disorders and AD treatment. This review focuses on some of the most promising herbs that have potentially potent properties and effects in AD therapy. These include Curcuma longa, Panax ginseng, Berberis and Crocus sativus. These herbs may perhaps be key in the future to make functioning and life easier for patients struggling with AD.
Collapse
Affiliation(s)
- Julia Piekarz
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Natalia Picheta
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Oliwia Burdan
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Marcelina Kurek
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | | |
Collapse
|
5
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
6
|
Yu W, Cai S, Zhao J, Hu S, Zang C, Xu J, Hu L. Beyond genome: Advanced omics progress of Panax ginseng. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112022. [PMID: 38311250 DOI: 10.1016/j.plantsci.2024.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Ginseng is a perennial herb of the genus Panax in the family Araliaceae as one of the most important traditional medicine. Genomic studies of ginseng assist in the systematic discovery of genes related to bioactive ginsenosides biosynthesis and resistance to stress, which are of great significance in the conservation of genetic resources and variety improvement. The transcriptome reflects the difference and consistency of gene expression, and transcriptomics studies of ginseng assist in screening ginseng differentially expressed genes to further explore the powerful gene source of ginseng. Protein is the ultimate bearer of ginseng life activities, and proteomic studies of ginseng assist in exploring the biosynthesis and regulation of secondary metabolites like ginsenosides and the molecular mechanism of ginseng adversity adaptation at the overall level. In this review, we summarize the current status of ginseng research in genomics, transcriptomics and proteomics, respectively. We also discuss and look forward to the development of ginseng genome allele mapping, ginseng spatiotemporal, single-cell transcriptome, as well as ginseng post-translational modification proteome. We hope that this review will contribute to the in-depth study of ginseng and provide a reference for future analysis of ginseng from a systems biology perspective.
Collapse
Affiliation(s)
- Wenjing Yu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Shuhan Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
7
|
PING Y, LIU J, WANG H, WANG Y, QIU H, ZHANG Y. Research progress in the treatment of an immune system disease-type 1 diabetes-by regulating the intestinal flora with Chinese medicine and food homologous drugs. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:150-161. [PMID: 38966054 PMCID: PMC11220337 DOI: 10.12938/bmfh.2023-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/06/2024] [Indexed: 07/06/2024]
Abstract
Type 1 diabetes (T1D) is a specific autoimmune disease related to genetic and autoimmune factors. Recent studies have found that the intestinal flora is one of the important environmental factors in the development of T1D. The gut microbiota is the largest microbiota in the human body and has a significant impact on material and energy metabolism. Related studies have found that the intestinal floras of T1D patients are unbalanced. Compared with normal patients, the abundance of beneficial bacteria is reduced, and various pathogenic bacteria are significantly increased, affecting the occurrence and development of diabetes. Medicinal and food homologous traditional Chinese medicine (TCM) has a multicomponent, multitarget, and biphasic regulatory effect. Its chemical composition can increase the abundance of beneficial bacteria, improve the diversity of the intestinal flora, reduce blood sugar, and achieve the purpose of preventing and treating T1D by regulating the intestinal flora and its metabolites. Therefore, based on a review of T1D, intestinal flora, and TCM derived from medicine and food, this review describes the relationship between T1D and the intestinal flora, as well as the research progress of TCM interventions for T1D through regulation of the intestinal flora. Medicine and food homologous TCM has certain advantages in treating diabetes and regulating the intestinal flora. It can be seen that there is still great research space and broad development prospects for the treatment of diabetes by regulating the intestinal flora with drug and food homologous TCM.
Collapse
Affiliation(s)
- Yang PING
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| | - Jianing LIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Huilin WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yan WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Hongbin QIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yu ZHANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| |
Collapse
|
8
|
Hu QR, Hong H, Zhang ZH, Feng H, Luo T, Li J, Deng ZY, Chen F. Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system. J Ginseng Res 2023; 47:694-705. [PMID: 38107396 PMCID: PMC10721471 DOI: 10.1016/j.jgr.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 12/19/2023] Open
Abstract
Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.
Collapse
Affiliation(s)
- Qi-rui Hu
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Huan Hong
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Zhi-hong Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Hua Feng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Ze-yuan Deng
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Qin BF, Gao S, Feng QY, Chen W, Sun HM, Song J. Regulation of Nur77-TLR4/MyD88 signaling pathway is required for Ginsenoside Rc ameliorates hepatic fibrosis regression by deactivating hepatic stellate cells. Acta Histochem 2023; 125:152079. [PMID: 37527595 DOI: 10.1016/j.acthis.2023.152079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
HSCs (hepatic stellate cells) contribute to the excessive extracellular matrix (ECM) deposition plays a key role in the progression of hepatic fibrosis. The present study focused on the hepatoprotective effect of Ginsenoside Rc (Rc), one of the protopanaxadiol type ginsenoside, which has contributed to reverse activated HSCs to improve hepatic fibrosis via regulating Nur77-TLR4/MyD88 signaling pathway. We established the hepatic fibrosis model by intraperitoneal injection of carbon tetrachloride (CCl4). And HSCs were stimulated with TGF-β, followed by silencing of Nur77, and then incubated in Rc. Rc significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Rc could upregulate the Nur77 and downregulate fibrosis markers in the liver of mice, including decreasing the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. Rc significantly increased the expression of Nur77 and suppressed the production of ECM in HSCs. Rc inhibited TLR4 signaling pathway, consequently reversing the inflammatory response, including the production of MyD88, IRAK1, IRAK4 and IL-23. When Nur77 was knocked in TGF-β-stimulated HSCs, TLR4 and α-SMA production were increased. Rc suppressed these activatory effects in Nur77 knockdown HSCs. Rc reduced inflammatory reaction by regulating the Nur77-TLR4 signaling pathway while suppressing the fibrogenesis suggesting, underscoring a promising approach of Rc for the treatment in hepatic fibrosis. Targeting Nur77-TLR4 signaling in HSCs would be the potential strategy for Rc against hepatic fibrosis.
Collapse
Affiliation(s)
- Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Shan Gao
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Wei Chen
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
10
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
12
|
Ginsenoside Rh2 suppresses colon cancer growth by targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:633-648. [PMID: 36916297 DOI: 10.3724/abbs.2023032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Ginsenoside Rh2, which is extracted from ginseng, exerts antitumor activity. Recent studies suggest that Rh2 may suppress the growth of colon cancer (CC) in vitro. However, the underlying mechanism remains unclear. In this study, we identified the relative levels of miR-150-3p in CC tissues and cells by a comprehensive strategy of data mining, computational biology, and real-time reverse transcription PCR (qRT-PCR) experiments. The regulatory effects of miR-150-3p/SRCIN1 on the proliferative and invasive abilities of CC cells are evaluated by CCK-8, EdU, wound healing, and transwell assays. Cell cycle- and apoptosis-related protein levels are assessed by western blot analysis. An in vivo tumor formation assay was conducted to explore the effects of miR-150-3p on tumor growth. Furthermore, bioinformatics and dual luciferase reporter assays are applied to determine the functional binding of miRNA to mRNA of the target gene. Finally, the relationship between Rh2 and miR-150-3p was further verified in SW620 and HCT-116 cells. miR-150-3p is downregulated in CC tissues and cell lines. Functional assays indicate that the upregulation of miR-150-3p inhibits tumor growth both in vivo and in vitro. In addition, SRCIN1 is upregulated in CC and predicts a poor prognosis, and it is the direct target for miR-150-3p. Moreover, the miR-150-3p mimic decreases Topflash/Fopflash-dependent luciferase activity, resulting in the inhibition of Wnt pathway activity. Rh2 can suppress the growth of CC by increasing miR-150-3p expression. Rh2 alleviates the accelerating effect on Wnt pathway activity, cell proliferation/migration, and colony formation caused by miR-150-3p inhibition. Rh2 inhibits the miR-150-3p/SRCIN1/Wnt axis to suppress colon cancer growth.
Collapse
|
13
|
Kim SJ, Baek SH, Kang KS, Shin MS. Characterization of macrophage activation after treatment with polysaccharides from ginseng according to heat processing. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:15. [PMID: 36874224 PMCID: PMC9958326 DOI: 10.1186/s13765-023-00774-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The worldwide persistence of infectious diseases is a significant public health issue. Consequently, studying immunomodulatory ingredients present in natural products, such as ginseng, is important for developing new treatment options. Here, we extracted three different types of polysaccharides from white (P-WG), red (P-RG), and heat-processed (P-HPG) ginseng and analyzed their chemical properties and immunostimulatory activity against RAW 264.7 murine macrophages. Carbohydrates were the main components of all three polysaccharide types, while uronic acid and protein levels were relatively low. Chemical analysis indicated that the content of carbohydrates (total sugar) increased with processing temperature, while that of uronic acid decreased. Treatment with P-WG, P-RG or P-HPG stimulated nitric oxide (NO) production and increased tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 levels in RAW 264.7 macrophages, with P-WG showing the highest activity among the three polysaccharides. The expression of inducible NO synthase, which affects NO secretion, was highest in the macrophages treated with P-WG. Analysis of intracellular signaling pathways showed that mitogen-activated protein kinases (ERK, JNK, and p38) and NF-kB p65 were strongly phosphorylated by P-WG in macrophages but were only moderately phosphorylated by P-RG and P-HPG. Collectively, these results suggest that the polysaccharides isolated from ginseng undergo different changes in response to heat processing and display different chemical compositions and immune-enhancing activities.
Collapse
Affiliation(s)
- Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499 Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| |
Collapse
|
14
|
Song Y, Cheng H, Liu J, Kazuo S, Feng L, Wei Y, Zhang C, Gao Y. Effectiveness of herbal medicine on patients with amyotrophic lateral sclerosis: Analysis of the PRO-ACT data using propensity score matching. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154461. [PMID: 36198223 DOI: 10.1016/j.phymed.2022.154461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Patients with amyotrophic lateral sclerosis (ALS) have restricted pharmacotherapy options and thus resort to herbal medicines (HMs), despite limited and conflicting evidence. Therefore, use of HMs needs to be assessed in patients with ALS. PURPOSE This study aimed to evaluate the benefits of HMs in ALS and to describe the characteristics of HM users. STUDY DESIGN The correlation between HMs and prognosis was determined based on data obtained from the largest ALS database with high-quality clinical trials. Propensity score (PS) matching was used to address confounding and selection bias. METHODS In total, 321 and 231 HM users with at least a 4-week HM prescription were identified and PS-matched with non-HM users at a 1:1 ratio based on predefined confounders. Time-to-event models with censoring at 12 or 18 months were established for survival analyses. For evaluating activity limitation and respiratory function, 320 and 376 HM users were included, respectively, and analyzed using multivariate analysis of variance (MANOVA). RESULTS The profiles of 321 HM users indicated a better condition compared with that of non-HM users before PS-matching, including higher weight (median [IQR], 77.90 [21.8] kg vs. 74.00 [21.2] kg, p < 0.01), higher body mass index (26.00 [5.4] vs. 25.20 [5.8], p < 0.01), more percentage of limb onset (261 [81.3%] vs. 2366 [67.2%], p < 0.01), and slower progression (0.47 [0.5] vs. 0.51 [0.5], p = 0.03). HM did not significantly affect survival at 12 months (adjusted hazard ratio [HR] 0.71, 95% confidence interval [CI] 0.49-1.03; log-rank p = 0.069), but it significantly prolonged survival at 18 months (adjusted HR 0.74, 95% CI 0.56-0.98; log-rank p = 0.038). After imputation of missing data, MANOVA revealed significant effectiveness of HMs in improving activity limitation (Pillai trace, 0.0195; p = 0.03). CONCLUSION PS-based methods eliminated baseline differences between HM and non-HM users. Overall, the use of HM to treat patients with ALS is favored based on their association with prolonged overall survival within 18 months and improved activity limitation.
Collapse
Affiliation(s)
- Yuebo Song
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hao Cheng
- National Academy of Innovation Strategy, China Association for Science and Technology, Beijing 100038, China
| | - Jia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sugimoto Kazuo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Luda Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yufei Wei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530022, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
15
|
Zhou P, Deng F, Yang Z, Cao C, Zhao H, Liu F, Zhong K, Fu L, Peng T, Sun D, Liu H, Li R, Yu Y. Ginsenoside Rb1 inhibits oxidative stress-induced ovarian granulosa cell injury through Akt-FoxO1 interaction. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2301-2315. [PMID: 35661967 DOI: 10.1007/s11427-021-2080-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Ginsenoside Rb1 shows a strong antioxidant effect and has potential activation effects on Akt. The aim of the present study was to investigate the protective effect of Rb1 on age-related ovarian granulosa cell injury. Ovarian granulosa cells (GCs) were obtained from 50 young women (≤30 years) and 50 aged women (≥38 years) at an IVF center. Young and aged ICR mice were administered with or without Rb1 (10 mg kg-1, i.p.) for 2 weeks. The protective effects of Rb1 were investigated and the role of Rb1 on the modulation of Akt-FoxO1 interaction was determined with immunofluorescence, Western blotting, immunoprecipitation, siRNA silencing and pharmacological inhibitor. Rb1 effectively decreased LDH and MDA, and reversed the apoptotic-related protein levels in hGL cells from old patients. Similar results were found in mice. In addition, the mitochondrial membrane potential was restored and the overaccumulation of ROS was reversed by Rb1. Rb1 preserved peroxide-impaired Akt activation, to some extent, by increasing phosphorylation at Ser473. Rb1 also facilitated p-Akt binding to FoxO1 and promoted the phosphorylation of FoxO1. SiRNA silencing of Akt, Akt inhibitor LY294002, and FoxO1 inhibitor AS1842856 attenuated the effects of Rb1. Ginsenoside Rb1 inhibits age-related GCs oxidative damage by activating Akt phosphorylation at Ser473 and by further interaction with FoxO1.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Feng Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Zi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Canhui Cao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Hongcui Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Ke Zhong
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Tianliu Peng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Di Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
16
|
Evaluation of Prebiotics through an In Vitro Gastrointestinal Digestion and Fecal Fermentation Experiment: Further Idea on the Implementation of Machine Learning Technique. Foods 2022; 11:foods11162490. [PMID: 36010490 PMCID: PMC9407061 DOI: 10.3390/foods11162490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Prebiotics are non-digestible food ingredients that promote the growth of beneficial gut microorganisms and foster their activities. The performance of prebiotics has often been tested in mouse models in which the gut ecology differs from that of humans. In this study, we instead performed an in vitro gastrointestinal digestion and fecal fermentation experiment to evaluate the efficiency of eight different prebiotics. Feces obtained from 11 different individuals were used to ferment digested prebiotics. The total DNA from each sample was extracted and sequenced through Illumina MiSeq for microbial community analysis. The amount of short-chain fatty acids was assessed through gas chromatography. We found links between community shifts and the increased amount of short-chain fatty acids after prebiotics treatment. The results from differential abundance analysis showed increases in beneficial gut microorganisms, such as Bifidobacterium, Faeclibacterium, and Agathobacter, after prebiotics treatment. We were also able to construct well-performing machine-learning models that could predict the amount of short-chain fatty acids based on the gut microbial community structure. Finally, we provide an idea for further implementation of machine-learning techniques to find customized prebiotics.
Collapse
|
17
|
Hwang J, Kang S, Jung H. Effects of American wild ginseng and Korean cultivated wild ginseng pharmacopuncture extracts on the regulation of C2C12 myoblasts differentiation through AMPK and PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2022; 25:192. [PMID: 35419614 PMCID: PMC9051998 DOI: 10.3892/mmr.2022.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/16/2022] [Indexed: 11/06/2022] Open
Abstract
Targeting impaired myogenesis and mitochondrial biogenesis offers a potential alternative strategy for balancing energy to fight muscle disorders such as sarcopenia. In traditional Korean medicine, it is believed that the herb wild ginseng can help restore energy to the elderly. The present study investigated whether American wild ginseng pharmacopuncture (AWGP) and Korean cultivated wild ginseng pharmacopuncture (KCWGP) regulate energy metabolism in skeletal muscle cells. C2C12 mouse myoblasts were differentiated into myotubes using horse serum for 5 days. An MTT colorimetric assay verified cell viability. AWGP, KCWGP (0.5, 1, or 2 mg/ml), or metformin (2.5 mM) for reference were used to treat the C2C12 myotubes. The expressions of differentiation and mitochondrial biogenetic factors were measured by western blotting in C2C12 myotubes. Treatment of C2C12 cells stimulated with AWGP and KCWGP at a concentration of 10 mg/ml did not affect cell viability. AWGP and KCWGP treatments resulted in significant increases in the myogenesis proteins, myosin heavy chain, myostatin, myoblast determination protein 1 and myogenin, as well as increases to the biogenic regulatory factors, peroxisome proliferator-activated receptor-γ coactivator-1-α, nuclear respiratory factor 1, mitochondrial transcription factor A and Sirtuin 1, in the myotubes through AMPK and PI3K/AKT/mTOR signaling pathway activation. These results suggest that AWGP and KCWGP may be beneficial to muscle function by improving muscle differentiation and energy metabolism.
Collapse
Affiliation(s)
- Ji Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Seok Kang
- Korean Medicine R&D Center, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Hyo Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| |
Collapse
|
18
|
Liu Y, Liu N, Li X, Luo Z, Zhang J. Ginsenoside Rb1 Modulates the Migration of Bone-Derived Mesenchymal Stem Cells through the SDF-1/CXCR4 Axis and PI3K/Akt Pathway. DISEASE MARKERS 2022; 2022:5196682. [PMID: 35308137 PMCID: PMC8930258 DOI: 10.1155/2022/5196682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Methods Wound-healing assay and Transwell assay were utilized to evaluate the effect of ginsenoside Rb1 on the migration of BMSCs. RT-PCR and Western blotting were performed to evaluate the expression of stromal-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR4), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB; AKT). Results Ginsenoside Rb1 significantly enhanced the migration of BMSCs through the activation of SDF-1, CXCR4, p-PI3K/PI3K, and p-Akt/Akt relative expression. Furthermore, this stimulus was blocked by the pretreatment with AMD3100 and LY294002. Conclusions Ginsenoside Rb1 facilitated the migration of BMSCs through the activation of the SDF-1/CXCR4 axis and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yimei Liu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ninghua Liu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Xiangyang Li
- Department of Nursing, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jing Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
19
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Liu Y, Zhang H, Dai X, Zhu R, Chen B, Xia B, Ye Z, Zhao D, Gao S, Orekhov AN, Zhang D, Wang L, Guo S. A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153717. [PMID: 34583224 DOI: 10.1016/j.phymed.2021.153717] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.
Collapse
Affiliation(s)
- Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingke Xia
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuzhen Guo
- Department of Scientific Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
21
|
Najafi TF, Bahri N, Tohidinik HR, Feyz S, Bloki F, Savarkar S, Jahanfar S. Treatment of cancer-related fatigue with ginseng: A systematic review and meta-analysis. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Han JE, Park M, An TEB, Park JH, Oh D, Kim KH, Sung SH. Quality Control of Pharmacopuncture: A Comparative Study of Good Manufacturing Practice and External Herbal Dispensary Standards. J Pharmacopuncture 2021; 24:59-67. [PMID: 34249396 PMCID: PMC8220506 DOI: 10.3831/kpi.2021.24.2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives We aimed to compare the external herbal dispensary (EHD) evaluation criteria for pharmacopuncture and the Korea Good Manufacturing Practice (KGMP) sterile medicine standards to contribute to the establishment of quality control criteria for pharmacopuncture. Methods We obtained the KGMP standards from the Ministry of Food and Drug Safety and the pharmacopuncture certification criteria from the Ministry of Health and Welfare of South Korea. The EHD evaluation items were classified into three categories facilities, quality control, and validation. The evaluation items were compared with the KGMP sterile medicine criteria to determine their conformance with each other, followed by a discussion among the committee of six experts and their consensus to suggest the items to complement the EHD evaluation criteria. Results Among the KGMP sterile medicine criteria, 44 were related to the management of the facilities, and 32 pharmacopuncture evaluation items corresponded to these KGMP items (66.7%). Fifty-eight KGMP criteria were related to quality management, and 42 pharmacopuncture evaluation items corresponded to these KGMP items (72.4%). Twenty-five KGMP sterile medicine criteria were related to validation, and 11 pharmacopuncture evaluation items corresponded to these KGMP items (44.0%). Sixteen items under the pharmacopuncture EHD criteria corresponded to the KGMP sterile medicine criteria based on the consent of the experts. Among these, 4 were related to facility management, 6 were related to quality control, and 6 were related to validation. Conclusion For the safety and quality control of pharmacopuncture, there is a need to select the criteria for the mandatory items among the proposed pharmacopuncture-EHD criteria laws and systems to ensure that the pharmacopuncture materials are produced under the pharmacopuncture-EHD in compliance with the relevant requirements. More studies are needed to secure the safety level of pharmacopuncture materials corresponding to that of conventional medicine.
Collapse
Affiliation(s)
- Ji-Eun Han
- Department of Policy Development, National Development Institute of Korean Medicine, Seoul, Republic of Korea
| | - Minjung Park
- National Agency for Development of Innovative Technologies in Korean Medicine, Seoul, Republic of Korea
| | - Tteul-E-Bom An
- Kind Cloud Korean Medicine Clinic, Jinju, Republic of Korea
| | - Jong-Hyun Park
- Department of Pathology, College of Korean Medicine, Dae-Gu Haany University, Gyeongsan, Republic of Korea
| | - Danny Oh
- Grauate School of Social Welfare, Soongsil University, Seoul, Republic of Korea
| | - Kyeong Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | - Soo-Hyun Sung
- Department of Policy Development, National Development Institute of Korean Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides. Biomedicines 2021; 9:biomedicines9020198. [PMID: 33671187 PMCID: PMC7921986 DOI: 10.3390/biomedicines9020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes which cleave extracellular matrix (ECM) and other substrates. They are deeply involved in both cancer metastasis and human chronic inflammatory diseases such as osteoarthritis and Crohn’s disease. Regulation of MMPs is closely associated with signaling molecules, especially mitogen-activated protein kinases (MAPKs), including three representative kinases, extracellular signal regulated kinases (ERK), p38 and c-Jun N-terminal kinases (JNK). Ginseng (Panax sp.) is a plant which has been traditionally used for medicinal applications. Ginsenosides are major metabolites which have potentials to treat various human diseases. In this review, the pharmacological effects of ginsenosides have been rigorously investigated; these include anti-metastatic and anti-inflammatory activities of ginsenosides associated with suppression of MMPs via regulation of various signaling pathways. This will highlight the importance of MMPs as therapeutic targets for anti-metastatic and anti-inflammatory drug development based on ginsenosides.
Collapse
|
24
|
Hong H, Baatar D, Hwang SG. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8858006. [PMID: 33623532 PMCID: PMC7875636 DOI: 10.1155/2021/8858006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Cancer incidence rate has been increasing drastically in recent years. One of the many cancer treatment methods is chemotherapy. Traditional medicine, in the form of complementary and alternative therapy, is actively used to treat cancer, and many herbs and active ingredients of such therapies are being intensely studied to integrate them into modern medicine. Ginseng is traditionally used as a nourishing tonic and for treating various diseases in Asian countries. The therapeutic potential of ginseng in modern medicine has been studied extensively; the main bioactive component of ginseng is ginsenosides, which have gathered attention, particularly for their prospects in the treatment of fatal diseases such as cancer. Ginsenosides displayed their anticancer and antimetastatic properties not only via restricting cancer cell proliferation, viability, invasion, and migration but also by promoting apoptosis, cell cycle arrest, and autophagy in several cancers, such as breast, brain, liver, gastric, and lung cancer. Additionally, ginsenosides can work synergistically with already existing cancer therapies. Thus, ginsenosides may be used alone or in combination with other pharmaceutical agents in new therapeutic strategies for cancer. To date however, there is little systematic summary available for the anticancer effects and therapeutic potential of ginsenosides. Therefore, we have reviewed and discussed all available literature in order to facilitate further research of ginsenosides in this manuscript.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 13330, Ulaanbaatar, Mongolia
| | - Seong Gu Hwang
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 17579, Republic of Korea
| |
Collapse
|
25
|
Ding Q, Zhu W, Diao Y, Xu G, Wang L, Qu S, Shi Y. Elucidation of the Mechanism of Action of Ginseng Against Acute Lung Injury/Acute Respiratory Distress Syndrome by a Network Pharmacology-Based Strategy. Front Pharmacol 2021; 11:611794. [PMID: 33746744 PMCID: PMC7970560 DOI: 10.3389/fphar.2020.611794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex cascade that develops from acute lung injury (ALI). Ginseng can be used to treat ALI/ARDS. Studies have shown that some of ingredients in ginseng had anti-inflammation, antioxidative, and immune regulation effects and can protect alveolar epithelial cells in mice. However, the potential targets, biological processes, and pathways related to ginseng against ALI/ARDS have not been investigated systematically. We employed network pharmacology, molecular docking, and animal experiments to explore the therapeutic effects and underlying mechanism of action of ginseng against ALI/ARDS. We identified 25 compounds using ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry and their 410 putative targets through database analyses. Sixty-nine of them were considered to be key targets of ginseng against ALI/ARDS according to overlapping with ALI/ARDS-related targets and further screening in a protein–protein interaction (PPI) network. The phosphatidylinositol 3-kinase-protein kinase B (PI3K-AkT) and mitogen-activated protein kinase (MAPK) pathways were recognized to have critical roles for ginseng in ALI/ARDS treatment. Signal transducer and activator of transcription (STAT) 3, vascular endothelial growth factor A (VEGFA), fibroblast growth factor (FGF) 2, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), MAPK1, and interleukin (IL) 2 were the top six nodes identified by analyses of a compound–target-pathway network. Molecular docking showed that most of the ingredients in ginseng could combine well with the six nodes. Ginseng could reduce the pathologic damage, neutrophil aggregation, proinflammatory factors, and pulmonary edema in vivo and inhibit the PI3K-Akt signaling pathway and MAPK signaling pathway through downregulating expressions of STAT3, VEGFA, FGF2, PIK3CA, MAPK1, and IL2. Our study provides a theoretical basis for ginseng treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
26
|
Complementary and alternative medicine. SIDE EFFECTS OF DRUGS ANNUAL 2021. [PMCID: PMC8488687 DOI: 10.1016/bs.seda.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complementary and alternative medicine is used worldwide. The use of plant-based medicines for the prevention or treatment of disease is prevalent but not regulated or studied. Multiple countries are implementing pharmacovigilance systems to monitor the use and safety of dietary supplements. Reporting mechanisms continue to be sporadic and inconsistent, based mainly on consumer or healthcare provider reports outlining individual adverse effects (AEs) from dietary supplements. Supplement product ingredient lists may be inaccurate, claims biased, and Evidence-Based information regarding risks and benefits lacking. Healthcare providers should familiarize themselves with complementary medicine practices, the benefits and associated risks to best care for their patient populations. A global pandemic marked 2020 with the emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A short review of vitamin and plant-based prevention, treatment, and associated ramifications with use of these products for coronavirus disease 2019 (COVID-19) is provided. Another world-wide dilemma is food security. Nutrieconomics and the socioeconomic ramifications of food are reviewed from a wider timeframe. Reports and reviews from 2020 describe AEs of complementary and alternative medicine and herbal dietary supplements. These are listed alphabetically by plant or supplement name.
Collapse
|
27
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
28
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
29
|
Affiliation(s)
- Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
30
|
Jin W, Ma R, Zhai L, Xu X, Lou T, Huang Q, Wang J, Zhao D, Li X, Sun L. Ginsenoside Rd attenuates ACTH-induced corticosterone secretion by blocking the MC2R-cAMP/PKA/CREB pathway in Y1 mouse adrenocortical cells. Life Sci 2020; 245:117337. [PMID: 31972205 DOI: 10.1016/j.lfs.2020.117337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Higher levels of glucocorticoids (GCs), and impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis may cause or exacerbate the occurrence of metabolic and psychiatric disorders. It has been reported that ginseng saponin extract (GSE) has an inhibitory effect on the hyperactivity of the HPA axis induced by stresses and increased corticosterone level induced by intraperitoneal injection of adrenocorticotrophic hormone (ACTH) in mice. However, the molecular mechanisms by which GSE and its active ginsenosides inhibit corticosterone secretion remain elusive. MAIN METHODS Y1 mouse adrenocortical cells were treated with ACTH for up to 60 min to establish a cell model of corticosterone secretion. After treatment with different concentrations of GSE or ginsenoside monomers for 24 h prior to the addition of ACTH, analyses of cAMP content, PKA activity, and the levels of steroidogenesis regulators, melanocortin-2 receptor (MC2R), and melanocortin-2 receptor accessory protein (MRAP) in ACTH-induced Y1 cells were performed. RESULTS We demonstrated that GSE inhibits ACTH-stimulated corticosterone production in Y1 cells by inhibiting factors critical for steroid synthesis. Ginsenoside Rd, an active ingredient of GSE, inhibits corticosterone secretion in the cells and impedes ACTH-induced corticosterone biosynthesis through down-regulation of proteins in the cAMP/PKA/CREB signaling pathway. In addition, Western blot and qPCR analyses showed that ginsenoside Rd attenuated the induction of MC2R and MRAP by ACTH. CONCLUSION Our findings indicate that ginsenoside Rd inhibits ACTH-induced corticosterone production through blockading the MC2R-cAMP/PKA/CREB pathway in adrenocortical cells. Overall, this mechanism may represent an important therapeutic option for the treatment of stress-related disorders, further supporting the pharmacological benefits of ginseng.
Collapse
Affiliation(s)
- Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tingting Lou
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|