1
|
Niu L, Li W, Chen X, Su X, Dong J, Liao Q, Zhou X, Shi S, Sun R. 1-Monopalmitin promotes lung cancer cells apoptosis through PI3K/Akt pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2023; 38:2621-2631. [PMID: 37466199 DOI: 10.1002/tox.23897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) represents 85%. Mougeotia nummuloides and Spirulina major have been reported to possess anticancer properties. 1-Monopalmitin (1-Mono) is the principle active constituent in these natural plants. It is debating whether 1-Mono exerts antitumor effects. Therefore, we explored the role of 1-Mono in lung cancer in vitro. Results showed that 1-Mono significantly inhibited A549 and SPC-A1 cell proliferation, induced G2/M arrest and caspase-dependent apoptosis. Moreover, it suppressed the protein expression of inhibitors of apoptosis proteins (IAPs). It was further demonstrated that 1-Mono activated the PI3K/Akt pathway, suppression of PI3K/Akt activities with LY294002 and Wortmannin partially attenuated 1-Mono-mediated anticancer activities, indicating that 1-Mono-induced antitumor effects is dependent on PI3K/Akt pathway. 1-Mono induced cytoprotective autophagy since autophagy inhibitor Chloroquine dramatically enhanced 1-Mono-induced cytotoxicity. In summary, our results showed 1-Mono kills lung cancer through PI3K/Akt pathway, providing novel options for lung cancer administration.
Collapse
Affiliation(s)
- Lulu Niu
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Wenwen Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xin Chen
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xiaosan Su
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Jingjing Dong
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Quanyang Liao
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xuhong Zhou
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
2
|
Foltman M, Sanchez-Diaz A. TOR Complex 1: Orchestrating Nutrient Signaling and Cell Cycle Progression. Int J Mol Sci 2023; 24:15745. [PMID: 37958727 PMCID: PMC10647266 DOI: 10.3390/ijms242115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The highly conserved TOR signaling pathway is crucial for coordinating cellular growth with the cell cycle machinery in eukaryotes. One of the two TOR complexes in budding yeast, TORC1, integrates environmental cues and promotes cell growth. While cells grow, they need to copy their chromosomes, segregate them in mitosis, divide all their components during cytokinesis, and finally physically separate mother and daughter cells to start a new cell cycle apart from each other. To maintain cell size homeostasis and chromosome stability, it is crucial that mechanisms that control growth are connected and coordinated with the cell cycle. Successive periods of high and low TORC1 activity would participate in the adequate cell cycle progression. Here, we review the known molecular mechanisms through which TORC1 regulates the cell cycle in the budding yeast Saccharomyces cerevisiae that have been extensively used as a model organism to understand the role of its mammalian ortholog, mTORC1.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
3
|
Alao JP, Legon L, Dabrowska A, Tricolici AM, Kumar J, Rallis C. Interplays of AMPK and TOR in Autophagy Regulation in Yeast. Cells 2023; 12:cells12040519. [PMID: 36831186 PMCID: PMC9953913 DOI: 10.3390/cells12040519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
Collapse
|
4
|
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S, Machín F. The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 2022; 5:5/10/e202101161. [PMID: 35961781 PMCID: PMC9375157 DOI: 10.26508/lsa.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosome structuring and condensation is one of the main features of mitosis. Here, Matos-Perdomo et al show how the nuclear envelope reshapes around the vacuole to give rise to the outstanding ribosomal DNA loop in budding yeast. The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus–vacuole junctions and rDNA-NE tethering.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Silvia Santana-Sosa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Medina-Suárez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Escuela de Doctorado y Estudios de Postgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain .,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Spain
| |
Collapse
|
5
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Junio JAB, Orfanos E, Tafakori T, Lutchman V, Mohammad K, Elsaser S, Orfali S, Rajen H, Titorenko VI. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Oncotarget 2022; 13:918-943. [PMID: 35937500 PMCID: PMC9348708 DOI: 10.18632/oncotarget.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Emmanuel Orfanos
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Harshvardhan Rajen
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
6
|
Soberanes-Gutiérrez CV, León-Ramírez C, Sánchez-Segura L, Cordero-Martínez E, Vega-Arreguín JC, Ruiz-Herrera J. Cell death in Ustilago maydis: comparison with other fungi and the effect of metformin and curcumin on its chronological lifespan. FEMS Yeast Res 2021; 20:5908381. [PMID: 32945857 DOI: 10.1093/femsyr/foaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ustilago maydis is a Basidiomycota fungus, in which very little is known about its mechanisms of cell survival and death. To date, only the role of metacaspase1, acetate and hydrogen peroxide as inducers of cell death has been investigated. In the present work, we analyzed the lifespan of U. maydis compared with other species like Sporisorium reilianum, Saccharomyces cerevisiae and Yarrowia lipolytica, and we observed that U. maydis has a minor lifespan. We probe the addition of low concentrations metformin and curcumin to the culture media, and we observed that both prolonged the lifespan of U. maydis, a result observed for the first time in a phytopathogen fungus. However, higher concentrations of curcumin were toxic for the cells, and interestingly induced the yeast-to-mycelium dimorphic transition. The positive effect of metformin and curcumin appears to be related to an inhibition of the mechanistic Target of Rapamycin (mTOR) pathway, increase expression of autophagy genes and reducing of reactive oxygen species. These data indicate that U. maydis may be a eukaryotic model organism to elucidate the molecular mechanism underlying apoptotic and necrosis pathways, and the lifespan increase caused by metformin and curcumin.
Collapse
Affiliation(s)
- Cinthia V Soberanes-Gutiérrez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México.,Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Claudia León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Emmanuel Cordero-Martínez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| |
Collapse
|
7
|
Wei LJ, Cao X, Liu JJ, Kwak S, Jin YS, Wang W, Hua Q. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of PEX10 and URE2. Appl Environ Microbiol 2021; 87:e0048121. [PMID: 34132586 PMCID: PMC8357297 DOI: 10.1128/aem.00481-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Alao JP, Legon L, Rallis C. Crosstalk between the mTOR and DNA Damage Response Pathways in Fission Yeast. Cells 2021; 10:cells10020305. [PMID: 33540829 PMCID: PMC7913062 DOI: 10.3390/cells10020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cells have developed response systems to constantly monitor environmental changes and accordingly adjust growth, differentiation, and cellular stress programs. The evolutionarily conserved, nutrient-responsive, mechanistic target of rapamycin signaling (mTOR) pathway coordinates basic anabolic and catabolic cellular processes such as gene transcription, protein translation, autophagy, and metabolism, and is directly implicated in cellular and organismal aging as well as age-related diseases. mTOR mediates these processes in response to a broad range of inputs such as oxygen, amino acids, hormones, and energy levels, as well as stresses, including DNA damage. Here, we briefly summarize data relating to the interplays of the mTOR pathway with DNA damage response pathways in fission yeast, a favorite model in cell biology, and how these interactions shape cell decisions, growth, and cell-cycle progression. We, especially, comment on the roles of caffeine-mediated DNA-damage override. Understanding the biology of nutrient response, DNA damage and related pharmacological treatments can lead to the design of interventions towards improved cellular and organismal fitness, health, and survival.
Collapse
Affiliation(s)
- John-Patrick Alao
- ZEAB Therapeutic, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Luc Legon
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Correspondence:
| |
Collapse
|
9
|
Goguet-Rubio P, Amin P, Awal S, Vigneron S, Charrasse S, Mechali F, Labbé JC, Lorca T, Castro A. PP2A-B55 Holoenzyme Regulation and Cancer. Biomolecules 2020; 10:biom10111586. [PMID: 33266510 PMCID: PMC7700614 DOI: 10.3390/biom10111586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.
Collapse
|
10
|
Matsuda S, Kikkawa U, Uda H, Nakashima A. The S. pombe CDK5 ortholog Pef1 regulates sexual differentiation through control of the TORC1 pathway and autophagy. J Cell Sci 2020; 133:jcs247817. [PMID: 32788233 DOI: 10.1242/jcs.247817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
In Schizosaccharomyces pombe, a general strategy for survival in response to environmental changes is sexual differentiation, which is triggered by TORC1 inactivation. However, mechanisms of TORC1 regulation in fission yeast remain poorly understood. In this study, we found that Pef1, which is an ortholog of mammalian CDK5, regulates the initiation of sexual differentiation through positive regulation of TORC1 activity. Conversely, deletion of pef1 leads to activation of autophagy and subsequent excessive TORC1 reactivation during the early phases of the nitrogen starvation response. This excessive TORC1 reactivation results in the silencing of the Ste11-Mei2 pathway and mating defects. Additionally, we found that pef1 genetically interacts with tsc1 and tsc2 for TORC1 regulation, and physically interacts with three cyclins, Clg1, Pas1 and Psl1. The double deletion of clg1 and pas1 promotes activation of autophagy and TORC1 during nitrogen starvation, similar to what is seen in pef1Δ cells. Overall, our work suggests that Pef1-Clg1 and Pef1-Pas1 complexes regulate initiation of sexual differentiation through control of the TSC-TORC1 pathway and autophagy.
Collapse
Affiliation(s)
- Shinya Matsuda
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruka Uda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
11
|
Alao JP, Sunnerhagen P. Caffeine as a tool for investigating the integration of Cdc25 phosphorylation, activity and ubiquitin-dependent degradation in Schizosaccharomyces pombe. Cell Div 2020; 15:10. [PMID: 32612670 PMCID: PMC7322915 DOI: 10.1186/s13008-020-00066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
The evolutionarily conserved Cdc25 phosphatase is an essential protein that removes inhibitory phosphorylation moieties on the mitotic regulator Cdc2. Together with the Wee1 kinase, a negative regulator of Cdc2 activity, Cdc25 is thus a central regulator of cell cycle progression in Schizosaccharomyces pombe. The expression and activity of Cdc25 is dependent on the activity of the Target of Rapamycin Complex 1 (TORC1). TORC1 inhibition leads to the activation of Cdc25 and repression of Wee1, leading to advanced entry into mitosis. Withdrawal of nitrogen leads to rapid Cdc25 degradation via the ubiquitin- dependent degradation pathway by the Pub1 E3- ligase. Caffeine is believed to mediate the override of DNA damage checkpoint signalling, by inhibiting the activity of the ataxia telangiectasia mutated (ATM)/Rad3 homologues. This model remains controversial, as TORC1 appears to be the preferred target of caffeine in vivo. Recent studies suggest that caffeine induces DNA damage checkpoint override by inducing the nuclear accumulation of Cdc25 in S. pombe. Caffeine may thus modulate Cdc25 activity and stability via inhibition of TORC1. A clearer understanding of the mechanisms by which caffeine stabilises Cdc25, may provide novel insights into how TORC1 and DNA damage signalling is integrated.
Collapse
Affiliation(s)
- John P Alao
- School of Health, Sports and Bioscience, University of East London, Stratford Campus, London, E15 4LZ UK.,Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg, SE- 405 30 Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg, SE- 405 30 Sweden
| |
Collapse
|
12
|
Rapamycin induces morphological and physiological changes without increase in lipid content in Ustilago maydis. Arch Microbiol 2020; 202:1211-1221. [PMID: 32088730 DOI: 10.1007/s00203-020-01833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.
Collapse
|
13
|
García-Blanco N, Vázquez-Bolado A, Moreno S. Greatwall-Endosulfine: A Molecular Switch that Regulates PP2A/B55 Protein Phosphatase Activity in Dividing and Quiescent Cells. Int J Mol Sci 2019; 20:ijms20246228. [PMID: 31835586 PMCID: PMC6941129 DOI: 10.3390/ijms20246228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
During the cell cycle, hundreds of proteins become phosphorylated and dephosphorylated, indicating that protein kinases and protein phosphatases play a central role in its regulation. It has been widely recognized that oscillation in cyclin-dependent kinase (CDK) activity promotes DNA replication, during S-phase, and chromosome segregation, during mitosis. Each CDK substrate phosphorylation status is defined by the balance between CDKs and CDK-counteracting phosphatases. In fission yeast and animal cells, PP2A/B55 is the main protein phosphatase that counteracts CDK activity. PP2A/B55 plays a key role in mitotic entry and mitotic exit, and it is regulated by the Greatwall-Endosulfine (ENSA) molecular switch that inactivates PP2A/B55 at the onset of mitosis, allowing maximal CDK activity at metaphase. The Greatwall-ENSA-PP2A/B55 pathway is highly conserved from yeast to animal cells. In yeasts, Greatwall is negatively regulated by nutrients through TORC1 and S6 kinase, and couples cell growth, regulated by TORC1, to cell cycle progression, driven by CDK activity. In animal cells, Greatwall is phosphorylated and activated by Cdk1 at G2/M, generating a bistable molecular switch that results in full activation of Cdk1/CyclinB. Here we review the current knowledge of the Greatwall-ENSA-PP2A/B55 pathway and discuss its role in cell cycle progression and as an integrator of nutritional cues.
Collapse
|
14
|
Sunthonkun P, Palajai R, Somboon P, Suan CL, Ungsurangsri M, Soontorngun N. Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci Rep 2019; 9:18061. [PMID: 31792269 PMCID: PMC6888876 DOI: 10.1038/s41598-019-54448-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/13/2019] [Indexed: 12/22/2022] Open
Abstract
Benefits of whole grains as dietary supplements and active ingredients in health products have been promoted. Despite being neglected as an agricultural byproduct of polished rice, pigmented rice bran has emerged as a promising source of natural anti-aging compounds. Indeed, the extract of red rice bran Hom Dang cultivar contained rich phenolic acids and flavonoids. It displayed high antioxidant activities in vitro and in vivo assays. Using yeast model, extract and bioactive compounds, quercetin and protocatechuic acid found in the rice bran pericarp, effectively reduced levels of intracellular reactive oxygen species (ROS), restored plasma membrane damages and prolonged life-span of pre-treated wild-yeast cells. Importantly, these molecules modulated life span-extension through a mechanism of ROS reduction that resembles to that operated under the highly conserved Tor1- and Sir2-dependent signaling pathways, with the human homologs TORC1 and SIRT1, respectively. The key longevity factors Sch9 and Rim15 kinases, Msn2/4 regulators and a novel transcription factor Asg1, the antioxidant enzymes superoxide dismutases and glutathione peroxidases played important role in mediating longevity. Yeast clearly provides an instrumental platform for rapid screening of compounds with anti-aging efficacies and advances knowledge in the molecular study of ageing.
Collapse
Affiliation(s)
- Pitchapat Sunthonkun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rinsai Palajai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chua Lee Suan
- Metabolites Profiling Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Malyn Ungsurangsri
- Research and Development division, S&J International Enterprises Public Company Limited, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
15
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
16
|
Lim JY, Park HM. The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi. Front Cell Infect Microbiol 2019; 9:213. [PMID: 31275866 PMCID: PMC6593044 DOI: 10.3389/fcimb.2019.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
The morphological plasticity of fungal pathogens has long been implicated in their virulence and is often influenced by extracellular factors. Complex signal transduction cascades are critical for sensing stresses imposed by external cues such as antifungal drugs, and for mediating appropriate cellular responses. Many of these signal transduction cascades are well-conserved and involve in the distinct morphogenetic processes during the life cycle of the pathogenic fungi. The dual-specificity LAMMER kinases are evolutionarily conserved across species ranging from yeasts to mammals and have multiple functions in various physiological processes; however, their functions in fungi are relatively unknown. In this review, we first describe the involvement of LAMMER kinases in cell surface changes, which often accompany alterations in growth pattern and differentiation. Then, we focus on the LAMMER kinase-dependent molecular machinery responsible for the stress responses and cell cycle regulation. Last, we discuss the possible cross-talk between LAMMER kinases and other signaling cascades, which integrates exogenous and host signals together with genetic factors to affect the morphological plasticity and virulence in fungi.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
17
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
18
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
19
|
Marzec K, Burgess A. The Oncogenic Functions of MASTL Kinase. Front Cell Dev Biol 2018; 6:162. [PMID: 30555827 PMCID: PMC6282046 DOI: 10.3389/fcell.2018.00162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
MASTL kinase is a master regulator of mitosis, essential for ensuring that mitotic substrate phosphorylation is correctly maintained. It achieves this through the phosphorylation of alpha-endosulfine and subsequent inhibition of the tumor suppressor PP2A-B55 phosphatase. In recent years MASTL has also emerged as a novel oncogenic kinase that is upregulated in a number of cancer types, correlating with chromosome instability and poor patient survival. While the chromosome instability is likely directly linked to MASTL's control of mitotic phosphorylation, several new studies indicated that MASTL has additional effects outside of mitosis and beyond regulation of PP2A-B55. These include control of normal DNA replication timing, and regulation of AKT/mTOR and Wnt/β-catenin oncogenic kinase signaling. In this review, we will examine the phenotypes and mechanisms for how MASTL, ENSA, and PP2A-B55 deregulation drives tumor progression and metastasis. Finally, we will explore the rationale for the future development of MASTL inhibitors as new cancer therapeutics.
Collapse
Affiliation(s)
- Kamila Marzec
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Andrew Burgess
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Rubio A, García-Blanco N, Vázquez-Bolado A, Belén Suárez M, Moreno S. Nutritional cell cycle reprogramming reveals that inhibition of Cdk1 is required for proper MBF-dependent transcription. J Cell Sci 2018; 131:jcs.218743. [PMID: 30154212 DOI: 10.1242/jcs.218743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
In nature, cells and in particular unicellular microorganisms are exposed to a variety of nutritional environments. Fission yeast cells cultured in nitrogen-rich media grow fast, divide with a large size and show a short G1 and a long G2. However, when cultured in nitrogen-poor media, they exhibit reduced growth rate and cell size and a long G1 and a short G2. In this study, we compared the phenotypes of cells lacking the highly conserved cyclin-dependent kinase (Cdk) inhibitor Rum1 and the anaphase-promoting complex/cyclosome (APC/C) activator Ste9 in nitrogen-rich and nitrogen-poor media. Rum1 and Ste9 are dispensable for cell division in nitrogen-rich medium. However, in nitrogen-poor medium they are essential for generating a proper wave of MluI cell-cycle box binding factor (MBF)-dependent transcription at the end of G1, which is crucial for promoting a successful S phase. Mutants lacking Rum1 and Ste9 showed premature entry into S phase and a reduced wave of MBF-dependent transcription, leading to replication stress, DNA damage and G2 cell cycle arrest. This work demonstrates how reprogramming the cell cycle by changing the nutritional environment may reveal new roles for cell cycle regulators.
Collapse
Affiliation(s)
- Angela Rubio
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - María Belén Suárez
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
21
|
Ewald JC. How yeast coordinates metabolism, growth and division. Curr Opin Microbiol 2018; 45:1-7. [PMID: 29334655 DOI: 10.1016/j.mib.2017.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022]
Abstract
All cells, especially single cell organisms, need to adapt their metabolism, growth and division coordinately to the available nutrients. This coordination is mediated by extensive cross-talk between nutrient signaling, metabolism, growth, and the cell division cycle, which is only gradually being uncovered: Nutrient signaling not only controls entry into the cell cycle at the G1/S transition, but all phases of the cell cycle. Metabolites are even sensed directly by cell cycle regulators to prevent cell cycle progression in absence of sufficient metabolic fluxes. In turn, cell cycle regulators such as the cyclin-dependent kinase directly control metabolic fluxes during cell cycle progression. In this review, I highlight some recent advances in our understanding of how metabolism and the cell division cycle are coordinated in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jennifer C Ewald
- Eberhard Karls Universität Tübingen, Interfaculty Institute of Cell Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| |
Collapse
|