1
|
Lalli G, Sabatucci I, Paderno M, Martinelli F, Signorelli M, Maruccio M, Di Martino G, Fucà G, Lorusso D. Navigating the Landscape of Resistance Mechanisms in Antibody-Drug Conjugates for Cancer Treatment. Target Oncol 2025:10.1007/s11523-025-01140-w. [PMID: 40234302 DOI: 10.1007/s11523-025-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Antibody-drug conjugates (ADCs) are an innovative approach in cancer therapy, combining the specificity of monoclonal antibodies (mAb) with the cytotoxic effect of chemotherapy agents. Despite the remarkable efficacy demonstrated in clinical studies, primary and secondary resistance to ADCs represent a concern and a significant challenge. Known resistance mechanisms mainly involve the targeted tumor antigen; the internalization, trafficking, and cleavage processes; the cytotoxic payload; and the intrinsic tumor cell dynamics of cell death and cell signaling. Key strategies to overcome these resistance mechanisms include the use of antibodies targeting the same antigen but with different payloads, developing dual-payload ADCs that target multiple cellular pathways, switching from non-cleavable to cleavable linkers, and combining ADCs with other therapies such as immune checkpoint inhibitors and antiangiogenic agents. By improving our understanding of what underlies the mechanisms of resistance to ADCs and implementing and studying systems to overcome these mechanisms, as well as using innovative therapeutic combinations, ADCs have the potential to continue to play a fundamental role in the treatment of tumors, especially refractory ones, providing patients with more effective and long-lasting therapeutic options, as well as better outcomes.
Collapse
Affiliation(s)
- Gloria Lalli
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Ilaria Sabatucci
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Mariachiara Paderno
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Fabio Martinelli
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Mauro Signorelli
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Matteo Maruccio
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Giampaolo Di Martino
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy
| | - Giovanni Fucà
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy.
| | - Domenica Lorusso
- Division of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava 31, 20159, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.
| |
Collapse
|
2
|
Xu J, Fang W, Zhou H, Jiang R, Chen Z, Wang X. Application and progress of 3D tumor models in breast cancer. Biotechnol Bioeng 2025; 122:30-43. [PMID: 39402769 DOI: 10.1002/bit.28860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024]
Abstract
Due to its high heterogeneity and significant impact on women's health globally, breast cancer necessitates robust preclinical models to understand tumor biology and guide personalized treatment strategies. Three-dimensional (3D) in vitro tumor models hold immense promise in this regard. These tumor models not only mimic the spatial structure and growth environment of tumors in vivo, but also retain the pathological and genetic characteristics of solid tumors. This fidelity makes them powerful tools for accelerating advancements in fundamental research and translational medicine. The diversity, modularity, and efficacy of 3D tumor models are driving a biotechnological revolution. As these technologies become increasingly sophisticated, 3D tumor models are poised to become powerful weapons in the fight against breast cancer. This article expounds on the progress made in utilizing 3D tumor models for breast cancer research.
Collapse
Affiliation(s)
- Jiaojiao Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wanxia Fang
- The Department of Colorectal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huanhuan Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiyuan Jiang
- The Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhanhong Chen
- The Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaojia Wang
- The Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
3
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Wang Y, Nan Y, Ma C, Lu X, Wang Q, Huang X, Xue W, Fan J, Ju D, Ye D, Zhang X. A potential strategy for bladder cancer treatment: inhibiting autophagy to enhance antitumor effects of Nectin-4-MMAE. Cell Death Dis 2024; 15:293. [PMID: 38664366 PMCID: PMC11045801 DOI: 10.1038/s41419-024-06665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Chunguang Ma
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaolin Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xiting Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, 201203, China.
| |
Collapse
|
5
|
Liang Y, Zhang P, Li F, Lai H, Qi T, Wang Y. Advances in the study of marketed antibody-drug Conjugates (ADCs) for the treatment of breast cancer. Front Pharmacol 2024; 14:1332539. [PMID: 38352694 PMCID: PMC10862125 DOI: 10.3389/fphar.2023.1332539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Breast cancer continues to have a high incidence rate among female malignancies. Despite significant advancements in treatment modalities, the heterogeneous nature of breast cancer and its resistance to various therapeutic approaches pose considerable challenges. Antibody-drug conjugates (ADCs) effectively merge the specificity of antibodies with the cytotoxicity of chemotherapeutic agents, offering a novel strategy for precision treatment of breast cancer. Notably, trastuzumab emtansine (T-DM1) has provided a new therapeutic option for HER2-positive breast cancer patients globally, especially those resistant to conventional treatments. The development of trastuzumab deruxtecan (T-DXd) and sacituzumab govitecan (SG) has further broadened the applicability of ADCs in breast cancer therapy, presenting new hopes for patients with low HER2 expression and triple-negative breast cancer. However, the application of ADCs presents certain challenges. For instance, their treatment may lead to adverse reactions such as interstitial lung disease, thrombocytopenia, and diarrhea. Moreover, prolonged treatment could result in ADCs resistance, complicating the therapeutic process. Economically, the high costs of ADCs might hinder their accessibility in low-income regions. This article reviews the structure, mechanism of action, and clinical trials of commercially available ADCs for breast cancer treatment, with a focus on the clinical trials of the three drugs, aiming to provide insights for clinical applications and future research.
Collapse
Affiliation(s)
- Yan Liang
- Sichuan Cancer Hospital, Cancer Hospital Affiliate University of Electronic Science and Technology, Chengdu, China
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Purong Zhang
- Sichuan Cancer Hospital, Cancer Hospital Affiliate University of Electronic Science and Technology, Chengdu, China
| | - Feng Li
- Sichuan Cancer Hospital, Cancer Hospital Affiliate University of Electronic Science and Technology, Chengdu, China
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Houyun Lai
- Sichuan Cancer Hospital, Cancer Hospital Affiliate University of Electronic Science and Technology, Chengdu, China
- School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Tingting Qi
- Sichuan Cancer Hospital, Cancer Hospital Affiliate University of Electronic Science and Technology, Chengdu, China
| | - Yixin Wang
- Sichuan Cancer Hospital, Cancer Hospital Affiliate University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
6
|
Castro-Guijarro AC, Sanchez AM, Flamini MI. Potential Biomarkers Associated with Prognosis and Trastuzumab Response in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:4374. [PMID: 37686651 PMCID: PMC10486824 DOI: 10.3390/cancers15174374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15-25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as monoclonal antibodies (trastuzumab, Tz), antibody-drug conjugates (ado-trastuzumab emtansine, T-DM1), and pharmacological inhibitors of tyrosine kinase activity (lapatinib, Lp). Although Tz, the standard treatment, has significantly improved the prognosis of patients, resistance still affects a significant population of women and is currently a major challenge in clinical oncology. Therefore, this study aims to identify potential biomarkers to predict disease progression (prognostic markers) and the efficacy of Tz treatment (predictive markers) in patients with HER2+ BC. We hypothesize that proteins involved in cell motility are implicated in Tz-resistance. We aim to identify alterations in Tz-resistant cells to guide more efficient oncologic decisions. By bioinformatics, we selected candidate proteins and determined how their expression, localization, and the process they modulate were affected by anti-HER2 treatments. Next, using HER2+ BC patients' data, we assessed these proteins as prognostic and predictive biomarkers. Finally, using Tz-resistant cells, we evaluated their roles in Tz response. We identified deregulated genes associated with cell motility in Tz/T-DM1-resistant vs. -sensitive cells. We showed that Tz, T-DM1, and Lp decrease cell viability, and their effect is enhanced in combinations. We determined synergism between Tz/T-DM1 and Lp, making possible a dose reduction of each drug to achieve the same therapeutic effect. We found that combinations (Tz/T-DM1 + Lp) efficiently inhibit cell adhesion and migration. Furthermore, we demonstrated the induction of FAK nuclear and cortactin peri-nuclear localization after T-DM1, Lp, and Tz/T-DM1 + Lp treatments. In parallel, we observed that combined treatments downregulate proteins essential for metastatic dissemination, such as SRC, FAK, and paxillin. We found that low vinculin (VCL) and cortactin (CTTN) mRNA expression predicts favorable survival rates and has diagnostic value to discriminate between Tz-sensible and Tz-resistant HER2+ BC patients. Finally, we confirmed that vinculin and cortactin are overexpressed in Tz-resistance cells, SKBR3-RTz. Moreover, we found that Tz plus FAK/paxillin/cortactin-silencing reduced cell adhesion/migration capacity in Tz-sensitive and -resistant cells. In conclusion, we demonstrate that combined therapies are encouraging since low doses of Tz/T-DM1 + Lp inhibit metastatic processes by downregulating critical protein expression and affecting its subcellular localization. We propose that vinculin and cortactin might contribute to Tz-sensibility/resistance in BC cells. Finally, we identify potential prognostic and predictive biomarkers that are promising for personalized BC management that would allow efficient patient selection in order to mitigate resistance and maximize the safety and efficacy of anti-HER2 therapies.
Collapse
Affiliation(s)
- Ana Carla Castro-Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| |
Collapse
|
7
|
Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov 2023; 22:641-661. [PMID: 37308581 DOI: 10.1038/s41573-023-00709-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Antibody-drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic agents, potentially reducing the severity of side effects by preferentially targeting their payload to the tumour site. ADCs are being increasingly used in combination with other agents, including as first-line cancer therapies. As the technology to produce these complex therapeutics has matured, many more ADCs have been approved or are in late-phase clinical trials. The diversification of antigenic targets as well as bioactive payloads is rapidly broadening the scope of tumour indications for ADCs. Moreover, novel vector protein formats as well as warheads targeting the tumour microenvironment are expected to improve the intratumour distribution or activation of ADCs, and consequently their anticancer activity for difficult-to-treat tumour types. However, toxicity remains a key issue in the development of these agents, and better understanding and management of ADC-related toxicities will be essential for further optimization. This Review provides a broad overview of the recent advances and challenges in ADC development for cancer treatment.
Collapse
Affiliation(s)
- Charles Dumontet
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | - Alain Beck
- Institut de Recherche Pierre Fabre, CIPF, Saint-Julien-en-Genevois, France
| |
Collapse
|
8
|
Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15092568. [PMID: 37174034 PMCID: PMC10177527 DOI: 10.3390/cancers15092568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The amplification of epidermal growth factor receptor 2 (HER2) is associated with a poor prognosis and HER2 gene is overexpressed in approximately 15-30% of breast cancers. In HER2-positive breast cancer patients, HER2-targeted therapies improved clinical outcomes and survival rates. However, drug resistance to anti-HER2 drugs is almost unavoidable, leaving some patients with an unmet need for better prognoses. Therefore, exploring strategies to delay or revert drug resistance is urgent. In recent years, new targets and regimens have emerged continuously. This review discusses the fundamental mechanisms of drug resistance in the targeted therapies of HER2-positive breast cancer and summarizes recent research progress in this field, including preclinical and basic research studies.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Yunjin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| |
Collapse
|
9
|
Endo Y, Hickerson BT, Ilyushina NA, Mohan N, Peng H, Takeda K, Donnelly RP, Wu WJ. Identification of a pharmacological approach to reduce ACE2 expression and development of an in vitro COVID-19 viral entry model. J Virus Erad 2022; 8:100307. [PMID: 36514715 PMCID: PMC9733118 DOI: 10.1016/j.jve.2022.100307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Because of rapid emergence and circulation of the SARS-CoV-2 variants, especially Omicron which shows increased transmissibility and resistant to antibodies, there is an urgent need to develop novel therapeutic drugs to treat COVID-19. In this study we developed an in vitro cellular model to explore the regulation of ACE2 expression and its correlation with ACE2-mediated viral entry. We examined ACE2 expression in a variety of human cell lines, some of which are commonly used to study SARS-CoV-2. Using the developed model, we identified a number of inhibitors which reduced ACE2 protein expression. The greatest reduction of ACE2 expression was observed when CK869, an inhibitor of the actin-related protein 2/3 (ARP2/3) complex, was combined with 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), an inhibitor of sodium-hydrogen exchangers (NHEs), after treatment for 24 h. Using pseudotyped lentivirus expressing the SARS-CoV-2 full-length spike protein, we found that ACE2-dependent viral entry was inhibited in CK869 + EIPA-treated Calu-3 and MDA-MB-468 cells. This study provides an in vitro model that can be used for the screening of novel therapeutic candidates that may be warranted for further pre-clinical and clinical studies on COVID-19 countermeasures.
Collapse
Affiliation(s)
- Yukinori Endo
- Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Brady T. Hickerson
- Division of Biotechnology Review and Research 2 (DBRR2), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research 2 (DBRR2), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Nishant Mohan
- Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Hanjing Peng
- Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Raymond P. Donnelly
- Division of Biotechnology Review and Research 2 (DBRR2), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Wen Jin Wu
- Division of Biotechnology Review and Research 1 (DBRR1), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA,Corresponding author
| |
Collapse
|