1
|
Chiloeches A, Fernández-García R, Fernández-García M, Mariano A, Bigioni I, Scotto d'Abusco A, Echeverría C, Muñoz-Bonilla A. PLA and PBAT-Based Electrospun Fibers Functionalized with Antibacterial Bio-Based Polymers. Macromol Biosci 2023; 23:e2200401. [PMID: 36443243 DOI: 10.1002/mabi.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Antimicrobial fibers based on biodegradable polymers, poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT) are prepared by electrospinning. For this purpose, a biodegradable/bio-based polyitaconate containing azoles groups (PTTI) is incorporated at 10 wt.% into the electrospinning formulations. The resulting fibers functionalized with azole moieties are uniform and free of beads. Then, the accessible azole groups are subjected to N-alkylation, treatment that provides cationic azolium groups with antibacterial activity at the surface of fibers. The positive charge density, roughness, and wettability of the cationic fibers are evaluated and compared with flat films. It is confirmed that these parameters exert an important effect on the antimicrobial properties, as well as the length of the alkylating agent and the hydrophobicity of the matrix. The quaternized PLA/PTTI fibers exhibit the highest efficiency against the tested bacteria, yielding a 4-Log reduction against S. aureus and 1.7-Log against MRSA. Then, biocompatibility and bioactivity of the fibers are evaluated in terms of adhesion, morphology and viability of fibroblasts. The results show no cytotoxic effect of the samples, however, a cytostatic effect is appreciated, which is ascribed to the strong electrostatic interactions between the positive charge at the fiber surface and the negative charge of the cell membranes.
Collapse
Affiliation(s)
- A Chiloeches
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), C/ Bravo Murillo, 38, Madrid, 28015, Spain
| | - R Fernández-García
- Hospital Universitario de Móstoles C/ Dr. Luis Montes, s/n, Móstoles, Madrid, 28935, Spain
| | - M Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - I Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - A Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - C Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Chitosan scaffolds with enhanced mechanical strength and elastic response by combination of freeze gelation, photo-crosslinking and freeze-drying. Carbohydr Polym 2021; 267:118156. [PMID: 34119130 DOI: 10.1016/j.carbpol.2021.118156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023]
Abstract
In this study, a new scaffold fabrication method based on the combination of a series of stabilization processes was set up to obtain chitosan scaffolds with improved mechanical properties for regeneration of load-bearing tissues. Specifically, thermally induced phase separation (TIPS) of chitosan solutions was used to obtain an open structure which was then stabilized by freeze-gelation and photo cross-linking. Freeze-gelation combined with freeze-drying permitted to obtain a porous structure with a 95 μm-mean pore size suitable for osteoblast cells' housing. Photo-crosslinking improved by ca. three times the scaffold compressive modulus, passing from 0,8 MPa of the uncrosslinked scaffolds to 2,2 MPa of the crosslinked one. Hydrated crosslinked scaffolds showed a good elastic response, with an 80% elastic recovery for at least 5 consecutive compressive cycles. The herein reported method has the advantage to not require the use of potentially toxic cross-linking agents and may be extended to other soft materials.
Collapse
|
3
|
Scandurra R, Scotto d’Abusco A, Longo G. A Review of the Effect of a Nanostructured Thin Film Formed by Titanium Carbide and Titanium Oxides Clustered around Carbon in Graphitic Form on Osseointegration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1233. [PMID: 32599955 PMCID: PMC7353133 DOI: 10.3390/nano10061233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Improving the biocompatibility of implants is an extremely important step towards improving their quality. In this review, we recount the technological and biological process for coating implants with thin films enriched in titanium carbide (TiC), which provide improved cell growth and osseointegration. At first, we discuss the use of a Pulsed Laser Ablation Deposition, which produced films with a good biocompatibility, cellular stimulation and osseointegration. We then describe how Ion Plating Plasma Assisted technology could be used to produce a nanostructured layer composed by graphitic carbon, whose biocompatibility is enhanced by titanium oxides and titanium carbide. In both cases, the nanostructured coating was compact and strongly bound to the bulk titanium, thus particularly useful to protect implants from the harsh oxidizing environment of biological tissues. The morphology and chemistry of the nanostructured coating were particularly desirable for osteoblasts, resulting in improved proliferation and differentiation. The cellular adhesion to the TiC-coated substrates was much stronger than to uncoated surfaces, and the number of philopodia and lamellipodia developed by the cells grown on the TiC-coated samples was higher. Finally, tests performed on rabbits confirmed in vivo that the osseointegration process of the TiC-coated implants is more efficient than that of uncoated titanium implants.
Collapse
Affiliation(s)
- Roberto Scandurra
- Department of Biochemical Sciences, Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy;
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy;
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche-Istituto di Struttura della Materia, Via del Fosso del Cavaliere, 00133 Roma, Italy;
| |
Collapse
|