1
|
Zhao Y, Zhang M, Bhandari B, Li C. Development of special nutritional balanced food 3D printing products based on the mixing of animals/plants materials: research progress, applications, and trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39895375 DOI: 10.1080/10408398.2025.2457420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Food 3D printing brings food processing technology into the digital age. This is a vast field that can provide entertainment experience, personalized food and specific nutritional needs. However, the limited availability of suitable food raw materials has restricted the extensive use of 3D food printing processing technique. The search for novel nutritious and healthy food materials that meet the demand for 3D food printing processing technology is core of the sustainable development of this emerging technology. The printing mechanism, precise nutrition, future outlooks and challenges of 3D food printing technology application in hybrid plant and animal food materials are also analyzed.The results demonstrate that selecting suitable animal and plant materials and mixing them into 3D food printing ingredients without adding food additives can result in printable inks, which can also improve the nutritive value and eating quality of 3D food printed products. Sustainability of novel food materials such as animal cell culture meat and microbial protein mixed with conventional food materials to realize 3D printed food can be a potential research direction. Some other issues should also be considered in future research, such as evaluation of the nutritional efficacy of the product, product stability, shelf life, production efficiency and convenience of process operation.
Collapse
Affiliation(s)
- Yonggan Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chunli Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Yusof Z, Lim V, Khong NMH, Choo WS, Foo SC. Assessing the impact of temperature, pH, light and chemical oxidation on fucoxanthin colour changes, antioxidant activity and the resulting metabolites. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:93-108. [PMID: 39177277 DOI: 10.1002/jsfa.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The present study evaluated the effects of temperature, pH, light and chemical oxidation on fucoxanthin changes in terms of colour, antioxidant activity and metabolomic profile. Additionally, the correlation between antioxidant activity and identified metabolites was analysed. RESULTS It was found that colour change was significantly reduced at elevated heat (100 °C, *∆E = 0.81 ± 0.05), reduced pH (pH 3, *∆E = 0.59 ± 0.04) and length of light exposure (*∆E = 3.16 ± 0.04). Antioxidant activity decreased under all treatments. Among the temperatures tested, fucoxanthin exhibited the highest activity at 60 °C, ranging from 0.92 to 3.04 mg Trolox equivalents (TE) g-1. Significant activity reductions (P < 0.05) were observed as a result of pH changes in the 2,2-diphenyl-1-picrylhydrazyl and β-carotene bleaching assays. Exposure to light 2: warm white lamp for 120 h significantly reduced antioxidant activity (0.01 to 1.70 mg TE g-1). Chemical oxidation also led to reduced activity, ranging from 0.18 to 0.29 mg TE g-1. Multivariate data analysis revealed distinct profiles for temperature, pH, light and chemical oxidation treatments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics analysis identified 10 metabolites, and significant correlations (P < 0.05) indicate that these metabolites contributed to the samples' antioxidant activities. CONCLUSION In conclusion, fucoxanthin tolerates well at 60 °C, within pH range 3-9, and within 8 h of light exposure, as indicated by its consistent antioxidant activity and minimal colour change. Each treatment resulted in distinct metabolite concentrations, as shown by LC-MS/MS-based metabolomics analysis. Further research into these metabolites could advance the understanding of their roles and aid in optimising processing conditions to favour beneficial metabolites. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuhaili Yusof
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Su Chern Foo
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Aktas DK, Aydin S. Production of new functional coconut milk kefir with blueberry extract and microalgae: the comparison of the prebiotic potentials on lactic acid bacteria of kefir grain and biochemical characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1986-1997. [PMID: 39285997 PMCID: PMC11401817 DOI: 10.1007/s13197-024-05974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Probiotic foods are recognized for their importance on human health. Kefir is a versatile probiotic food that can be made from non-dairy sources for vegan diet. This study evaluated the addition of microalga Haematococcus pluvialis (0.50% w/v) and blueberry Vaccinium myrtillus (0.50% w/v) extracts to compare their influence on the biochemical properties and the bacterial community of coconut milk kefir through Nanopore-based DNA sequencing. Results revealed that the V. myrtillus increased the microbial diversity in coconut milk kefir with more abundant Proteobacteria species such as Lacticaseibacillus paracasei (22%) and Lactococcus lactis (6.3%). Microalga demonstrated the opposite effect on C, making Firmicutes represent the whole of the microbiota. Biochemical analysis revealed increased fat content in the kefir samples, with the C1 registering 1.62% and the 1.07% in C2, in contrast to the control group's 0.87% fat content. The crude protein content exhibited a decrease in both samples compared to the control group (0.00% and 0.88% versus 1.07%). These findings suggest that fortifying vegan kefir with prebiotics has the potential to induce significant alterations in the kefir microbiota. Graphical abstract
Collapse
Affiliation(s)
- Doğan Kürşad Aktas
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
| |
Collapse
|
4
|
Refaey MM, Al-Otibi FO, El-Khateeb AY, Helmy YA, Saber WIA, Zalma SA. Enhanced biochemical, microbial, and ultrastructural attributes of reduced-fat labneh through innovative microalgae integration. Sci Rep 2024; 14:21188. [PMID: 39261488 PMCID: PMC11391007 DOI: 10.1038/s41598-024-71190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Reduced-fat labneh, while offering health benefits, often presents a challenge due to its diminished nutritional profile compared to full-fat varieties. Microalgae, such as Spirulina platensis and Chlorella vulgaris, are increasingly explored for their potential to fortify foods with essential nutrients. This study innovatively investigates the use of these microalgae to enhance the quality of reduced-fat labneh. The effect of incorporating different concentrations of both microalgae was investigated at different concentrations (0.25, 0.5, and 1%) on nutritional profile (including total solids, fat, protein, carbohydrates, essential amino acids, unsaturated fatty acids, pigments, and phenolic compounds), antioxidant activity, texture, sensory attributes, and viability of the starter culture. The findings revealed that 0.25 and 0.5% concentrations of both microalgae positively influenced the sensory characteristics of the labneh and significantly enhanced its nutritional profile. However, a 1% concentration negatively impacted sensory qualities. Chlorella vulgaris enrichment resulted in higher pH values but compromised texture attributes. Importantly, both microalgae varieties enhanced the viability of the starter culture during 21 days of refrigerated storage. The scanning electron microscope images provide visual evidence of the microstructural changes in labneh with varying concentrations of microalgae and over different storage periods. This research establishes the optimal concentrations for individual microalgae enrichment in reduced-fat labneh, offering valuable insights into their potential to improve both nutritional and sensory aspects. However, it's important to mention that while both microalgae have similar effects, they might differ in their specific impacts due to their unique nutritional profiles and physical properties. Therefore, further investigations could explore optimizing a microalgae mixture and its potential application in functional food development.
Collapse
Affiliation(s)
- Mahmoud M Refaey
- Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ayman Y El-Khateeb
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Yosra A Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Samar A Zalma
- Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Balogh-Hartmann F, Páger C, Bufa A, Sipos Z, Dávidovics A, Verzár Z, Marosvölgyi T, Makszin L. Comprehensive Study of Total Nitrogen Content and Microfluidic Profiles in Additive-Enriched Plant-Based Drinks. Foods 2024; 13:2329. [PMID: 39123521 PMCID: PMC11311261 DOI: 10.3390/foods13152329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The growing consumption of plant-based milk substitutes raises important questions about their composition. The various additives used by manufacturers, including those employed as flavor enhancers, protein additives, and stabilizers, may contain both protein and non-protein nitrogen components. In our study, we examined not only popular milk alternatives but also other milk substitutes made from specific plants. We present a reproducible and rapid method for the simultaneous qualitative and quantitative determination of the total nitrogen content in milk alternatives, focusing on applicability. Using the microchip gel electrophoretic method, we determined that the total nitrogen content differed from the protein content indicated on the packaging. Our results, along with statistical evaluations, supported the hypothesis that different brands of products, derived from the same plant source, resulted in different microfluidic profiles, likely due to the presence of additives. As expected, the microfluidic profiles of additive-free products differed from those of fortified products made from the same plant-based milk replacer. Total nitrogen content provides crucial information for individuals with kidney disease, as is essential to reduce the burden on the kidneys to slow deterioration, alleviate symptoms and avoid complications.
Collapse
Affiliation(s)
- Fruzsina Balogh-Hartmann
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (F.B.-H.); (C.P.); (A.B.); (Z.S.); (T.M.)
| | - Csilla Páger
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (F.B.-H.); (C.P.); (A.B.); (Z.S.); (T.M.)
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (F.B.-H.); (C.P.); (A.B.); (Z.S.); (T.M.)
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (F.B.-H.); (C.P.); (A.B.); (Z.S.); (T.M.)
| | - Anna Dávidovics
- Department of Languages for Biomedical Purposes and Communication, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Zsófia Verzár
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (F.B.-H.); (C.P.); (A.B.); (Z.S.); (T.M.)
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary; (F.B.-H.); (C.P.); (A.B.); (Z.S.); (T.M.)
| |
Collapse
|
6
|
Bhatnagar P, Gururani P, Parveen A, Gautam P, Chandra Joshi N, Tomar MS, Nanda M, Vlaskin MS, Kumar V. Algae: A promising and sustainable protein-rich food ingredient for bakery and dairy products. Food Chem 2024; 441:138322. [PMID: 38190793 DOI: 10.1016/j.foodchem.2023.138322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The consumer demand for protein rich foods urges the exploration for novel products of natural origin. Algae can be considered as a gold mine of different bioactive compounds, among which protein is distributed in significant amounts i.e., around 30% and can even reach to 55-60% in some cyanobacteria. Bakery and dairy products are extensively consumed worldwide due to product diversification and innovation. However, incorporation of algae biomass can lead to the development of green colour and fishy flavour that usually is not accepted in such products. Therefore, isolation and application of algae-derived proteins opens a new door for food industry. The present review provides a comprehensive understanding of incorporation of algae as a protein-rich ingredient in bakery and dairy products. The paper provides a deep insight for all the possible recent trends related to production and extraction of algae proteins accompanied by their incorporation in bakery and dairy foods.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Pankaj Gautam
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research & Innovation, Uttaranchal University Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
7
|
Correa ADC, Lopes MS, Perna RF, Silva EK. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym 2024; 323:121396. [PMID: 37940290 DOI: 10.1016/j.carbpol.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Fructooligosaccharides (FOS) and inulin are the most used fructans in food manufacturing, including bakery, dairy, meat products and beverages. In this context, this review investigated the recent findings concerning health claims associated with a diet supplemented with fructans according to human trial results. Fructans have been applied in different food classes due to their proven benefits to human health. Human clinical trials have revealed several effects of fructans supplementation on health such as improved glycemic control, growth of beneficial gut bacteria, weight management, positive influence on immune function, and others. These dietary fibers have a wide range of compounds with different molecular sizes, implying a great variety of technological properties depending on the food application of interest. Inulin has been mainly applied as a fat substitute and prebiotic ingredient. In general, inulin reduces the energy content and improves the structure, viscosity, emulsion, and water retention parameters of food products. Meanwhile, FOS have been more successful when used as a sucrose substitute and prebiotic ingredient. However, overall, FOS and inulin are promising alternatives for the development of structured systems dedicated to increase the functionality of foods and beverages besides reducing fat in bakery, dairy, and meat products.
Collapse
Affiliation(s)
- Aline de Carvalho Correa
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina Savioli Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
9
|
Bošković Cabrol M, Glišić M, Baltić M, Jovanović D, Silađi Č, Simunović S, Tomašević I, Raymundo A. White and honey Chlorella vulgaris: Sustainable ingredients with the potential to improve nutritional value of pork frankfurters without compromising quality. Meat Sci 2023; 198:109123. [PMID: 36702067 DOI: 10.1016/j.meatsci.2023.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
This study aimed to evaluate the effect of the chlorophyll-deficient microalgae mutants, honey (yellow) and white Chlorella vulgaris, (3%) on the nutritional, physicochemical, microbiological, and sensory characteristics of frankfurters. The presence of microalgae resulted in increased PUFA content and higher PUFA/SFA ratio, but lower n-6/n-3 ratio and lipid indices (P < 0.05). C. vulgaris inclusion in frankfurters increased (P < 0.05) Na, K, Ca, P, and Zn and improved the Na/K ratio, but lowered Mn, and in the case of white C. vulgaris, Cu content, compared to the control. The higher protein content decreased water release from emulsions elaborated with microalgae. White C. vulgaris inclusion decreased cohesiveness and springiness of the frankfurters. Due to the presence of pigment, microalgae inclusion led to a decrease in redness and an increase in yellowness of frankfurters. The presence of microalgae resulted in lower (P < 0.05) bacterial counts and did not affect TBARs during storage. The addition of microalgae in frankfurters produced acceptable sensory characteristics but resulted in lower scores compared to reference products.
Collapse
Affiliation(s)
- Marija Bošković Cabrol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Milica Glišić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Baltić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragoljub Jovanović
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Čaba Silađi
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia
| | - Stefan Simunović
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia
| | - Igor Tomašević
- German Institute of Food Technologies (DIL), Quackenbruck, Germany
| | - Anabela Raymundo
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
10
|
Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods 2023; 12:foods12050983. [PMID: 36900500 PMCID: PMC10001325 DOI: 10.3390/foods12050983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Microalgae are aquatic unicellular microorganisms and, although various species are approved for human consumption, Arthrospira and Chlorella are the most widespread. Several nutritional and functional properties have been bestowed to microalgae principal micro- and macro-nutrients, with antioxidant, immunomodulatory and anticancer being the most common. The many references to their potential as a food of the future is mainly ascribed to the high protein and essential amino acid content, but they are also a source of pigments, lipids, sterols, polysaccharides, vitamins, and phenolic compounds with positive effects on human health. Nevertheless, microalgae use is often hindered by unpleasant color and flavor and several strategies have been sought to minimize such challenges. This review provides an overview of the strategies so far proposed and the main nutritional and functional characteristic of microalgae and the foods made thereof. Processing treatments have been used to enrich microalgae-derived substrates in compounds with antioxidant, antimicrobial, and anti-hypertensive properties. Extraction, microencapsulation, enzymatic treatments, and fermentation are the most common, each with their own pros and cons. Yet, for microalgae to be the food of the future, more effort should be put into finding the right pre-treatments that can allow the use of the whole biomass and be cost-effective while bringing about features that go beyond the mere increase of proteins.
Collapse
|
11
|
Pedroni L, Perugino F, Galaverna G, Dall’Asta C, Dellafiora L. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria. Nutrients 2022; 14:nu14214680. [PMID: 36364940 PMCID: PMC9658718 DOI: 10.3390/nu14214680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Bioactive peptides may exert beneficial activities in living organisms such as the regulation of glucose metabolism through the inhibition of alpha amylases. Algae and cyanobacteria are gaining a growing interest for their health-promoting properties, and possible effects on glucose metabolism have been described, although the underlying mechanisms need clarification. This study proposes a computer-driven workflow for a proteome-wide mining of alpha amylase inhibitory peptides from the proteome of Chlorella vulgaris, Auxenochlorella protothecoides and Aphanizomenon flos-aquae. Overall, this work presents an innovative and versatile approach to support the identification of bioactive peptides in annotated proteomes. The study: (i) highlighted the presence of alpha amylase inhibitory peptides within the proteomes under investigation (including ELS, which is among the most potent inhibitory tripeptides identified so far); (ii) mechanistically investigated the possible mechanisms of action; and (iii) prioritized further dedicated investigation on the proteome of C. vulgaris and A. flos-aquae, and on CSSL and PGG sequences.
Collapse
|
12
|
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022; 11:2806. [PMID: 36140934 PMCID: PMC9498144 DOI: 10.3390/foods11182806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a kind of photoautotrophic microorganism, which are small, fast in their growth rate, and widely distributed in seawater and freshwater. They have strong adaptability to diverse environmental conditions and contain various nutrients. Many scholars have suggested that microalgae can be considered as a new food source, which should be developed extensively. More importantly, in addition to containing nutrients, microalgae are able to produce a great number of active compounds such as long-chain unsaturated fatty acids, pigments, alkaloids, astaxanthin, fucoidan, etc. Many of these compounds have been proven to possess very important physiological functions such as anti-oxidation, anti-inflammation, anti-tumor functions, regulation of the metabolism, etc. This article aimed to review the physiological functions and benefits of the main microalgae-derived bioactive molecules with their physiological effects.
Collapse
Affiliation(s)
- Zhou Yu
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| | - Yan Hong
- Pharmacological Research Laboratory, Jiangxi Institution for Drug Control, Nanchang 330006, China
| | - Kun Xie
- Medical College, Nanchang Institution of Technology, Nanchang 330006, China
| | - Qingsheng Fan
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Letras P, Oliveira S, Varela J, Nunes M, Raymundo A. 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Enhancement of Carbon Conversion and Value-Added Compound Production in Heterotrophic Chlorella vulgaris Using Sweet Sorghum Extract. Foods 2022; 11:foods11172579. [PMID: 36076765 PMCID: PMC9455686 DOI: 10.3390/foods11172579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
High-cost carbon sources are not economical or sustainable for the heterotrophic culture of Chlorella vulgaris. In order to reduce the cost, this study used sweet sorghum extract (SE) and its enzymatic hydrolysate (HSE) as alternative carbon sources for the heterotrophic culture of Chlorella vulgaris. Under the premise of the same total carbon concentration, the value-added product production performance of Chlorella vulgaris cultured in HSE (supplemented with nitrogen sources and minerals) was much better than that in the glucose medium. The conversion rate of the total organic carbon and the utilization rate of the total nitrogen were both improved in the HSE system. The biomass production and productivity using HSE reached 2.51 g/L and 0.42 g/L/d, respectively. The production of proteins and lipids using HSE reached 1.17 and 0.35 g/L, respectively, and the production of chlorophyll-a, carotenoid, and lutein using HSE reached 30.42, 10.99, and 0.88 mg/L, respectively. The medium cost using HSE decreased by 69.61% compared to glucose. This study proves the feasibility and practicability of using HSE as a carbon source for the low-cost heterotrophic culture of Chlorella vulgaris.
Collapse
|