1
|
Beheshti-Marnani A, Rohani T, Kermani MA, Mohammadi SZ. A sensitive chalcogenide-based electrochemical sensor for ultra-level detection of Mospilan residues in real samples. Sci Rep 2025; 15:5966. [PMID: 39966467 PMCID: PMC11836054 DOI: 10.1038/s41598-025-89256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Addressed herein, the synthetic bismuthinite and bismuthinite@copper sulphide as two metal chalcogenides have been applied for modifying a glassy carbon electrode(GCE). The as-prepared nanomaterials were characterized using X-ray diffraction (XRD), scanning electron microscopy(SEM) and Energy-dispersive X-ray spectroscopy(EDX). By comparing the results, bismuthinite @copper sulphide hybridized with graphene oxide (GO) modified electrode exhibited superior sensitivity for detection ultra-levels of pesticide Mospilan (acetamiprid) in real samples. The dynamic concentration range of acetamiprid was found to be 80-680nM with a remarkably low detection limit about 4.1nM along with good stability and repeatability. Finally, the fabricated electrochemical sensor, bismuthinite@copper sulphide/GO, was suggested as a suitable alternative to more complex enzyme-based and aptamer-based methods for Mospilan detection.
Collapse
Affiliation(s)
| | - Tahereh Rohani
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran
| | - Mahdokht Arjmand Kermani
- Agricultural Engineering Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| | | |
Collapse
|
2
|
Ni B, Ye J, Xuan Z, Li L, Zhang R, Liu H, Wang S. A pretreatment-free and eco-friendly rapid detection for mycotoxins in edible oils based on magnetic separation technique. Food Chem 2024; 458:140217. [PMID: 38964106 DOI: 10.1016/j.foodchem.2024.140217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Pretreatment steps of current rapid detection methods for mycotoxins in edible oils not only restrict detection efficiency, but also produce organic waste liquid to pollute environment. In this work, a pretreatment-free and eco-friendly rapid detection method for edible oil is established. This proposed method does not require pretreatment operation, and automated quantitative detection could be achieved by directly adding oil samples. According to polarity of target molecules, the content of surfactant in reaction solutions could be adjusted to achieve the quantitative detection of AFB1 in peanut oil and ZEN in corn oil. The recoveries are between 96.5%-110.7% with standard deviation <10.4%, and the limit of detection is 0.17 μg/kg for AFB1 and 4.91 μg/kg for ZEN. This method realizes full automation of the whole chain detection, i.e. sample in-result out, and is suitable for the on-site detection of batches of edible oils samples.
Collapse
Affiliation(s)
- Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Rui Zhang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China..
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| |
Collapse
|
3
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
4
|
Cao C, Guo W. Carbon dots-based fluorescent probe for the detection of imidacloprid residue in leafy vegetables. Food Chem 2024; 435:137578. [PMID: 37769560 DOI: 10.1016/j.foodchem.2023.137578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Consumption of leafy vegetables with excessive imidacloprid (IMI) can cause serious harm to the human body. To achieve rapid IMI detection, a carbon dots (CDs)-based fluorescent (FL) probe was hydrothermally prepared using O-phenylenediamine as the precursor. The morphology, particle size distribution, crystal structure, optics and chemical bond state of the as-prepared CDs were characterized. The mechanism of the CDs in detecting IMI was investigated by Fourier transform infrared spectroscopy, and the CDs' selectivity, stability, sensitivity, and actual sample recovery were tested. The CDs showed good selectivity, stability, and anti-interference ability. Under optimum conditions, there was a strong linear relationship between the FL intensity of the CDs and the IMI concentration in the range of 0.037-0.2 mg/L. The detection limit was 0.00187 mg/kg. The CDs were successfully applied to detect IMI in lettuce, cole, spinach, and pakchoi with spiked recoveries between 81.026% and 106.803% and a relative standard deviation between 0.001 and 0.027%.
Collapse
Affiliation(s)
- Chunhao Cao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Li P, Jin M. Application of Immunoassay Technology in Food Inspection. Foods 2023; 12:2923. [PMID: 37569192 PMCID: PMC10417638 DOI: 10.3390/foods12152923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Food safety is as important as ever, and the safeguards implemented to inspect and reduce pesticides, veterinary drugs, toxins, pathogens, illegal additives, and other deleterious contaminants in our food supply has helped improve human health and increase the length and quality of our lives [...].
Collapse
Affiliation(s)
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
6
|
Petrović S, Arsić B, Zlatanović I, Milićević J, Glišić S, Mitić M, Đurović-Pejčev R, Stojanović G. In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD. Int J Mol Sci 2023; 24:ijms24098003. [PMID: 37175728 PMCID: PMC10179243 DOI: 10.3390/ijms24098003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we considered some pesticides as active substances within formulations for the protection of plant-based food in the Republic of Serbia in silico, because these pesticides have not often been investigated in this way previously, and in an analytical way, because there are not very many available fast, cheap, and easy methods for their determination in real agricultural samples. Seven pesticides were detected in selected agricultural products (tomatoes, cucumbers, peppers, and grapes) using the QuEChERS methodology and HPLC-DAD. Standard curves for the investigated pesticides (chlorantraniliprole, methomyl, metalaxyl, thiacloprid, acetamiprid, emamectin benzoate, and cymoxanil) show good linearity, with R2 values from 0.9785 to 0.9996. The HPLC-DAD method is fast, and these pesticides can be determined in real spiked samples in less than 15 min. We further characterized the pesticides we found in food based on physicochemical properties and molecular descriptors to predict the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the compounds. We summarized the data supporting their effects on humans using various computational tools to determine their potential adverse effects. The results of our prediction study show that all of the selected pesticides considered in this study have good oral bioavailability, and those with high toxicity, therefore, could be harmful to human health. Chlorantraniliprole was shown in a molecular docking study as a good starting point for a new Alzheimer's disease drug candidate.
Collapse
Grants
- 451-03-68/2022-14/200124 (S. Petrović, B. Arsić, I. Zlatanović, M. Mitić, G. Stojanović), 451-03-68/2022-14/200017 (J. Milićević, S. Glišić), 451-03-68/2022-14/200214 (R. Đurović-Pejčev) Ministry of Education, Science and Technological Development of the Republic of Serbia
- 451-03-47/2023-01/200124 (S. Petrović, B. Arsić, I. Zlatanović, M. Mitić, G. Stojanović), 451-03-47/2023-01/200017 (J. Milićević, S. Glišić), 451-03-47/2023-01/200214 (R. Đurović-Pejčev) Ministry of Science, Technological Development and Innovations of the Republic of Serbia
Collapse
Affiliation(s)
- Stefan Petrović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106 Niš, Serbia
| | - Biljana Arsić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106 Niš, Serbia
| | - Ivana Zlatanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106 Niš, Serbia
| | - Jelena Milićević
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, The University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia
| | - Sanja Glišić
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, The University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia
| | - Milan Mitić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106 Niš, Serbia
| | - Rada Đurović-Pejčev
- Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106 Niš, Serbia
| |
Collapse
|
7
|
Zhang J, Ruan H, Wang Y, Wang Y, Ke T, Guo M, Tian J, Huang Y, Luo J, Yang M. Broad-specificity monoclonal antibody against neonicotinoid insecticides via a multi-immunogen strategy and development of a highly sensitive GNP-based multi-residue immunoassay in ginseng and tomato. Food Chem 2023; 420:136115. [PMID: 37062080 DOI: 10.1016/j.foodchem.2023.136115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Neonicotinoid insecticides (NNIs) are extensively used across the agricultural products and foods. In order to meet the rapid detection requirements, a novel broad-specificity monoclonal antibody against NNIs was developed for the first time using a multi-immunogen strategy. The antibody's high affinity and its ability to bind target molecules were verified by ic-ELISA. Furthermore, molecular docking was used to evaluate the pivotal forces affecting binding affinity and to determine binding sites. Subsequently, a highly sensitive gold nanoparticle-based immunochromatographic assay was established for the rapid detection of eight NNIs and the IC50 values were 0.03-1.61 ng/mL. The limits of detection for ginseng and tomato ranged from 0.76 to 30.19 μg/kg and 0.87 to 31.57 μg/kg, respectively. The spiked recovery ranged from 72.04% to 120.74%, and the coefficient of variation were less than 9.0%. This study provides a new direction for the development of multiple NNIs residue immunoassays.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yudan Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|