1
|
Kolosova OY, Vasil'ev VG, Novikov IA, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 67 Properties and Microstructure of Poly(Vinyl Alcohol) Cryogels Formed in the Presence of Phenol or Bis-Phenols Introduced into the Aqueous Polymeric Solutions Prior to Their Freeze-Thaw Processing. Polymers (Basel) 2024; 16:675. [PMID: 38475358 DOI: 10.3390/polym16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) physical cryogels that contained the additives of o-, m-, and p-bis-phenols or phenol were prepared, and their physico-chemical characteristics and macroporous morphology and the solute release dynamics were evaluated. These phenolic additives caused changes in the viscosity of initial PVA solutions before their freeze-thaw processing and facilitated the growth in the rigidity of the resultant cryogels, while their heat endurance decreased. The magnitude of the effects depended on the interposition of phenolic hydroxyls in the molecules of the used additives and was stipulated by their H-bonding with PVA OH-groups. Subsequent rinsing of such "primary" cryogels with pure water led to the lowering of their rigidity. The average size of macropores inside these heterophase gels also depended on the additive type. It was found also that the release of phenolic substances from the additive-containing cryogels occurred via virtually a free diffusion mechanism; therefore, drug delivery systems such as PVA cryogels loaded with either pyrocatechol, resorcinol, hydroquinone, or phenol, upon the in vitro agar diffusion tests, exhibited antibacterial activity typical of these phenols. The promising biomedical potential of the studied nanocomposite gel materials is supposed.
Collapse
Affiliation(s)
- Olga Yu Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Viktor G Vasil'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan A Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street 38, 119991 Moscow, Russia
| | - Elena V Sorokina
- Microbilogy Department, Biology Faculty, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Vishnevetskii DV, Mekhtiev AR, Averkin DV, Polyakova EE. Cysteine-Silver-Polymer Systems for the Preparation of Hydrogels and Films with Potential Applications in Regenerative Medicine. Gels 2023; 9:924. [PMID: 38131910 PMCID: PMC10742544 DOI: 10.3390/gels9120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, the problem concerning the poorer mechanical properties of gels based on low molecular weight gelators (LMWGs)-L-cysteine and silver nitrate-was solved by the addition of various polymers-polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG)-to the initial cysteine-silver sol (CSS). The physicochemical methods of analysis-viscosimetry, UV spectroscopy, DLS, and SEM-identified that cysteine-silver hydrogels (CSG) based on PVA possess the best rheological properties and porous microstructure (the average pore size is 2-10 µm) compared to gels without the polymer or with PVP or PEG. Such gels are able to form cysteine-silver cryogels (CSC) and then porous cysteine-silver films (CSF) with an average pore size of 10-20 µm and good mechanical, swelling, and adhesion to skin characteristics as long as the structure of CSS particles remains stable. In vitro experiments have shown that hydrogels are non-toxic to normal human fibroblast cells. The obtained materials could potentially be applied to regenerative medicine.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| |
Collapse
|
3
|
Mastrangelo R, Resta C, Carretti E, Fratini E, Baglioni P. Sponge-like Cryogels from Liquid-Liquid Phase Separation: Structure, Porosity, and Diffusional Gel Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46428-46439. [PMID: 37515546 PMCID: PMC10561144 DOI: 10.1021/acsami.3c03239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Macroporous gels find application in several scientific fields, ranging from art restoration to wastewater filtration or cell entrapment. In this work, two-component sponge-like cryogels are challenged to assess their cleaning performances and to investigate how pores size and connectivity affect physico-chemical properties. The gels were obtained through a freeze-thaw process, exploiting a spontaneous polymer-polymer phase-separation occurring in the pre-gel solution. During the freezing step, a highly hydrolyzed polyvinyl alcohol (H-PVA) forms the hydrogel walls. The secondary components, namely a partially hydrolyzed polyvinyl alcohol (L-PVA) or polyvinyl pyrrolidone (PVP), act as modular porogens, being partially extracted during gel washing. H-PVA/L-PVA and H-PVA/PVP mixtures were studied by confocal laser scanning microscopy to unveil sols and gels morphology at the micron-scale, while small angle X-ray scattering was used to get insights about characteristic dimensions at the nanoscale. The gelation mechanism was investigated through rheology measurements, and the characteristic exponents were compared to De Gennes' scaling laws gathered from percolation. In the field of art conservation, these sponge-like gels are ideal systems for the cleaning of artistic painted surfaces. Their interconnected pores allow the diffusion of cleaning fluids at the painted interface, facilitating dirt uptake and/or detachment. This study uncovered a direct relationship linking a gel's cleaning performance to its apparent tortuosity. These findings can pave the way to fine-tuning systems with enhanced cleaning abilities, not restricted to the restoration of irreplaceable priceless works of art, but with possible application in diverse research fields.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Claudio Resta
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Emiliano Carretti
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Emiliano Fratini
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
4
|
OKAY O. Cryogelation reactions and cryogels: principles and challenges. Turk J Chem 2023; 47:910-926. [PMID: 38173748 PMCID: PMC10760876 DOI: 10.55730/1300-0527.3586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 06/10/2023] [Indexed: 01/05/2024] Open
Abstract
Cryogelation is a powerful technique for producing macroporous hydrogels called cryogels. Although cryogelation reactions and cryogels were discovered more than 70 years ago, they attracted significant interest only in the last 20 years mainly due to their extraordinary properties compared to the classical hydrogels such as a high toughness, almost complete squeezability, a mechanically stable porous structure with honeycomb arrangement, poroelasticity, and fast responsivity against external stimuli. In this mini review, general properties of cryogelation systems including the cryoconcentration phenomenon responsible for the unique properties of the cryogels are discussed. The squeezability and poroelasticity of cryogels comparable to those seen with articular cartilage are also discussed. Cryogelation reactions conducted within the pores of preformed cryogels and some novel cryogels with attractive properties are then discussed in the last section.
Collapse
Affiliation(s)
- Oğuz OKAY
- Department of Chemistry, Istanbul Technical University, İstanbul,
Turkiye
| |
Collapse
|
5
|
Ghiorghita CA, Lazar MM, Platon IV, Humelnicu D, Doroftei F, Dinu MV. Feather-weight cryostructured thiourea-chitosan aerogels for highly efficient removal of heavy metal ions and bacterial pathogens. Int J Biol Macromol 2023; 235:123910. [PMID: 36870629 DOI: 10.1016/j.ijbiomac.2023.123910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Designing of economically feasible and recyclable polysaccharide-based materials with thiourea functional groups for removal of specific metal ions such as Ag(I), Au(I), Pb(II) or Hg(II) remains a major challenge for environmental applications. Here, we introduce ultra-lightweight thiourea-chitosan (CSTU) aerogels engineered by combining successive freeze-thawing cycles with covalent formaldehyde-mediated cross-linking and lyophilization. All aerogels exhibited outstanding low densities (0.0021-0.0103 g/cm3) and remarkable high specific surface areas (416.64-447.26 m2/g), outperforming the common polysaccharide-based aerogels. Benefitting from their superior structural features (honeycomb interconnected pores and high porosity), CSTU aerogels demonstrate fast sorption rates and excellent performance in sorption of heavy metal ions from highly-concentrated single or binary-component mixtures (1.11 mmol Ag (I)/g and 0.48 mmol Pb(II)/g). A remarkable recycling stability was observed after five sorption-desorption-regeneration cycles when the removal efficiency was up to 80 %. These results support the high potential of CSTU aerogels in the treatment of metal-containing wastewater. Moreover, the Ag(I)-loaded CSTU aerogels exhibited excellent antimicrobial properties against Escherichia coli and Staphylococcus aureus bacterial strains, the killing rate being around 100 %. This data points towards the potential application of developed aerogels in circular economy, by employing the spent Ag(I)-loaded aerogels in the biological decontamination of waters.
Collapse
Affiliation(s)
- Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| | - Maria Marinela Lazar
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Ioana-Victoria Platon
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, Carol I Blvd. 11, 700506, Iasi, Romania
| | - Florica Doroftei
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| |
Collapse
|
6
|
Platon IV, Ghiorghita CA, Lazar MM, Raschip IE, Dinu MV. Chitosan Sponges with Instantaneous Shape Recovery and Multistrain Antibacterial Activity for Controlled Release of Plant-Derived Polyphenols. Int J Mol Sci 2023; 24:4452. [PMID: 36901883 PMCID: PMC10002852 DOI: 10.3390/ijms24054452] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Biomass-derived materials with multiple features are seldom reported so far. Herein, new chitosan (CS) sponges with complementary functions for point-of-use healthcare applications were prepared by glutaraldehyde (GA) cross-linking and tested for antibacterial activity, antioxidant properties, and controlled delivery of plant-derived polyphenols. Their structural, morphological, and mechanical properties were thoroughly assessed by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and uniaxial compression measurements, respectively. The main features of sponges were modulated by varying the CS concentration, cross-linking ratio, and gelation conditions (either cryogelation or room-temperature gelation). They exhibited complete water-triggered shape recovery after compression, remarkable antibacterial properties against Gram-positive (Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes)) and Gram-negative (Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium)) strains, as well as good radical scavenging activity. The release profile of a plant-derived polyphenol, namely curcumin (CCM), was investigated at 37 °C in simulated gastrointestinal media. It was found that CCM release was dependent on the composition and the preparation strategy of sponges. By linearly fitting the CCM kinetic release data from the CS sponges with the Korsmeyer-Peppas kinetic models, a pseudo-Fickian diffusion release mechanism was predicted.
Collapse
Affiliation(s)
| | | | | | | | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
7
|
Hellebois T, Canuel R, Addiego F, Audinot JN, Gaiani C, Shaplov AS, Soukoulis C. Milk protein-based cryogel monoliths as novel encapsulants of probiotic bacteria. Part I: Microstructural, physicochemical, and mechanical characterisation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
8
|
Kolosova OY, Shaikhaliev AI, Krasnov MS, Bondar IM, Sidorskii EV, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 64. Preparation and Properties of Poly(vinyl alcohol)-Based Cryogels Loaded with Antimicrobial Drugs and Assessment of the Potential of Such Gel Materials to Perform as Gel Implants for the Treatment of Infected Wounds. Gels 2023; 9:gels9020113. [PMID: 36826283 PMCID: PMC9956285 DOI: 10.3390/gels9020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Physical macroporous poly(vinyl alcohol)-based cryogels formed by the freeze-thaw technique without the use of any foreign cross-linkers are of significant interests for biomedical applications. In the present study, such gel materials loaded with the antimicrobial substances were prepared and their physicochemical properties were evaluated followed by an assessment of their potential to serve as drug carriers that can be used as implants for the treatment of infected wounds. The antibiotic Ceftriaxone and the antimycotic Fluconazole were used as antimicrobial agents. It was shown that the Ceftriaxone additives caused the up-swelling effects with respect to the cryogel matrix and some decrease in its heat endurance but did not result in a substantial change in the gel strength. With that, the drug release from the cryogel vehicle occurred without any diffusion restrictions, which was demonstrated by both the spectrophotometric recording and the microbiological agar diffusion technique. In turn, the in vivo biotesting of such drug-loaded cryogels also showed that these materials were able to function as rather efficient antimicrobial implants injected in the artificially infected model wounds of laboratory rabbits. These results confirmed the promising biomedical potential of similar implants.
Collapse
Affiliation(s)
- Olga Yu. Kolosova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Astemir I. Shaikhaliev
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Mikhail S. Krasnov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan M. Bondar
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Egor V. Sidorskii
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Elena V. Sorokina
- Microbiology Department, Biology Faculty, M.V.Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I. Lozinsky
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-499-135-6492
| |
Collapse
|
9
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Cryostructuring of Polymeric Systems: 63. † Synthesis of Two Chemically Tanned Gelatin-Based Cryostructurates and Evaluation of Their Potential as Scaffolds for Culturing of Mammalian Cells. Gels 2022; 8:gels8110695. [DOI: 10.3390/gels8110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Various gelatin-containing gel materials are used as scaffolds for animal and human cell culturing within the fields of cell technologies and tissue engineering. Cryostructuring is a promising technique for the preparation of efficient macroporous scaffolds in biomedical applications. In the current study, two new gelatin-based cryostructurates were synthesized, their physicochemical properties and microstructure were evaluated, and their ability to serve as biocompatible scaffolds for mammalian cells culturing was tested. The preparation procedure included the dissolution of Type A gelatin in water, the addition of urea to inhibit self-gelation, the freezing of such a solution, ice sublimation in vacuo, and urea extraction with ethanol from the freeze-dried matter followed by its cross-linking in an ethanol medium with either carbodiimide or glyoxal. It was shown that in the former case, a denser cross-linked polymer phase was formed, while in the latter case, the macropores in the resultant biopolymer material were wider. The subsequent biotesting of these scaffolds demonstrated their biocompatibility for human mesenchymal stromal cells and HepG2 cells during subcutaneous implantation in rats. Albumin secretion and urea synthesis by HepG2 cells confirmed the possibility of using gelatin cryostructurates for liver tissue engineering.
Collapse
|
11
|
Vernaya OI, Ryabev AN, Shabatina TI, Karlova DL, Shabatin AV, Bulatnikova LN, Semenov AM, Melnikov MY, Lozinsky VI. Cryostructuring of Polymeric Systems: 62 Preparation and Characterization of Alginate/Chondroitin Sulfate Cryostructurates Loaded with Antimicrobial Substances. Polymers (Basel) 2022; 14:polym14163271. [PMID: 36015528 PMCID: PMC9414213 DOI: 10.3390/polym14163271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted drug release is a significant research focus in the development of drug delivery systems and involves a biocompatible polymeric carrier and certain medicines. Cryostructuring is a suitable approach for the preparation of efficient macroporous carriers for such drug delivery systems. In the current study, the cryogenically structured carriers based on alginate/chondroitin sulfate mixtures were prepared and their physicochemical properties and their ability to absorb/release the bactericides were evaluated. The swelling parameters of the polysaccharide matrix, the amount of the tightly bound water in the polymer and the sulfur content were measured. In addition, FTIR and UV spectroscopy, optical and scanning microscopy, as well as a standard disk diffusion method for determining antibacterial activity were used. It was shown that alginate/chondroitin sulfate concentration and their ratios were significant factors influencing the swelling properties and the porosity of the resultant cryostructurates. It was demonstrated that the presence of chondroitin sulfate in the composition of a polymeric matrix slowed down the release of the aminoglycoside antibiotic gentamicin. In the case of the NH2-free bactericide, dioxidine, the release was almost independent of the presence of chondroitin sulfate. This trend was also registered for the antibacterial activity tests against the Escherichia coli bacteria, when examining the drug-loaded biopolymeric carriers.
Collapse
Affiliation(s)
- Olga I. Vernaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey N. Ryabev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Tatyana I. Shabatina
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- N. E. Bauman Moscow State Technical University, 2-nd Baumanskaya 5, 105005 Moscow, Russia
| | - Daria L. Karlova
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey V. Shabatin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Ave. 31, Bld. 4, 119071 Moscow, Russia
| | - Lyudmila N. Bulatnikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Alexander M. Semenov
- Biology Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail Ya. Melnikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I. Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-6492
| |
Collapse
|
12
|
Hellebois T, Gaiani C, Cambier S, Noo A, Soukoulis C. Exploration of the co-structuring and stabilising role of flaxseed gum in whey protein isolate based cryo-hydrogels. Carbohydr Polym 2022; 289:119424. [DOI: 10.1016/j.carbpol.2022.119424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022]
|
13
|
“Unity and Struggle of Opposites” as a Basis for the Functioning of Synthetic Bacterial Immobilized Consortium That Continuously Degrades Organophosphorus Pesticides. Microorganisms 2022; 10:microorganisms10071394. [PMID: 35889114 PMCID: PMC9317566 DOI: 10.3390/microorganisms10071394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/26/2022] Open
Abstract
This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera Rhodococcus and Pseudomonas, the required combination of two cultures (P. esterophilus and R. ruber) was found. A further change in the ratio between the biomass of the cells inside the granules of IMAC, increasing the packing density of cells inside the same granules and decreasing the size of the granules with IMAC, gave a 225% improvement in the degradation activity of the cell combination. The increase in the velocity and the OPP degradation degree was 4.5 and 16 times greater than the individual P. esterophilus and R. ruber cells, respectively. Multiple uses of the obtained IMAC were demonstrated. The increase in IMAC lactonase activity confirmed the role of the cell quorum in the action efficiency of the synthetic biosystem. The co-inclusion of natural strains in a carrier during immobilization strengthened the IMAC activities without the genetic enhancement of the cells.
Collapse
|
14
|
Michurov DA, Makhina TK, Siracusa V, Bonartsev AP, Lozinsky VI, Iordanskii AL. Cryo-Structuring of Polymeric Systems. Poly(Vinyl Alcohol)-Based Cryogels Loaded with the Poly(3-hydroxybutyrate) Microbeads and the Evaluation of Such Composites as the Delivery Vehicles for Simvastatin. Polymers (Basel) 2022; 14:2196. [PMID: 35683869 PMCID: PMC9182817 DOI: 10.3390/polym14112196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Highly porous composite poly(vinyl alcohol) (PVA) cryogels loaded with the poly(3-hydroxybutyrate) (PHB) microbeads containing the drug, simvastatin (SVN), were prepared via cryogenic processing (freezing-storing frozen-defrosting) of the beads' suspensions in aqueous PVA solution. The rigidity of the resultant composite cryogels increased with increasing the filler content. Optical microscopy of the thin section of such gel matrices revealed macro-porous morphology of both continuous (PVA cryogels) and discrete (PHB-microbeads) phases. Kinetic studies of the SVN release from the drug-loaded microbeads, the non-filled PVA cryogel and the composite material showed that the cryogel-based composite system could potentially serve as a candidate for the long-term therapeutic system for controlled drug delivery. Such PHB-microbeads-containing PVA-cryogel-based composite drug delivery carriers were unknown earlier; their preparation and studies have been performed for the first time.
Collapse
Affiliation(s)
- Dmitrii A. Michurov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2 Leninskiy Ave., 119071 Moscow, Russia;
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Alexey L. Iordanskii
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street, 4, 119991 Moscow, Russia;
| |
Collapse
|
15
|
Dragan ES, Dinu MV, Ghiorghita CA. Chitosan-Based Polyelectrolyte Complex Cryogels with Elasticity, Toughness and Delivery of Curcumin Engineered by Polyions Pair and Cryostructuration Steps. Gels 2022; 8:gels8040240. [PMID: 35448141 PMCID: PMC9024878 DOI: 10.3390/gels8040240] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022] Open
Abstract
Chitosan (CS)-based drug delivery systems (DDSs) are often stabilized by chemical cross-linking. A much more friendly approach to deliver drugs in a controlled manner is represented by polyelectrolyte complexes (PECs) physically stabilized by spontaneous interactions between CS and natural or synthetic biocompatible polyanions. PECs with tunable structures, morphologies, and mechanical properties were fabricated in this paper by an innovative and sustainable strategy. Carboxymethyl cellulose (CMC) or poly(2-acrylamido-2-methylpropanesulfonate sodium salt) were used as aqueous solutions, while CS microparticles were evenly dispersed in the polyanion solution, at pH 6.5, where CS was not soluble. Cryostructuration of the dispersion in two steps (5 min at −196 °C, and 24 h at −18 °C), and freeze-drying at −55 °C, 48 h, conducted to pre-PEC cryogels. Next step was rearrangement of complementary polyions and the complex formation inside the pore walls of cryogels by exposure of the pre-PECs at a source of H+. PEC cryogels with impressive elasticity and toughness were engineered in this study by multiple-cryostructuration steps using CMC as polyanion with a molar mass of 250 kDa and an optimum concentration of polyanion and polycation. The performances of PEC cryogels in sustained delivery of anti-inflammatory drugs such as curcumin were demonstrated.
Collapse
|
16
|
Hellebois T, Gaiani C, Soukoulis C. Freeze − thaw induced structuration of whey protein − alfalfa (Medicago sativa L.) galactomannan binary systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Dragan ES, Dinu MV, Ghiorghita CA, Lazar MM, Doroftei F. Preparation and Characterization of Semi-IPN Cryogels Based on Polyacrylamide and Poly( N, N-dimethylaminoethyl methacrylate); Functionalization of Carrier with Monochlorotriazinyl-β-cyclodextrin and Release Kinetics of Curcumin. Molecules 2021; 26:molecules26226975. [PMID: 34834067 PMCID: PMC8622513 DOI: 10.3390/molecules26226975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Curcumin (CCM) is a natural hydrophobic polyphenol known for its numerous applications in the food industry as a colorant or jelly stabilizer, and in the pharmaceutical industry due to its anti-inflammatory, antibacterial, antioxidant, anti-cancer, and anti-Alzheimer properties. However, the large application of CCM is limited by its poor solubility in water and low stability. To enhance the bioavailability of CCM, and to protect it against the external degradation agents, a novel strategy, which consists in the preparation of semi-interpenetrating polymer networks, (s-IPNs) based on poly(N,N-dimethylaminoethyl methacrylate) entrapped in poly(acrylamide) networks, by a cryogelation technique, was developed in this work. All s-IPN cryogels were characterized by SEM, EDX, FTIR, and swelling at equilibrium as a function of pH. Functionalization of semi-IPN cryogel with monochlorotriazinyl-β-cyclodextrin (MCT-β-CD) led to IPN cryogel. The release profile of CCM from the composite cryogels was investigated at 37 °C, in pH 3. It was found that the cumulative release increased with the increase of the carrier hydrophobicity, as a result of increasing the cross-linking degree, the content and the molar mass of PDMAEMA. Fitting Higuchi, Korsmeyer–Peppas, and first order kinetic models on the CCM release profiles indicated the diffusion as the main driving force of drug release from the composite cryogels.
Collapse
|
18
|
Podorozhko EA, Buzin MI, Golubev EK, Shcherbina MA, Lozinsky VI. A Study of Cryostructuring of Polymer Systems. 59. Effect of Cryogenic Treatment of Preliminarily Deformed Poly(vinyl alcohol) Cryogels on Their Physicochemical Properties. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Okten Besli NS, Orakdogen N. Exploring the role of Muscovite in poly(alkyl methacrylate)-based ternary nanocomposite cryogels with selective functional groups: formation via cryogelling with the aid of inorganic clay. SOFT MATTER 2021; 17:9371-9386. [PMID: 34605525 DOI: 10.1039/d1sm00950h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Easy fabrication of inorganic clay muscovite (MUS) embedded poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate) (PADH) nanocomposite cryogels with dual temperature/pH dependent catalytic potential was reported. Nanocomposite cryogels were fabricated by a method involving cryogelation and free radical crosslinking of aqueous systems containing MUS ranging from 0% to 1.50% (w/v). The changes in the properties of polybasic PADH networks were investigated to explain how the network parameters and gel properties were affected by the addition of clay, with the formation of a single terpolymer-MUS structure. The potential of the addition of different amounts of MUS to strengthen the prepared terpolymer matrix was investigated by uniaxial compression tests. By lowering the polymerization temperature or increasing the MUS content, the PADH/MUS nanocomposite cryogels became more elastic and compressible with stronger entanglement of terpolymer chains between the clay layers. With the addition of 1.50% (w/v) MUS, the swelling capacity was reduced by 50%, resulting in a two-fold increase in compression elasticity. The nanocomposite gels showed a strong pH-dependence, and when the pH of the swelling medium decreased from 9.8 to 2.1, there was a significant increase in the degree of swelling with increasing protonation of tertiary amine groups. Under an acidic environment, the swelling capacity of the nanocomposite gel containing 1.10% (w/v) MUS increased by 49.5%. In temperature dependent swelling between 15 and 75 °C, all ternary PADH/MUS-Ngels showed a tendency to swell at low and high swelling temperatures, by the predominance of DEAEM units at low temperatures and HEMA monomers at high temperatures, respectively. As the temperature was increased to 55 °C, the swelling decreased and reached a minimum, and then the nanocomposite gels tended to swell again. The obtained results provide an insight into the effect of MUS addition on the properties of poly(alkyl methacrylate)-based ternary nanocomposite gels and demonstrate a simple and efficient way to produce multiple response systems with enhanced elasticity.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, 34469, Istanbul, Maslak, Turkey.
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, 34469, Istanbul, Maslak, Turkey.
| |
Collapse
|
20
|
Bozova N, Petrov PD. Highly Elastic Super-Macroporous Cryogels Fabricated by Thermally Induced Crosslinking of 2-Hydroxyethylcellulose with Citric Acid in Solid State. Molecules 2021; 26:molecules26216370. [PMID: 34770779 PMCID: PMC8588112 DOI: 10.3390/molecules26216370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Biopolymer materials have been considered a “green” alternative to petroleum-based polymeric materials. Biopolymers cannot completely replace synthetic polymers, but their application should be extended as much as possible, exploiting the benefits of their low toxicity and biodegradability. This contribution describes a novel strategy for the synthesis of super-macroporous 2-hydroxyethylcellulose (HEC) cryogels. The method involves cryogenic treatment of an aqueous solution of HEC and citric acid (CA), freeze drying, and thermally induced crosslinking of HEC macrochains by CA in a solid state. The effect of reaction temperature (70–180 °C) and CA concentration (5–20 mass % to HEC) on the reaction efficacy and physico-mechanical properties of materials was investigated. Highly elastic cryogels were fabricated, with crosslinking carried out at ≥100 °C. The storage modulus of the newly obtained HEC cryogels was ca. 20 times higher than the modulus of pure HEC cryogels prepared by photochemical crosslinking. HEC cryogels possess an open porous structure, as confirmed by scanning electron microscopy (SEM), and uptake a relatively large amount of water. The swelling degree varied between 17 and 40, depending on the experimental conditions. The degradability of HEC cryogels was demonstrated by acid hydrolysis experiments.
Collapse
|
21
|
Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Specialists in several branches of life sciences are trying to solve, piece by piece, the immensely complex puzzle of the origin of life. Some parts of the puzzle seem to appear with a rather high degree of clarity, while others remain totally obscure. We cannot be sure that life emerged only on our Earth, but we believe that the presence of large amounts of water in its liquid state is absolutely essential for the emergence and evolution of living matter. We can also assume that the latter exploits everywhere the same light elements, mainly C, H, O, N, S, and P, and somehow manipulates the same simple monomeric and polymeric organic compounds, such as alpha-amino acids, carbohydrates, nucleic bases, and surface-active carboxylic acids. The author contributes to the field by stating that all fundamental particles of our matter are “homochiral” and predominantly produce in an absolute asymmetric synthesis amino acids of L-configuration and carbohydrates of D-series. Another important point is that free atmospheric oxygen mainly stems from the photolysis of water molecules by cosmic irradiation and is not necessarily bound to living organisms on the planet.
Collapse
|
22
|
Kolosova OY, Karelina PA, Vasil'ev VG, Grinberg VY, Kurochkin II, Kurochkin IN, Lozinsky VI. Cryostructuring of polymeric systems. 58. Influence of the H2N-(CH2) -COOH–type amino acid additives on formation, properties, microstructure and drug release behaviour of poly(vinyl alcohol) cryogels. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Rogulska OY, Trufanova NA, Petrenko YA, Repin NV, Grischuk VP, Ashukina NO, Bondarenko SY, Ivanov GV, Podorozhko EA, Lozinsky VI, Petrenko AY. Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels. J Biomed Mater Res B Appl Biomater 2021; 110:489-499. [PMID: 34387944 DOI: 10.1002/jbm.b.34927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering strategy involves the 3D scaffolds and appropriate cell types promoting the replacement of the damaged area. In this work, we aimed to develop a fast and reliable clinically relevant protocol for engineering viable bone grafts, using cryopreserved adipose tissue-derived mesenchymal stromal cells (MSCs) and composite 3D collagen-nano-hydroxyapatite (nanoHA) scaffolds. Xeno- and DMSO-free cryopreserved MSCs were perfusion-seeded into the biomimetic collagen/nanoHA scaffolds manufactured by cryotropic gelation and their osteoregenerative potential was assessed in vitro and in vivo. Cryopreserved MSCs retained the ability to homogenously repopulate the whole volume of the scaffolds during 7 days of post-thaw culture. Moreover, the scaffold provided a suitable microenvironment for induced osteogenic differentiation of cells, confirmed by alkaline phosphatase activity and mineralization. Implantation of collagen-nanoHA cryogels with cryopreserved MSCs accelerated woven bone tissue formation, maturation of bone trabeculae, and vascularization of femur defects in immunosuppressed rats compared to cell-free collagen-nanoHA scaffolds. The established combination of xeno-free cell culture and cryopreservation techniques together with an appropriate scaffold design and cell repopulation approach accelerated the generation of viable bone grafts.
Collapse
Affiliation(s)
- Olena Y Rogulska
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.,Biochemistry department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Nataliya A Trufanova
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Yuriy A Petrenko
- Neuroregeneration department, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nikolay V Repin
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Victor P Grischuk
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya O Ashukina
- Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - Stanislav Y Bondarenko
- Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - Gennadiy V Ivanov
- Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - Elena A Podorozhko
- Laboratory for Cryochemistry of BioPolymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Lozinsky
- Laboratory for Cryochemistry of BioPolymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander Y Petrenko
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.,Biochemistry department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
24
|
He Y, Wang C, Wang C, Xiao Y, Lin W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers (Basel) 2021; 13:2299. [PMID: 34301056 PMCID: PMC8309424 DOI: 10.3390/polym13142299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Decades of research into cryogels have resulted in the development of many types of cryogels for various applications. Collagen and gelatin possess nontoxicity, intrinsic gel-forming ability and physicochemical properties, and excellent biocompatibility and biodegradability, making them very desirable candidates for the fabrication of cryogels. Collagen-based cryogels (CBCs) and gelatin-based cryogels (GBCs) have been successfully applied as three-dimensional substrates for cell culture and have shown promise for biomedical use. A key point in the development of CBCs and GBCs is the quantitative and precise characterization of their properties and their correlation with preparation process and parameters, enabling these cryogels to be tuned to match engineering requirements. Great efforts have been devoted to fabricating these types of cryogels and exploring their potential biomedical application. However, to the best of our knowledge, no comprehensive overviews focused on CBCs and GBCs have been reported currently. In this review, we attempt to provide insight into the recent advances on such kinds of cryogels, including their fabrication methods and structural properties, as well as potential biomedical applications.
Collapse
Affiliation(s)
- Yujing He
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Chunhua Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Chenzhi Wang
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Yuanhang Xiao
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
| | - Wei Lin
- Department of Biomass and Leather Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; (Y.H.); (C.W.); (Y.X.)
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
26
|
Dinu MV, Gradinaru AC, Lazar MM, Dinu IA, Raschip IE, Ciocarlan N, Aprotosoaie AC. Physically cross-linked chitosan/dextrin cryogels entrapping Thymus vulgaris essential oil with enhanced mechanical, antioxidant and antifungal properties. Int J Biol Macromol 2021; 184:898-908. [PMID: 34157333 DOI: 10.1016/j.ijbiomac.2021.06.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Herein, we entrapped Thymus vulgaris essential oil (EO) within the physically cross-linked sponge-like architecture of cryogels by ice template-assisted freeze-drying. Their 3D cryogenically-structured network was built through hydrogen bonding formed by blending two naturally-derived polysaccharides, chitosan and dextrin. The embedment of EOs within the cryogel matrix generates porous films with an increased elasticity that allows their fast shape recovery after full compression. Thus, the swollen EOs-loaded cryogel films exhibited an elastic modulus of 3.00 MPa, which is more than 40 times higher than that of polysaccharide films without EOs (an elastic modulus of only 0.07 MPa). In addition, the encapsulation of bioactive compounds endows the bio-based films with both antioxidant and antifungal properties, showing a radical scavenging activity of 65% and a zone inhibition diameter of 40 mm for Candida parapsilosis fungi. Our results recommend the entrapment of EOs into bio-based cryogel carriers as a straightforward approach to provide 'green' polysaccharide-based films having both improved physicochemical properties and remarkable antifungal activity.
Collapse
Affiliation(s)
- Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania.
| | - Adina Catinca Gradinaru
- "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Ionel Adrian Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania; University of Basel, Department of Chemistry, BioPark Rosental (BPR) 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Irina Elena Raschip
- "Petru Poni" Institute of Macromolecular Chemistry, Department of Functional Polymers, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Nina Ciocarlan
- Botanical Garden, Academy of Sciences of Moldova, Padurii Street 18, 2002, Chisinau, Republic of Moldova
| | - Ana Clara Aprotosoaie
- "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| |
Collapse
|
27
|
Okten Besli NS, Orakdogen N. One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation. Gels 2021; 7:gels7010016. [PMID: 33562842 PMCID: PMC7931030 DOI: 10.3390/gels7010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/21/2023] Open
Abstract
A convenient method for the preparation of polybasic ternary hybrid cryogels consisting of Halloysite nanotubes (HNTs) and tertiary amine functional groups by freezing-induced gelation is proposed. Ternary hybrid gels were produced via one-shot radical terpolymerization of 2-hydroxyethyl methacrylate (HEMA), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), and DEAEMA in the presence of HNTs. The equilibrium swelling in various swelling media and the mechanical properties of the produced ternary hybrid gels were analyzed to investigate their network structure and determine their final performance. The swelling ratio of HNT-free gels was significantly higher than the ternary hybrid gels composed of high amount of HNTs. The addition of HNTs to terpolymer network did not suppress pH- and temperature-sensitive behavior. While DEAEMA groups were effective for pH-sensitive swelling, it was determined that both HEMA and DEAEMA groups were effective in temperature-sensitive swelling. Ternary hybrid gels simultaneously demonstrated both negative and positive temperature-responsive swelling behavior. The swelling ratio changed considerably according to swelling temperature. Both DEAEMA and HEMA monomers in terpolymer structure were dominant in temperature-sensitive swelling. Mechanical tests in compression of both as-prepared and swollen-state demonstrated that strength and modulus of hybrid cryogels significantly increased with addition of HNTs without significant loss of mechanical strength. Ultimately, the results of the current system can benefit characterization with analysis tools for the application of innovative materials.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Department of Civil Engineering, Istanbul Kultur University, Bakırkoy, 34158 Istanbul, Turkey;
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-285-3305
| |
Collapse
|
28
|
An LY, Dai Z, Di B, Xu LL. Advances in Cryochemistry: Mechanisms, Reactions and Applications. Molecules 2021; 26:750. [PMID: 33535547 PMCID: PMC7867104 DOI: 10.3390/molecules26030750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
It is counterintuitive that chemical reactions can be accelerated by freezing, but this amazing phenomenon was discovered as early as the 1960s. In frozen systems, the increase in reaction rate is caused by various mechanisms and the freeze concentration effect is the main reason for the observed acceleration. Some accelerated reactions have great application value in the chemistry synthesis and environmental fields; at the same time, certain reactions accelerated at low temperature during the storage of food, medicine, and biological products should cause concern. The study of reactions accelerated by freezing will overturn common sense and provide a new strategy for researchers in the chemistry field. In this review, we mainly introduce various mechanisms for accelerating reactions induced by freezing and summarize a variety of accelerated cryochemical reactions and their applications.
Collapse
Affiliation(s)
- Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
29
|
Cryostructuring of Polymeric Systems. 57. Spongy Wide-Porous Cryogels Based on the Proteins of Blood Serum: Preparation, Properties and Application as the Carriers of Peptide Bioregulators. Gels 2020; 6:gels6040050. [PMID: 33327554 PMCID: PMC7768461 DOI: 10.3390/gels6040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Wide-pore proteinaceous freeze-thaw spongy gels were synthesized via the cryotropic gelation technique using the bovine blood serum or its diluted solutions as the protein-containing precursors. The feed systems also included the denaturant (urea) and the thiol-reductant (cysteine). The gel-fraction yield decreased and the swelling degree of the walls of macropores in such heterophase matrices increased with decreasing the initial protein concentration. The optimum freezing temperature was found to be within a rather narrow range from -15 to -20 °C. In this case, the average size of the macropores in the resultant cryogels was 90-110 μm. The suitability of such soft wide-pore gel materials for the application as the carriers of peptide bioregulators was demonstrated in the in vitro experiments, when the posterior segments of the Pleurodeles waltl adult newts' eyes were used as a model biological target. It was shown that a statistically reliable protective effect on the state of the sclera, vascular membrane and retinal pigment epithelium, as well as on the viability of fibroblasts, was inherent in the proteinaceous cryogels loaded with the peptide bioregulator (Viophtan-5™) isolated from the bovine eye sclera.
Collapse
|
30
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Hof M, Jurkiewicz P, Lozinsky VI, Wolfová L, Petrenko Y, Kubinová Š, Dejneka A, Lunov O. Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis. Pharmaceuticals (Basel) 2020; 13:ph13120430. [PMID: 33260691 PMCID: PMC7759829 DOI: 10.3390/ph13120430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies undoubtedly show that the mammalian target of rapamycin (mTOR) and the Hippo–Yes-associated protein 1 (YAP) pathways are important mediators of mechanical cues. The crosstalk between these pathways as well as de-regulation of their signaling has been implicated in multiple tumor types, including liver tumors. Additionally, physical cues from 3D microenvironments have been identified to alter gene expression and differentiation of different cell lineages. However, it remains incompletely understood how physical constraints originated in 3D cultures affect cell plasticity and what the key mediators are of such process. In this work, we use collagen scaffolds as a model of a soft 3D microenvironment to alter cellular size and study the mechanotransduction that regulates that process. We show that the YAP-mTOR axis is a downstream effector of 3D cellular culture-driven mechanotransduction. Indeed, we found that cell mechanics, dictated by the physical constraints of 3D collagen scaffolds, profoundly affect cellular proliferation in a YAP–mTOR-mediated manner. Functionally, the YAP–mTOR connection is key to mediate cell plasticity in hepatic tumor cell lines. These findings expand the role of YAP–mTOR-driven mechanotransduction to the control hepatic tumor cellular responses under physical constraints in 3D cultures. We suggest a tentative mechanism, which coordinates signaling rewiring with cytoplasmic restructuring during cell growth in 3D microenvironments.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Lucie Wolfová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
- Department of Tissue Engineering, Contipro a.s., 56102 Dolni Dobrouc, Czech Republic
| | - Yuriy Petrenko
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| |
Collapse
|
31
|
Kurochkin II, Kurochkin IN, Kolosova OY, Lozinsky VI. Cryostructuring of Polymeric Systems †: Application of Deep Neural Networks for the Classification of Structural Features Peculiar to Macroporous Poly(vinyl alcohol) Cryogels Prepared without and with the Additives of Chaotropes or Kosmotropes. Molecules 2020; 25:molecules25194480. [PMID: 33003473 PMCID: PMC7582390 DOI: 10.3390/molecules25194480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/28/2022] Open
Abstract
Macroporous poly(vinyl alcohol) cryogels (PVACGs) are physical gels formed via cryogenic processing of polymer solutions. The properties of PVACGs depend on many factors: the characteristics and concentration of PVA, the absence or presence of foreign solutes, and the freezing-thawing conditions. These factors also affect the macroporous morphology of PVACGs, their total porosity, pore size and size distribution, etc. In this respect, there is the problem with developing a scientifically-grounded classification of the morphological features inherent in various PVACGs. In this study PVA cryogels have been prepared at different temperatures when the initial polymer solutions contained chaotropic or kosmotropic additives. After the completion of gelation, the rigidity and heat endurance of the resultant PVACGs were evaluated, and their macroporous structure was investigated using optical microscopy. The images obtained were treated mathematically, and deep neural networks were used for the classification of these images. Training and test sets were used for their classification. The results of this classification for the specific deep neural network architecture are presented, and the morphometric parameters of the macroporous structure are discussed. It was found that deep neural networks allow us to reliably classify the type of additive or its absence when using a combined dataset.
Collapse
Affiliation(s)
- Ilya I. Kurochkin
- A.A. Karkevich Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
- Correspondence: (I.I.K.); (V.I.L.); Tel.: +7(903)-5001-338 (I.I.K.); +7(499)-1356-492 (V.I.L.)
| | - Ilya N. Kurochkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia;
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga Yu. Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia;
- Correspondence: (I.I.K.); (V.I.L.); Tel.: +7(903)-5001-338 (I.I.K.); +7(499)-1356-492 (V.I.L.)
| |
Collapse
|