1
|
Pedrini M, Pozzi L, Sacchi F, Citarella A, Fasano V, Seneci P, Pieraccini S, Ruberto L, Peña HP, Garzino-Demo A, Vitiello A, Sernicola L, Borsetti A, Calistri A, Parolin C, Passarella D. Design, synthesis and in vitro validation of bivalent binders of SARS-CoV-2 spike protein: Obeticholic, betulinic and glycyrrhetinic acids as building blocks. Bioorg Med Chem 2025; 121:118124. [PMID: 39999646 DOI: 10.1016/j.bmc.2025.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, which caused over 6.7 million deaths worldwide. The Spike protein plays a crucial role in the infection process, mediating the binding of the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2), and its subsequent entry into target cells. Previous studies identified, through virtual screening, several natural products capable of binding to two distinct pockets of the Spike protein: triterpenoids binding to pocket 1 and bile acid derivatives binding to pocket 5. Building on these findings, our study advances the field by developing bivalent compounds 1-4 that through a spacer combine a triterpenoid (betulinic acid or glycyrrhetinic acid) with a semisynthetic bile acid derivative (obeticholic acid). These bivalent compounds are designed to simultaneously bind both pockets of the Spike protein, offering significant advantages over single molecules or the combination of the two natural products. In vitro cell assays using pseudotyped recombinant lentiviral particles with selected SARS-CoV-2 Spike proteins demonstrated that 1 and 2 exhibit enhanced activity in reducing viral entry into target cells compared to individual natural products, thus highlighting their potential as superior antiviral agents with reduced side effects.
Collapse
Affiliation(s)
- Martina Pedrini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Luca Pozzi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Francesca Sacchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| | - Valerio Fasano
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Pierfausto Seneci
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Stefano Pieraccini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Lorenzo Ruberto
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Helena Perez Peña
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Roma, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Roma, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
2
|
Rossi S, Deidda G, Fiaschi L, Ibba R, Pieroni M, Dichiara M, Carullo G, Butini S, Ramunno A, Brogi S, Lolicato M, Arrigoni C, Cabella N, Bavagnoli L, Maga G, Varasi I, Biba C, Vicenti I, Gemma S, Crespan E, Zazzi M, Campiani G. Synthesis and biological investigation of peptidomimetic SARS-CoV-2 main protease inhibitors bearing quinoline-based heterocycles at P 3. Arch Pharm (Weinheim) 2025; 358:e2400812. [PMID: 39873316 DOI: 10.1002/ardp.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
In the last few years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the cause of a worldwide pandemic, highlighting the need for novel antiviral agents. The main protease (Mpro) of SARS-CoV-2 was immediately identified as a crucial enzyme for viral replication and has been validated as a drug target. Here, we present the design and synthesis of peptidomimetic Mpro covalent inhibitors characterized by quinoline-based P3 moieties. Structure-activity relationships (SARs) were also investigated at P1 and P2, as well as for different warheads. The binding modes of the designed inhibitors were assessed using X-ray crystallographic and molecular docking studies. The identified Mpro inhibitors were tested for their antiviral activities in cell-based assays, and the results were encouraging. The SAR studies presented here can contribute to the future design of improved inhibitors by addressing some of the current or prospective issues regarding Mpro inhibitors currently used in therapy.
Collapse
Affiliation(s)
- Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', Pavia, Italy
| | - Lia Fiaschi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Roberta Ibba
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mariachiara Pieroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maria Dichiara
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Noemi Cabella
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', Pavia, Italy
| | - Laura Bavagnoli
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', Pavia, Italy
| | - Ilenia Varasi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Camilla Biba
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR 'Luigi Luca Cavalli-Sforza', Pavia, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Pennisi R, Gentile D, Rescifina A, Napoli E, Trischitta P, Piperno A, Sciortino MT. An Integrated In Silico and In Vitro Approach for the Identification of Natural Products Active against SARS-CoV-2. Biomolecules 2023; 14:43. [PMID: 38254643 PMCID: PMC10813393 DOI: 10.3390/biom14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| | - Davide Gentile
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy;
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy;
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| |
Collapse
|
5
|
Columbus I, Ghindes-Azaria L, Herzog IM, Blum E, Parvari G, Eichen Y, Cohen Y, Gershonov E, Drug E, Saphier S, Elias S, Smolkin B, Zafrani Y. Species-specific lipophilicities of fluorinated diketones in complex equilibria systems and their potential as multifaceted reversible covalent warheads. Commun Chem 2023; 6:197. [PMID: 37715018 PMCID: PMC10504258 DOI: 10.1038/s42004-023-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Combined molecular, physicochemical and chemical properties of electrophilic warheads can be applied to create covalent drugs with diverse facets. Here we study these properties in fluorinated diketones (FDKs) and their multicomponent equilibrium systems in the presence of protic nucleophiles, revealing the potential of the CF2(CO)2 group to act as a multifaceted warhead for reversible covalent drugs. The equilibria compositions of various FDKs in water/octanol contain up to nine species. A simultaneous direct species-specific 19F-NMR-based log P determination of these complex equilibria systems was achieved and revealed in some cases lipophilic to hydrophilic shifts, indicating possible adaptation to different environments. This was also demonstrated in 19F-MAS-NMR-based water-membrane partitioning measurements. An interpretation of the results is suggested by the aid of a DFT study and 19F-DOSY-NMR spectroscopy. In dilute solutions, a model FDK reacted with protected cysteine to form two hemi-thioketal regioisomers, indicating possible flexible regio-reactivity of CF2(CO)2 warheads toward cysteine residues.
Collapse
Affiliation(s)
- Ishay Columbus
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Lee Ghindes-Azaria
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ido Michael Herzog
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eliav Blum
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Yoram Cohen
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Gershonov
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Drug
- Department of Analytic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sigal Saphier
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel.
| | - Shlomi Elias
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boris Smolkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel.
| |
Collapse
|
6
|
Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Biomolecules 2023; 13:1339. [PMID: 37759739 PMCID: PMC10647625 DOI: 10.3390/biom13091339] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Alessandro Dimasi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 CA, 09042 Cagliari, Italy;
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| |
Collapse
|
7
|
Rescifina A. Progress of the "Molecular Informatics" Section in 2022. Int J Mol Sci 2023; 24:ijms24119442. [PMID: 37298393 DOI: 10.3390/ijms24119442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
This is the first Editorial of the "Molecular Informatics" Section (MIS) of the International Journal of Molecular Sciences (IJMS), which was created towards the end of 2018 (the first article was submitted on 27 September 2018) and has experienced significant growth from 2018 to now [...].
Collapse
Affiliation(s)
- Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
8
|
Saramago LC, Santana MV, Gomes BF, Dantas RF, Senger MR, Oliveira Borges PH, Ferreira VNDS, dos Santos Rosa A, Tucci AR, Dias Miranda M, Lukacik P, Strain-Damerell C, Owen CD, Walsh MA, Ferreira SB, Silva-Junior FP. AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro. J Chem Inf Model 2023; 63:2866-2880. [PMID: 37058135 PMCID: PMC10124747 DOI: 10.1021/acs.jcim.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 04/15/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Luiz Carlos Saramago
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Marcos V. Santana
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Bárbara Figueira Gomes
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Mario R. Senger
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Pedro Henrique Oliveira Borges
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Vivian Neuza dos Santos Ferreira
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Alice dos Santos Rosa
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Amanda Resende Tucci
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Milene Dias Miranda
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Petra Lukacik
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - C. David Owen
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Martin Austin Walsh
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Sabrina Baptista Ferreira
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| |
Collapse
|
9
|
Ghosh S, Qu ZW, Roy S, Grimme S, Chatterjee I. Photoredox Catalyzed Single C-F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem-Difluoromethylene Containing Scaffolds. Chemistry 2023; 29:e202203428. [PMID: 36445786 DOI: 10.1002/chem.202203428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| |
Collapse
|
10
|
Citarella A, Moi D, Pedrini M, Pérez-Peña H, Pieraccini S, Stagno C, Micale N, Schirmeister T, Sibille G, Gribaudo G, Silvani A, Passarella D, Giannini C. Discovery of a Novel Trifluoromethyl Diazirine Inhibitor of SARS-CoV-2 M pro. Molecules 2023; 28:514. [PMID: 36677572 PMCID: PMC9864213 DOI: 10.3390/molecules28020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 Mpro is a chymotrypsin-like cysteine protease playing a relevant role during the replication and infectivity of SARS-CoV-2, the coronavirus responsible for COVID-19. The binding site of Mpro is characterized by the presence of a catalytic Cys145 which carries out the hydrolytic activity of the enzyme. As a consequence, several Mpro inhibitors have been proposed to date in order to fight the COVID-19 pandemic. In our work, we designed, synthesized and biologically evaluated MPD112, a novel inhibitor of SARS-CoV-2 Mpro bearing a trifluoromethyl diazirine moiety. MPD112 displayed in vitro inhibition activity against SARS-CoV-2 Mpro at a low micromolar level (IC50 = 4.1 μM) in a FRET-based assay. Moreover, an inhibition assay against PLpro revealed lack of inhibition, assuring the selectivity of the compound for the Mpro. Furthermore, the target compound MPD112 was docked within the binding site of the enzyme to predict the established intermolecular interactions in silico. MPD112 was subsequently tested on the HCT-8 cell line to evaluate its effect on human cells' viability, displaying good tolerability, demonstrating the promising biological compatibility and activity of a trifluoromethyl diazirine moiety in the design and development of SARS-CoV-2 Mpro binders.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Davide Moi
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria—S.S. 554 bivio per Sestu, 09042 Monserrato, Italy
| | - Martina Pedrini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Helena Pérez-Peña
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Stefano Pieraccini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Alessandra Silvani
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Clelia Giannini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
11
|
Algar‐Lizana S, Bonache MÁ, González‐Muñiz R. SARS-CoV-2 main protease inhibitors: What is moving in the field of peptides and peptidomimetics? J Pept Sci 2022; 29:e3467. [PMID: 36479966 PMCID: PMC9877768 DOI: 10.1002/psc.3467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still affecting people worldwide. Despite the good degree of immunological protection achieved through vaccination, there are still severe cases that require effective antivirals. In this sense, two specific pharmaceutical preparations have been marketed already, the RdRp polymerase inhibitor molnupiravir and the main viral protease inhibitor nirmatrelvir (commercialized as Paxlovid, a combination with ritonavir). Nirmatrelvir is a peptidomimetic acting as orally available, covalent, and reversible inhibitor of SARS-CoV-2 main viral protease. The success of this compound has revitalized the search for new peptide and peptidomimetic protease inhibitors. This highlight collects some selected examples among those recently published in the field of SARS-CoV-2.
Collapse
|
12
|
Citarella A, Amenta A, Passarella D, Micale N. Cyrene: A Green Solvent for the Synthesis of Bioactive Molecules and Functional Biomaterials. Int J Mol Sci 2022; 23:ijms232415960. [PMID: 36555601 PMCID: PMC9783252 DOI: 10.3390/ijms232415960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging for the optimization of more eco-friendly processes which look to a future of biocompatibility and recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly being introduced as the solvent of choice for the development of green synthetic transformations and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and non-mutagenic properties. Our review offers an overview of the most important organic reactions that have been investigated to date in Cyrene as a medium, in particular focusing on those that could potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other hand, a description of the employment of Cyrene in the production of biomaterials has also been taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the aforementioned fields.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Arianna Amenta
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
- Correspondence:
| |
Collapse
|
13
|
Novel Class of Proteasome Inhibitors: In Silico and In Vitro Evaluation of Diverse Chloro(trifluoromethyl)aziridines. Int J Mol Sci 2022; 23:ijms232012363. [PMID: 36293216 PMCID: PMC9603864 DOI: 10.3390/ijms232012363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.
Collapse
|
14
|
La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022; 65:12500-12534. [PMID: 36169610 PMCID: PMC9528073 DOI: 10.1021/acs.jmedchem.2c01005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.
Collapse
Affiliation(s)
| | | | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| |
Collapse
|
15
|
Miele M, Castoldi L, Simeone X, Holzer W, Pace V. Straightforward synthesis of bench-stable heteroatom-centered difluoromethylated entities via controlled nucleophilic transfer from activated TMSCHF 2. Chem Commun (Camb) 2022; 58:5761-5764. [PMID: 35450981 DOI: 10.1039/d2cc00886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The commercially available and experimentally convenient (bp 65 °C) difluoromethyltrimethylsilane (TMSCHF2) is proposed as a valuable difluoromethylating transfer reagent for delivering the CHF2 moiety to various heteroatom-based electrophiles. Upon activation with an alkoxide, a conceptually intuitive nucleophilic displacement directly furnishes in high yields the bench-stable analogues.
Collapse
Affiliation(s)
- Margherita Miele
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Laura Castoldi
- University of Milano - Department of Pharmaceutical Sciences, Via Golgi 19, 20133 Milano, Italy
| | - Xenia Simeone
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Wolfgang Holzer
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Vittorio Pace
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria. .,University of Torino - Department of Chemistry, Via Giuria 7, 10125 Torino, Italy
| |
Collapse
|
16
|
Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophys Chem 2022; 288:106824. [PMID: 35728510 PMCID: PMC9095071 DOI: 10.1016/j.bpc.2022.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023]
Abstract
The novel coronavirus that caused COVID-19 pandemic is SARS-CoV-2. Although various vaccines are currently being used to prevent the disease's severe consequences, there is still a need for medications for those who become infected. The SARS-CoV-2 has a variety of proteins that have been studied extensively since the virus's advent. In this review article, we looked at chemical to molecular aspects of the various structures studied that have pharmaceutical activity and attempted to find a link between drug activity and compound structure. For example, designing of the compounds which bind to the allosteric site and modify hydrogen bonds or the salt bridges can disrupt SARS-CoV2 RBD–ACE2 complex. It seems that quaternary ammonium moiety and quinolin-1-ium structure could act as a negative allosteric modulator to reduce the tendency between spike-ACE2. Pharmaceutical structures with amino heads and hydrophobic tails can block envelope protein to prevent making mature SARS-CoV-2. Also, structures based on naphthalene pharmacophores or isosteres can form a strong bond with the PLpro and form a π-π and the Mpro's active site can be occupied by octapeptide compounds or linear compounds with a similar fitting ability to octapeptide compounds. And for protein RdRp, it is critical to consider pH and pKa so that pKa regulation of compounds to comply with patients is very effective, thus, the presence of tetrazole, phenylpyrazole groups, and analogs of pyrophosphate in the designed drugs increase the likelihood of the RdRp active site inhibition. Finally, it can be deduced that designing hybrid drug molecules along with considering the aforementioned characteristics would be a suitable approach for developing medicines in order to accurate targeting and complete inhibition this virus.
Collapse
Affiliation(s)
- Samira Mahmoudi
- Department of Microbial Biotechnology, School of Biological Sciences, Islamic Azad University Tehran North Branch, Tehran, Iran.
| | - Mehrdad Mohammadpour Dehkordi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Hossein Asgarshamsi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Zhang X, Zhang X, Song Q, Sivaguru P, Wang Z, Zanoni G, Bi X. A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Xinyu Zhang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qingmin Song
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | | | - Zikun Wang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Giuseppe Zanoni
- Department of Chemistry University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Xihe Bi
- Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
18
|
Zhang X, Zhang X, Song Q, Sivaguru P, Wang Z, Zanoni G, Bi X. A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones. Angew Chem Int Ed Engl 2021; 61:e202116190. [PMID: 34889004 DOI: 10.1002/anie.202116190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/29/2022]
Abstract
Hydrodefluorination is one of the most promising chemical strategies to degrade perfluorochemicals into partially fluorinated compounds. However, controlled progressive hydrodefluorination remains a significant challenge, owing to the decrease in the strength of C-F bonds along with the defluorination. Here we describe a carbene strategy for the sequential (deutero)hydrodefluorination of perfluoroalkyl ketones under rhodium catalysis, allowing for the controllable preparation of difluoroalkyl- and monofluoroalkyl ketones from aryl- and even alkyl-substituted perfluoro-alkyl ketones in high yield with excellent functional group tolerance. The reaction mechanism and the origin of the intriguing chemoselectivity of the reaction were rationalized by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Zikun Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021; 9:microorganisms9081731. [PMID: 34442810 PMCID: PMC8398173 DOI: 10.3390/microorganisms9081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Elizabeth Elder
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ali Mirazimi
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
- Correspondence: ; Tel.: +39-011-6704648
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| |
Collapse
|
20
|
Box JR, Atkins AP, Lennox AJJ. Direct electrochemical hydrodefluorination of trifluoromethylketones enabled by non-protic conditions. Chem Sci 2021; 12:10252-10258. [PMID: 34377412 PMCID: PMC8336478 DOI: 10.1039/d1sc01574e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
CF2H groups are unique due to the combination of their lipophilic and hydrogen bonding properties. The strength of H-bonding is determined by the group to which it is appended. Several functional groups have been explored in this context including O, S, SO and SO2 to tune the intermolecular interaction. Difluoromethyl ketones are under-studied in this context, without a broadly accessible method for their preparation. Herein, we describe the development of an electrochemical hydrodefluorination of readily accessible trifluoromethylketones. The single-step reaction at deeply reductive potentials is uniquely amenable to challenging electron-rich substrates and reductively sensitive functionality. Key to this success is the use of non-protic conditions enabled by an ammonium salt that serves as a reductively stable, masked proton source. Analysis of their H-bonding has revealed difluoromethyl ketones to be potentially highly useful dual H-bond donor/acceptor moieties. The electrochemical hydrodefluorination of trifluoromethylketones under non-protic conditions make this single-step reaction at deeply reductive potentials uniquely amenable to challenging electron-rich substrates and reductively sensitive functionalities.![]()
Collapse
Affiliation(s)
- John R Box
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alexander P Atkins
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alastair J J Lennox
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
21
|
Liu Y, Lv S, Peng L, Xie C, Gao L, Sun H, Lin L, Ding K, Li Z. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem Pharmacol 2021; 190:114636. [PMID: 34062128 DOI: 10.1016/j.bcp.2021.114636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Nucleophilic amino acids play important roles in maintenance of protein structure and function, covalent modification of such amino acid residues by therapeutic agents is an efficient way to treat human diseases. Most of current clinical drugs are structurally limited to α,β-unsaturated amide as an electrophilic warhead. To alleviate this issue, many novel electrophiles have been developed in recent years that can covalently bind to different amino acid residues and provides a unique way to interrogate proteins, including "undruggable" targets. With an activity-based protein profiling (ABPP) approach, the activity and functionality of a protein and its binding sites can be assessed. This facilitates an understanding of protein function, and contributes to the discovery of new druggable targets and lead compounds. Meanwhile, many novel inhibitors bearing new reactive warhead were developed and displayed remarkable pharmaceutical properties. In this perspective, we have reviewed the recent remarkable progress of novel electrophiles and their applications in target identification and drug discovery.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shumin Lv
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengliang Xie
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510000, China
| | - Liqian Gao
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510000, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 M pro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021; 11:607. [PMID: 33921886 PMCID: PMC8073203 DOI: 10.3390/biom11040607] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.
Collapse
Affiliation(s)
| | | | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (A.S.); (A.P.)
| |
Collapse
|
23
|
Touqeer S, Ielo L, Miele M, Urban E, Holzer W, Pace V. Direct and straightforward transfer of C1 functionalized synthons to phosphorous electrophiles for accessing gem-P-containing methanes. Org Biomol Chem 2021; 19:2425-2429. [PMID: 33666635 DOI: 10.1039/d1ob00273b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct transfer of different α-substituted methyllithium reagents to chlorinated phosphorous electrophiles of diverse oxidation state (phosphates, phosphine oxides and phosphines) is proposed as an effective strategy to synthesize geminal P-containing methanes. The methodology relies on the efficient nucleophilic substitution conducted on the P-chlorine linkage. Uniformly high yields are observed regardless the specific nature of the carbanion employed: once established the conditions for generating the competent nucleophile (LiCH2Hal, LiCHHal2, LiCH2CN, LiCH2SeR etc.) the homologated compounds are obtained via a single operation. Some P-containing formal carbanions have been evaluated in transferring processes, including the carbonyl-difluoromethylation of the opioid agent Hydrocodone.
Collapse
Affiliation(s)
- Saad Touqeer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, Vienna, Austria
| | | | | | | | | | | |
Collapse
|