1
|
Li H, Duan J, Zhang T, Fu Y, Xu Y, Miao H, Ge X. miR-16-5p aggravates sepsis-associated acute kidney injury by inducing apoptosis. Ren Fail 2024; 46:2322688. [PMID: 38445373 PMCID: PMC10919310 DOI: 10.1080/0886022x.2024.2322688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a common disease in pediatric intensive care units (ICU) with high morbidity and mortality. The newly discovered results indicate that microRNAs (miRNAs) play an important role in the diagnosis and treatment of S-AKI and can be used as markers for early diagnosis. In this study, the expression level of miR-16-5p was found to be significantly upregulated about 20-fold in S-AKI patients, and it also increased by 1.9 times in the renal tissue of S-AKI mice. Receiver operating characteristic (ROC) curve analysis showed that miR-16-5p had the highest predictive accuracy in the diagnosis of S-AKI (AUC = 0.9188). In vitro, the expression level of miR-16-5p in HK-2 cells treated with 10 μg/mL lipopolysaccharide (LPS) increased by more than 2 times. In addition, LPS-exposed renal tissue and HK-2 cells lead to upregulation of inflammatory cytokines IL-6, IL-1β, TNF-a, and kidney damage molecules kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL). However, inhibition of miR-16-5p significantly mitigated LPS expose-mediated kidney injury and inflammation. Furthermore, LPS-exposed HK-2 cells increased more than 1.7-fold the expression levels of Bax and caspase-3, decreased 3.2-fold the expression level of B-cell lymphoma-2 (Bcl-2), and significantly promoted the occurrence of apoptosis. MiR-16-5p mimic further increased LPS-induced apoptosis in HK-2 cells. Nevertheless, inhibition of miR-16-5p significantly attenuated this effect. In summary, up-regulation of miR-16-5p expression can significantly aggravate renal injury and apoptosis in S-AKI, which also proves that miR-16-5p can be used as a potential biomarker to promote early identification of S-AKI.
Collapse
Affiliation(s)
- Han Li
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Key Laboratory of Children’s Major Disease Research, Jiangsu, PR China
| | - Junyan Duan
- Department of Pediatrics, Changzhou Second Peoples Hospital Affiliated to Nanjing Medical University, Changzhou, PR China
| | - Tongtong Zhang
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yingjie Fu
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yue Xu
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hongjun Miao
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xuhua Ge
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Key Laboratory of Children’s Major Disease Research, Jiangsu, PR China
| |
Collapse
|
2
|
Liu K, Li Y, Yin F, Wu X, Zhang X, Jiang D, Wang J, Zhang Z, Wang R, Chen C, Han Y. Elucidating thoracic aortic dissection pathogenesis: The interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis. Int J Biol Macromol 2024; 274:133293. [PMID: 38925173 DOI: 10.1016/j.ijbiomac.2024.133293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The underlying molecular mechanisms of thoracic aortic dissection (TAD) remain incompletely understood. Recent insights into RNA methylation and microRNA-mediated gene regulation offer new avenues for exploring how these processes contribute to the pathophysiology of TAD, particularly through the modulation of pyroptosis and smooth muscle cell viability. This research aimed to elucidate the interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis, a mechanism implicated in the pathogenesis of TAD. We collected tissue samples from 28 human TAD patients and 8 healthy aortic group, as well as utilized a mouse model to replicate the disease. A combination of computational, in vitro, and in vivo methods was applied, including CIBERSORTx analysis, Pearson correlation, gene transfection using antagomiR-16-5p, siRNA, and several staining as well as cell culture techniques. Our analysis indicated two differentially expressed genes, ALKBH2 and YTHDC1. We found significant upregulation of has-miR-16-5p and downregulation of YTHDC1 at mRNA level in AD samples. Immune cell infiltration in TAD samples was examined using the CIBERSORTx database. We confirmed that YTHDC1 was a target of miR-16-5p, as evidenced by an inhibitory effect on luciferase activity. Inhibition of miR-16-5p enhanced SMC proliferation and promoted cell viability whilst downregulating NLRP3-pyroptosis. YTHDC1 expression was increased, and NLRP3-pyroptosis expressions were inhibited, suggesting miR-16-5p/YTHDC1 axis may involve the NLRP3-pyroptosis of the SMC. In vivo analyses confirmed the prevention of NLRP3-pyroptosis in middle layer of the thoracic aorta, implying that the miR-16-5p/YTHDC1 axis regulated SMC proliferation via NLRP3-pyroptosis signaling. Our findings underscored the anti-pyroptotic role of miR-16-5p/YTHDC1 axis in the pathogenesis of TAD, suggesting a potential therapeutic strategy via targeting YTHDC1 and suppressing miR-16-5p to inhibit NLRP3-dependent pyroptosis. Although further investigation is needed, these results relating to SMC proliferation are a significant step forward in understanding TAD.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiac Surgery, Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Yuemeng Li
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Wang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Zhaoxuan Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Yanshuo Han
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China; School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China.
| |
Collapse
|
3
|
García-Padilla C, Lozano-Velasco E, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region. Int J Mol Sci 2024; 25:6608. [PMID: 38928314 PMCID: PMC11204236 DOI: 10.3390/ijms25126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
4
|
Li W, Si Y, Wang Y, Chen J, Huo X, Xu P, Jiang B, Li Z, Shang K, Luo Q, Xiong Y. hUCMSC-derived exosomes protect against GVHD-induced endoplasmic reticulum stress in CD4 + T cells by targeting the miR-16-5p/ATF6/CHOP axis. Int Immunopharmacol 2024; 135:112315. [PMID: 38805908 DOI: 10.1016/j.intimp.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Exosomes generated from mesenchymal stem cells (MSCs) are thought to be a unique therapeutic strategy for several autoimmune deficiency illnesses. The purpose of this study was to elucidate the protective effects of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) on CD4+ T cells dysfunction during graft-versus-host disease (GVHD) and to identify the underlying processes involved. Here, we showed that hUCMSC-Exo treatment can effectively attenuate GVHD injury by alleviating redox metabolism disorders and inflammatory cytokine bursts in CD4+ T cells. Furthermore, hUCMSC-Exo ameliorate ER stress and ATF6/CHOP signaling-mediated apoptosis in CD4+ T cells and promote the development of CD4+IL-10+ T cells during GVHD. Moreover, downregulating miR-16-5p in hUCMSC-Exo impaired their ability to prevent CD4+ T cells apoptosis and weakened their ability to promote the differentiation of CD4+IL-10+ T cells. Collectively, the obtained data suggested that hUCMSC-Exo suppress ATF6/CHOP signaling-mediated ER stress and apoptosis in CD4+ T cells, enhance the differentiation of CD4+IL-10+ T cells, and reverse the imbalance of immune homeostasis in the GVHD process by transferring miR-16-5p. Our study provided further evidence that GVHD patients can benefit from hUCMSC-Exo-mediated therapy.
Collapse
Affiliation(s)
- Weihan Li
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Shanghai Mebo Life Science & Technology Co., Shanghai, PR China
| | - Yaru Si
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yueming Wang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Juntong Chen
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Xingyu Huo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Pengzhan Xu
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Bingzhen Jiang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zile Li
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kangdi Shang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Qianqian Luo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| | - Yanlian Xiong
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
5
|
Zhang N, Huang D, Li X, Yan J, Yan Q, Ge W, Zhou J. Identification and validation of oxidative stress-related genes in sepsis-induced myopathy. Medicine (Baltimore) 2024; 103:e37933. [PMID: 38701300 PMCID: PMC11062695 DOI: 10.1097/md.0000000000037933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.
Collapse
Affiliation(s)
- Ning Zhang
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Huang
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - JinXia Yan
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yan
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - WeiXing Ge
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Bonet F, Hernandez-Torres F, Ramos-Sánchez M, Quezada-Feijoo M, Bermúdez-García A, Daroca T, Alonso-Villa E, García-Padilla C, Mangas A, Toro R. Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome. Biomolecules 2024; 14:524. [PMID: 38785931 PMCID: PMC11117812 DOI: 10.3390/biom14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.
Collapse
Affiliation(s)
- Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Mónica Ramos-Sánchez
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Aníbal Bermúdez-García
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Tomás Daroca
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Elena Alonso-Villa
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | | | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| |
Collapse
|
7
|
Mahmoudi A, Jalili A, Aghaee-Bakhtiari SH, Oskuee RK, Butler AE, Rizzo M, Sahebkar A. Analysis of the therapeutic potential of miR-124 and miR-16 in non-alcoholic fatty liver disease. J Diabetes Complications 2024; 38:108722. [PMID: 38503000 DOI: 10.1016/j.jdiacomp.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUNDS Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFβ-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Currie J, Manda V, Robinson SK, Lai C, Agnihotri V, Hidalgo V, Ludwig RW, Zhang K, Pavelka J, Wang ZV, Rhee JW, Lam MPY, Lau E. Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions. Nat Commun 2024; 15:2207. [PMID: 38467653 PMCID: PMC10928085 DOI: 10.1038/s41467-024-46600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The spatial and temporal distributions of proteins are critical to protein function, but cannot be directly assessed by measuring protein bundance. Here we describe a mass spectrometry-based proteomics strategy, Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently protein turnover rates and subcellular localization in the same experiment. Applying the method, we find that unfolded protein response (UPR) has different effects on protein turnover dependent on their subcellular location in human AC16 cells, with proteome-wide slowdown but acceleration among stress response proteins in the ER and Golgi. In parallel, UPR triggers broad differential localization of proteins including RNA-binding proteins and amino acid transporters. Moreover, we observe newly synthesized proteins including EGFR that show a differential localization under stress than the existing protein pools, reminiscent of protein trafficking disruptions. We next applied SPLAT to an induced pluripotent stem cell derived cardiomyocyte (iPSC-CM) model of cancer drug cardiotoxicity upon treatment with the proteasome inhibitor carfilzomib. Paradoxically, carfilzomib has little effect on global average protein half-life, but may instead selectively disrupt sarcomere protein homeostasis. This study provides a view into the interactions of protein spatial and temporal dynamics and demonstrates a method to examine protein homeostasis regulations in stress and drug response.
Collapse
Affiliation(s)
- Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sean K Robinson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Vertica Agnihotri
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, CA, 91010, Duarte, USA
| | - Veronica Hidalgo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - R W Ludwig
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kai Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - June-Wha Rhee
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, CA, 91010, Duarte, USA
| | - Maggie P Y Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
11
|
Sharma D, Radha, Kumar M, Andrade-Cetto A, Puri S, Kumar A, Thakur M, Chandran D, Pundir A, Prakash S, Pandiselvam R, Sandhu S, Khosla A, Kumar S, Lorenzo JM. Chemical Diversity and Medicinal Potential of Vitex negundo L.: From Traditional Knowledge to Modern Clinical Trials. Chem Biodivers 2023; 20:e202301086. [PMID: 37851484 DOI: 10.1002/cbdv.202301086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND In Vedic context, Nirgundi (V. negundo) has been utilized for its anti-inflammatory, analgesic, and wound-healing properties. It has been employed to alleviate pain, treat skin conditions, and address various ailments. The plant's leaves, roots, and seeds have all found applications in traditional remedies. The knowledge of Nirgundi's medicinal benefits has been passed down through generations, and it continues to be a part of Ayurvedic and traditional medicine practices in India.
Collapse
Affiliation(s)
- Diksha Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR- Central Institute for Research on Cotton Technology, Mumbai, 400019, India
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de BiologíaCelular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, C.U., Mexico City, 04510, Mexico
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Amit Kumar
- GLA University, Mathura, Uttar Pradesh, 281 406, India
| | - Mamta Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, 679335, Kerala, India
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ananya Khosla
- Stanford University, 450 Serra Mall, Stanford, California, USA, 94305
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Jose M Lorenzo
- CentroTecnológico de la Carne de Galicia, rúa Galicia n○ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
12
|
Kabłak-Ziembicka A, Badacz R, Okarski M, Wawak M, Przewłocki T, Podolec J. Cardiac microRNAs: diagnostic and therapeutic potential. Arch Med Sci 2023; 19:1360-1381. [PMID: 37732050 PMCID: PMC10507763 DOI: 10.5114/aoms/169775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs are small non-coding post-translational biomolecules which, when expressed, modify their target genes. It is estimated that microRNAs regulate production of approximately 60% of all human proteins and enzymes that are responsible for major physiological processes. In cardiovascular disease pathophysiology, there are several cells that produce microRNAs, including endothelial cells, vascular smooth muscle cells, macrophages, platelets, and cardiomyocytes. There is a constant crosstalk between microRNAs derived from various cell sources. Atherosclerosis initiation and progression are driven by many pro-inflammatory and pro-thrombotic microRNAs. Atherosclerotic plaque rupture is the leading cause of cardiovascular death resulting from acute coronary syndrome (ACS) and leads to cardiac remodeling and fibrosis following ACS. MicroRNAs are powerful modulators of plaque progression and transformation into a vulnerable state, which can eventually lead to plaque rupture. There is a growing body of evidence which demonstrates that following ACS, microRNAs might inhibit fibroblast proliferation and scarring, as well as harmful apoptosis of cardiomyocytes, and stimulate fibroblast reprogramming into induced cardiac progenitor cells. In this review, we focus on the role of cardiomyocyte-derived and cardiac fibroblast-derived microRNAs that are involved in the regulation of genes associated with cardiomyocyte and fibroblast function and in atherosclerosis-related cardiac ischemia. Understanding their mechanisms may lead to the development of microRNA cocktails that can potentially be used in regenerative cardiology.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Michał Okarski
- Student Scientific Group of Modern Cardiac Therapy at the Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Wawak
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Tadeusz Przewłocki
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Podolec
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| |
Collapse
|
13
|
Lin S, Long H, Hou L, Zhang M, Ting J, Lin H, Zheng P, Lei W, Yin K, Zhao G. Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1767. [PMID: 36420580 DOI: 10.1002/wrna.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/20/2023]
Abstract
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiang Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Weixing Lei
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
14
|
Martinez-Amaro FJ, Garcia-Padilla C, Franco D, Daimi H. LncRNAs and CircRNAs in Endoplasmic Reticulum Stress: A Promising Target for Cardiovascular Disease? Int J Mol Sci 2023; 24:9888. [PMID: 37373035 DOI: 10.3390/ijms24129888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The endoplasmic reticulum (ER) is a principal subcellular organelle responsible for protein quality control in the secretory pathway, preventing protein misfolding and aggregation. Failure of protein quality control in the ER triggers several molecular mechanisms such as ER-associated degradation (ERAD), the unfolded protein response (UPR) or reticulophagy, which are activated upon ER stress (ERS) to re-establish protein homeostasis by transcriptionally and translationally regulated complex signalling pathways. However, maintenance over time of ERS leads to apoptosis if such stress cannot be alleviated. The presence of abnormal protein aggregates results in loss of cardiomyocyte protein homeostasis, which in turn results in several cardiovascular diseases such as dilated cardiomyopathy (DCM) or myocardial infarction (MI). The influence of a non-coding genome in the maintenance of proper cardiomyocyte homeostasis has been widely proven. To date, the impact of microRNAs in molecular mechanisms orchestrating ER stress response has been widely described. However, the role of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) is just beginning to be addressed given the potential role of these RNA classes as therapeutic molecules. Here, we provide a current state-of-the-art review of the roles of distinct lncRNAs and circRNAs in the modulation of ERS and UPR and their impact in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Carlos Garcia-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Houria Daimi
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
- Department of Biology, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| |
Collapse
|
15
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
16
|
Li M, Zhang N, Li J, Ji M, Zhao T, An J, Cai C, Yang Y, Gao P, Cao G, Guo X, Li B. CircRNA Profiling of Skeletal Muscle in Two Pig Breeds Reveals CircIGF1R Regulates Myoblast Differentiation via miR-16. Int J Mol Sci 2023; 24:ijms24043779. [PMID: 36835196 PMCID: PMC9965117 DOI: 10.3390/ijms24043779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Muscle development is closely related to meat quality and production. CircRNAs, with a closed-ring structure, have been identified as a key regulator of muscle development. However, the roles and mechanisms of circRNAs in myogenesis are largely unknown. Hence, in order to unravel the functions of circRNAs in myogenesis, the present study explored circRNA profiling in skeletal muscle between Mashen and Large White pigs. The results showed that a total of 362 circRNAs, which included circIGF1R, were differentially expressed between the two pig breeds. Functional assays showed that circIGF1R promoted myoblast differentiation of porcine skeletal muscle satellite cells (SMSCs), while it had no effect on cell proliferation. In consideration of circRNA acting as a miRNA sponge, dual-luciferase reporter and RIP assays were performed and the results showed that circIGF1R could bind miR-16. Furthermore, the rescue experiments showed that circIGF1R could counteract the inhibitory effect of miR-16 on cell myoblast differentiation. Thus, circIGF1R may regulate myogenesis by acting as a miR-16 sponge. In conclusion, this study successfully screened candidate circRNAs involved in the regulation of porcine myogenesis and demonstrated that circIGF1R promotes myoblast differentiation via miR-16, which lays a theoretical foundation for understanding the role and mechanism of circRNAs in regulating porcine myoblast differentiation.
Collapse
|
17
|
Circulating microRNAs Showed Specific Responses according to Metabolic Syndrome Components and Sex of Adults from a Population-Based Study. Metabolites 2022; 13:metabo13010002. [PMID: 36676927 PMCID: PMC9861536 DOI: 10.3390/metabo13010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate several metabolic pathways and are potential biomarkers for early risk prediction of metabolic syndrome (MetS). Our aim was to evaluate the levels of 21 miRNAs in plasma according to MetS components and sex in adults. We employed a cross-sectional study of 192 adults aged 20 to 59 years old from the 2015 Health Survey of São Paulo with Focus in Nutrition. Data showed reduced levels of miR-16 and miR-363 in women with MetS; however, men with one or more risk factors showed higher levels of miR-let-7c and miR-30a. Individuals with raised waist circumference showed higher levels of miR-let-7c, miR-122, miR-30a, miR-146a, miR-15a, miR-30d and miR-222. Individuals with raised blood pressure had higher miR-30a, miR-122 and miR-30a levels. Plasma levels of four miRNAs (miR-16, miR-363, miR-375 and miR-486) were lower in individuals with low HDL-cholesterol concentrations. In addition, plasma levels of five miRNAs (miR-122, miR-139, miR-let-7c, miR-126 and miR-30a) were increased in individuals with high fasting plasma glucose and/or insulin resistance. Our results suggest that the pattern of miRNA levels in plasma may be a useful early biomarker of cardiometabolic components of MetS and highlight the sex differences in the plasma levels of miRNAs in individuals with MetS.
Collapse
|
18
|
Alonso-Villa E, Bonet F, Hernandez-Torres F, Campuzano Ó, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Mangas A, Toro R. The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Int J Mol Sci 2022; 23:ijms232113573. [PMID: 36362356 PMCID: PMC9659086 DOI: 10.3390/ijms232113573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and systolic dysfunction. In most cases, DCM is progressive, leading to heart failure (HF) and death. This cardiomyopathy has been considered a common and final phenotype of several entities. DCM occurs when cellular pathways fail to maintain the pumping function. The etiology of this disease encompasses several factors, such as ischemia, infection, autoimmunity, drugs or genetic susceptibility. Although the prognosis has improved in the last few years due to red flag clinical follow-up, early familial diagnosis and ongoing optimization of treatment, due to its heterogeneity, there are no targeted therapies available for DCM based on each etiology. Therefore, a better understanding of the mechanisms underlying the pathophysiology of DCM will provide novel therapeutic strategies against this cardiac disease and their different triggers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play key roles in post-transcriptional gene silencing by targeting mRNAs for translational repression or, to a lesser extent, degradation. A growing number of studies have demonstrated critical functions of miRNAs in cardiovascular diseases (CVDs), including DCM, by regulating mechanisms that contribute to the progression of the disease. Herein, we summarize the role of miRNAs in inflammation, endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, autophagy, cardiomyocyte apoptosis and fibrosis, exclusively in the context of DCM.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Correspondence: (E.A.-V.); (R.T.)
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Óscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Correspondence: (E.A.-V.); (R.T.)
| |
Collapse
|
19
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
20
|
Huang X, Xu X, Ke H, Pan X, Ai J, Xie R, Lan G, Hu Y, Wu Y. microRNA-16-5p suppresses cell proliferation and angiogenesis in colorectal cancer by negatively regulating forkhead box K1 to block the PI3K/Akt/mTOR pathway. Eur J Histochem 2022; 66. [PMID: 35536149 PMCID: PMC9134092 DOI: 10.4081/ejh.2022.3333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Xin Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Xuan Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Huajing Ke
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Xiaolin Pan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Ruyi Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Guilian Lan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Yang Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| | - Yao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Center for Gastroenterology, Nanchang.
| |
Collapse
|