1
|
Martiniakova M, Kovacova V, Biro R, Mondockova V, Sarocka A, Penzes N, Folwarczna J, Omelka R. Relationships among osteoporosis, redox homeostasis, and alcohol addiction: Importance of the brain-bone axis. Biomed Pharmacother 2025; 187:118063. [PMID: 40253828 DOI: 10.1016/j.biopha.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Overabundance of reactive oxygen species (oxidative distress) leads to redox homeostasis disturbance and is associated with many pathological conditions. Accumulating evidence suggests that oxidative distress may contribute to osteoporosis. This review thoroughly outlines the relationships among osteoporosis, redox homeostasis, and alcohol addiction, since these relations are not sufficiently known and subsequently summarized. The brain-bone axis plays a crucial role in alcohol-induced damage to the nervous and skeletal systems. Alterations in the nervous system can lead to osteoporosis because the central nervous system is involved in bone remodeling through various neural pathways. Conversely, as an endocrine organ, bone secretes a number of bone-derived factors (osteokines), which can influence brain function and behavior. As a result, osteoporosis is more common in individuals with neurological disorders, and sudden neurological events can rapidly increase the risk of osteoporosis. Excessive alcohol consumption is linked to many neurological complications, as well as osteoporosis, which are manifested by disrupted redox homeostasis, inflammation, neurodegeneration, inhibition of neurogenesis, decreased bone mineral density, impaired bone microarchitecture, altered mineral homeostasis, raising fracture risk, hormonal dysregulation, and altered gut microbiota composition. Compared to men, alcohol dependence has more negative consequences for women, including an increased risk of liver, cardiovascular, metabolic, mental disorders, and breast cancer. Abstinence has been demonstrated to improve bone and brain health in alcohol addiction. The discovery of the brain-bone axis may lead to the development of new therapeutic approaches for alcohol and other substance addictions. Further research is needed in this direction, as many questions remain unanswered.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| |
Collapse
|
2
|
Aravapally PSN, Chandrasekar N, Verma A, Shah RP. Strategic approaches to assess and quantify the oxidative stress biomarkers in complex biological systems. Bioanalysis 2025:1-14. [PMID: 40183176 DOI: 10.1080/17576180.2025.2486929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Oxidative stress (OS) is an emerging research area in clinical and biological sciences due to its association with various diseases and physiological processes. OS occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize or repair the damage caused. Chronic oxidative stress is linked to diseases like diabetes, cardiovascular diseases, cancer, and neurodegenerative disorders. Accurate monitoring of OS is crucial for diagnosing diseases, evaluating disease progression, and predicting clinical results. Despite challenges in measuring free radicals due to their short half-life and low concentrations, it can be indirectly assessed through biomarkers like lipid peroxidation, DNA damage, and protein oxidation. The most effective analytical techniques for assessing OS biomarkers in various biological fluids were developed. Furthermore, an in-depth exploration of these various analytical methodologies, underscoring their sensitivity, specificity, and reliability in detecting low concentrations of biomarkers across complex matrices is necessary. A comprehensive literature search was conducted using databases such as Google Scholar, PubMed and Reaxys to identify relevant studies on OS biomarkers. This review explores the evolution of these techniques, highlighting advancements in sample preparation procedures and the specifications of each technique, offering a thorough evaluation of biomarker analysis.
Collapse
Affiliation(s)
- Padmasri Sai Nandana Aravapally
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Opposite Air force Station Palaj, Gandhinagar, India
| | - Naveen Chandrasekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Opposite Air force Station Palaj, Gandhinagar, India
| | - Arvind Verma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Opposite Air force Station Palaj, Gandhinagar, India
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Opposite Air force Station Palaj, Gandhinagar, India
| |
Collapse
|
3
|
Moumou M, Mokhtari I, Harnafi M, Alrugaibah M, Aljutaily T, Alharbi HF, Alhuwaymil A, Almutairi AS, Barakat H, Milenkovic D, Amrani S, Harnafi H. Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms. Metabolites 2025; 15:234. [PMID: 40278363 PMCID: PMC12029458 DOI: 10.3390/metabo15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives:Argania spinosa L. Skeels is a Moroccan endemic plant widely used by the local population as folk medicine. This study aimed to investigate the effects of Argan fruit pulp on lipid metabolism disorders and liver steatosis in hypercaloric diet-fed mice. Methods: Animals were treated with the Argan fruit pulp extract and its fractions for 12 weeks at 100 and 200 mg Kg-1 BW daily. The analysis was conducted on lipid levels in plasma, liver, feces, and bile as well as on glycemia. The liver glutathione, malondialdehyde, and antioxidant enzyme activities were assessed. The hepatic steatosis was evaluated by measuring transaminases and alkaline phosphatase activities and examining histological sections. The polyphenol profiles were determined using HPLC-DAD. Possible underlying mechanisms in the hypolipidemic and hepatoprotective activities were predicted by molecular docking. Results: The crude extract and its aqueous fraction (rich in protocatechuic and gallic acids) significantly restored plasma lipids and glucose levels. Indeed, total cholesterol level (TCHO) was decreased in the liver but increased in bile and feces. The treatment also reduced body weight and liver and adipose tissue mass and prevented liver steatosis. The ethyl acetate fraction exhibited no effect on lipid metabolism but significantly prevented liver oxidative stress. The crude extract and its fractions appear to be nontoxic (LD50 > 5000 mg Kg-1) in mice. The phenolic acids demonstrated strong binding affinity to key targets involved in regulating lipid homeostasis, including ABCA-1, LXR, CYP7A1, HMH-CoA reductase, and PCSK-9. However, the identified flavonoids exhibited high affinities to targets involved in oxidative stress defense (SOD, CAT, and CYP2E1). Conclusions: The Argan fruit pulp, particularly its polyphenols, could be a promising natural approach for preventing cardio-metabolic diseases by improving lipid metabolism and reducing liver oxidative stress.
Collapse
Affiliation(s)
- Mohammadine Moumou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60 000, Morocco; (M.M.); (I.M.); (M.H.); (S.A.); (H.H.)
| | - Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60 000, Morocco; (M.M.); (I.M.); (M.H.); (S.A.); (H.H.)
| | - Mohamed Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60 000, Morocco; (M.M.); (I.M.); (M.H.); (S.A.); (H.H.)
| | - Mohammed Alrugaibah
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.); (T.A.); (H.F.A.); (A.A.)
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.); (T.A.); (H.F.A.); (A.A.)
| | - Hend F. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.); (T.A.); (H.F.A.); (A.A.)
| | - Abdulmalik Alhuwaymil
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.); (T.A.); (H.F.A.); (A.A.)
| | - Abdulkarim S. Almutairi
- Al Rass General Hospital, Qassim Health Cluster, Ministry of Health, King Khalid District, Al Rass 58883, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.); (T.A.); (H.F.A.); (A.A.)
| | - Dragan Milenkovic
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60 000, Morocco; (M.M.); (I.M.); (M.H.); (S.A.); (H.H.)
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60 000, Morocco; (M.M.); (I.M.); (M.H.); (S.A.); (H.H.)
| |
Collapse
|
4
|
Jiang Z, Chen L, Dou X. Glutathionylation and metabolic dysfunction-associated steatotic liver disease. Biochimie 2025; 234:10-19. [PMID: 40147581 DOI: 10.1016/j.biochi.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Zhe Jiang
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Lin Chen
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Nguyen MT, Lian A, Guilford FT, Venketaraman V. A Literature Review of Glutathione Therapy in Ameliorating Hepatic Dysfunction in Non-Alcoholic Fatty Liver Disease. Biomedicines 2025; 13:644. [PMID: 40149620 PMCID: PMC11940638 DOI: 10.3390/biomedicines13030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global cause of liver dysfunction. This spectrum of hepatic disorders can progress to severe conditions, such as non-alcoholic steatohepatitis (NASH) and cirrhosis, due to oxidative stress and sustained cellular injury. With limited pharmacological options, glutathione (GSH), a key antioxidant, has shown promising potential in reducing oxidative stress, maintaining redox balance, and improving liver function. This literature review examines studies from 2014-2024 exploring GSH therapy in NAFLD patients. Eligible studies assessed GSH as the primary intervention for NAFLD in human subjects, reporting outcomes such as liver function or oxidative stress markers. Randomized clinical trials (RCTs) were eligible, while combination therapy studies were included if GSH's effect could be isolated. Exclusions applied to non-NAFLD studies, animal/in vitro models, and non-GSH antioxidant interventions. Analysis of three studies (totaling 109 participants) demonstrated consistent improvements in alanine transaminase (ALT) levels and reductions in oxidative stress markers like 8-hydroxy-2-deoxyguanosine (8-OHdG). However, small sample sizes and inconsistent protocols limit generalizability. Further large-scale RCTs are required to confirm GSH's efficacy, determine optimal dosing, and assess long-term effects. This literature review highlights GSH's potential as a novel NAFLD therapeutic strategy while emphasizing the need for further studies to refine its clinical application.
Collapse
Affiliation(s)
- Michelle Thuy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | - Andrew Lian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| |
Collapse
|
6
|
Meng D, Chang M, Dai X, Kuang Q, Wang G. GTPBP8 mitigates nonalcoholic steatohepatitis (NASH) by depressing hepatic oxidative stress and mitochondrial dysfunction via PGC-1α signaling. Free Radic Biol Med 2025; 229:312-332. [PMID: 39341301 DOI: 10.1016/j.freeradbiomed.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of liver transplantation and hepatocellular carcinoma (HCC). Regrettably, its pathological mechanisms are still not fully comprehended. GTP-binding protein 8 (GTPBP8), belonging to the GTP-binding protein superfamily, assumes a crucial role in RNA metabolism, cell proliferation, differentiation, and signal transduction. Its aberrant expression is associated with oxidative stress and mitochondrial dysfunctions. Nevertheless, its specific functions and mechanisms of action, particularly in NASH, remain elusive. In our current study, we initially discovered that human hepatocytes L02 displayed evident mitochondrial respiratory anomaly, mitochondrial damage, and dysfunction upon treatment with palmitic acids and oleic acids (PO), accompanied by significantly reduced GTPBP8 expression levels through RNA-Seq, RT-qPCR, western blotting, and immunofluorescence assays. We then demonstrated that GTPBP8 overexpression mediated by adenovirus vector (Ad-GTPBP8) markedly attenuate lipid accumulation, inflammatory response, and mitochondrial impair and dysfunction in hepatocytes stimulated by PO. Conversely, adenovirus vector-mediated GTPBP8 knockdown (Ad-shGTPBP8) significantly accelerated lipid deposition, inflammation and mitochondrial damage in PO-treated hepatocytes in vitro. Furthermore, we constructed an in vivo NASH murine model by giving a 16-week high fat high cholesterol diet (HFHC) diet to hepatocyte specific GTPBP8-knockout (GTPBP8HKO) mice. We firstly found that HFHC feeding led to metabolic disorder in mice, including high body weight, blood glucose and insulin levels, and liver dysfunctions, which were accelerated in these NASH mice with GTPBP8 deficiency in hepatocytes. Consistently, GTPBP8HKO remarkably exacerbated the progression of NASH phenotypes induced by HFHC, as proved by the anabatic lipid accumulation, inflammation, fibrosis and reactive oxygen species (ROS) production in liver tissues, which could be largely attributed to the severe mitochondrial damage and dysfunction. Mechanistically, we further identified that GTPBP8 interacted with peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in hepatocytes. Importantly, the hepaprotective effects of GTPBP8 against mitochondrial dysfunction, oxidative stress and inflammation was largely dependent on PGC-1α expression. Collectively, GTPBP8 may exert a protective role in the progression of NASH, and targeting the GTPBP8/PGC-1α axis may represent a potential strategy for NASH treatment by improving mitochondrial functions.
Collapse
Affiliation(s)
- Dongxiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Minghui Chang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China.
| |
Collapse
|
7
|
Zakaria SS, Hanafy SM. Unraveling the Beneficial Role of Resveratrol in Fructose-Induced Non-Alcoholic Steatohepatitis with a Focus on the AMPK/Nrf2 Signaling Axis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:139. [PMID: 39859121 PMCID: PMC11767180 DOI: 10.3390/medicina61010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: High fructose intake is associated with non-alcoholic fatty liver disease (NAFLD), a chronic liver disease that is on the rise worldwide. New alternatives for treatment, such as bioactive phytochemicals, are needed. The aim of this study was to investigate the beneficial role of resveratrol in treating non-alcoholic steatohepatitis (NASH). Materials and Methods: Sixty male albino rats were allocated to three groups: group I, the normal control group; group II, the fructose-enriched diet group (FED), which was fed a 70% fructose diet for six weeks to induce NASH; and group III, the resveratrol-FED group (RES + FED), which was given the same FED diet plus an oral dose of 70 mg/kg resveratrol (RES) every day for an additional six weeks. We performed histological evaluations and assessed blood lipids and liver enzymes to study resveratrol's impact on NASH. Quantitative real-time PCR was used to assess the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) in the liver samples. ELISA was used to measure Beclin 1, AMPK, IL-6, and the DNA-binding activity of Nrf2. Oxidative stress indicators, including GSH, SOD, and MDA, were evaluated spectrophotometrically. Results: Resveratrol effectively alleviated the biochemical and histopathological abnormalities associated with NASH, improving autophagy by raising Beclin 1 levels while reducing inflammation by decreasing IL-6 levels. Furthermore, resveratrol restored the liver architecture and the oxidative balance, as evidenced by the decreased MDA levels and improved antioxidant status via elevated GSH and SOD activities, as well as the activation of the AMPK/Nrf2 signaling axis. Conclusions: This study specifically examines resveratrol's therapeutic effects in a high-fructose diet-induced NASH model, focusing on the AMPK/Nrf2 signaling pathway to address oxidative stress and autophagy, providing novel insights into its molecular mechanism of action. Resveratrol reduces NASH by boosting autophagy and activating the AMPK/Nrf2 pathway. These findings underscore the potential of resveratrol as a promising therapeutic agent that can support treatment alongside conventional medications in the management of non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Soha S. Zakaria
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Safaa M. Hanafy
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| |
Collapse
|
8
|
Cammisotto V, Valeriani E, Pignatelli P, Violi F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2025; 14:83. [PMID: 39857417 PMCID: PMC11763266 DOI: 10.3390/antiox14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by lipid accumulation in the liver due to an excess in their supplies or an impairment in their management. While some patients remain stable for years, a proportion of them progress up to steatohepatitis (MASH). MASLD links with systemic pathways being associated with metabolic and non-metabolic diseases. Although liver lipid accumulation represents the first hit for MASLD, the pathophysiology of its development and progression to MASH remains not completely understood. Oxidative stress has received particular attention in recent years, as most of the oxidative process occurs in the liver, which is also the target of oxidative stress-induced damage. Growing evidence linked the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to the increased liver production of reactive oxygen species up to liver damage and fibrosis. NOX acts both in hepatocytes and in non-parenchymal hepatic cells, contributing to hepatocyte lipotoxicity, impaired hepatic microcirculation, hepatic stellate, and mesenchymal stem cells activation and proliferation. This review aims to summarize the current knowledge on the involvement of oxidative stress in the MASLD-MASH transition, focusing on the role of NOX isoforms, and to suggest targeting NOX as a therapeutic approach in MASLD.
Collapse
Affiliation(s)
- Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (V.C.); (P.P.); (F.V.)
| | - Emanuele Valeriani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00185 Rome, Italy
- Department of Infectious Disease, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (V.C.); (P.P.); (F.V.)
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (V.C.); (P.P.); (F.V.)
| |
Collapse
|
9
|
Alshuweishi Y, Alfayez D, Almufarrih AA, Abudawood A, Alyami H, Alshuweishi FA, Al-Sheikh YA, Alfhili MA. Elevated Alanine Transaminase-to-Platelet Index (APRI) Is Associated with Obesity and Distinct Forms of Dyslipidemia: A Retrospective Cross-Sectional Study. J Clin Med 2024; 13:5650. [PMID: 39337137 PMCID: PMC11432626 DOI: 10.3390/jcm13185650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Obesity is a pathological condition and a major risk factor for dyslipidemia, type 2 diabetes, and non-alcoholic fatty liver disease. Recent research highlighted the association of non-invasive serum markers with these conditions but the clinical utility of ALT APRI in obesity and its relationship with dyslipidemia remain unexplored. Methods: We examined the association of ALT APRI in 165 non-diabetic adults stratified by BMI and serum lipid parameters. Results: Obese subjects had significantly higher APRI than lean subjects, with an area under the curve (AUC) of 0.65 (p = 0.019). Medians of APRI were significantly increased in subjects with high TG, TG/HDL, TC/HDL, and LDL/HDL and low HDL. Notably, all lipid parameters and ratios were significantly elevated in the highest APRI tertile, compared with patients in the lowest tertile. APRI was weakly yet significantly correlated with BMI (R2 = 0.032, p = 0.022), HDL (R2 = 0.071), TG/HDL (R2 = 0.031), TC/HDL (R2 = 0.063), LDL/HDL (R2 = 0.072), and TyG index (R2 = 0.081). While APRI only showed a discriminating capacity for HDL (AUC: 0.69, p = 0.003), TG/HDL (AUC: 0.63, p = 0.020), LDL/HDL (AUC: 0.68, p < 0.001), and TyG index (AUC: 0.65, p = 0.037), the highest diagnostic performance of APRI was observed with TC/HDL (AUC: 0.74, p < 0.001). Additionally, APRI was a risk factor for high TG (OR: 1.6, p = 0.028), low HDL (OR: 2.7, p = 0.0002), high TG/HDL (OR: 1.94, p = 0.0011), high TC/HDL (OR: 2.3, p < 0.0001), high LDL/HDL (OR: 2.2, p = 0.0001), and high TyG index (OR: 2.1, p = 0.008). Conclusions: Our findings argue for the role of APRI as a potential marker for obesity and dyslipidemia, which requires further confirmation in longitudinal studies.
Collapse
Affiliation(s)
- Yazeed Alshuweishi
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Dalal Alfayez
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Abdulmalik A Almufarrih
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Arwa Abudawood
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Hanan Alyami
- Department of Medical and Surgical Nursing, College of Nursing, Princess Norah bint Abdurrahman University, Riyadh 11564, Saudi Arabia
| | - Faisal A Alshuweishi
- Department of Pathology and Laboratory Medicine, King Khalid University Hospital, King Saud University Medical City, Riyadh 12372, Saudi Arabia
| | - Yazeed A Al-Sheikh
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
10
|
Lu Y, Xu X, Wu J, Ji L, Huang H, Chen M. Association between neutrophil-to-high-density lipoprotein cholesterol ratio and metabolic dysfunction-associated steatotic liver disease and liver fibrosis in the US population: a nationally representative cross-sectional study using NHANES data from 2017 to 2020. BMC Gastroenterol 2024; 24:300. [PMID: 39237899 PMCID: PMC11378436 DOI: 10.1186/s12876-024-03394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) has emerged as a promising biomarker for assessing inflammation and lipid dysregulation. Increasing evidence indicates that these metabolic disturbances play a crucial role in the development of metabolic dysfunction-associated steatotic liver disease(MASLD). This study aims to investigate the association between NHR, MASLD, and liver fibrosis. METHODS This cross-sectional study analyzed data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES). Weighted multivariate logistic regression models were used to investigate the association between NHR and both MASLD and liver fibrosis. Smoothed curve fitting and threshold effect analysis were performed to detect potential nonlinear relationships. Subgroup analyses were conducted to assess the consistency of these associations across different groups. RESULTS The study involved 4,761 participants. We observed a significant positive association between NHR and MASLD (OR = 1.20, 95% CI: 1.09-1.31). However, there was no significant association between NHR and liver fibrosis (OR = 1.01; 95% CI: 0.94-1.09). The analysis of smoothed curve fitting and threshold effect revealed an inverted U-shaped relationship between NHR and MASLD, with a turning point at 5.63. CONCLUSION Our findings indicate a positive correlation between elevated NHR levels and MASLD prevalence. However, we did not observe a significant association between NHR and liver fibrosis prevalence. Further prospective research is needed to validate these findings in a longitudinal setting.
Collapse
Affiliation(s)
- Yangni Lu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Xianli Xu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Jianlin Wu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Ji
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Huiya Huang
- Department of General Medicine, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Maowei Chen
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Arruda VM, Azevedo GT, Granato MJMG, Matos ACP, Araújo TG, Guerra JFDC. Oxidative Stress and Annexin A2 Differential Expression in Free Fatty Acids-Induced Non-Alcoholic Fatty Liver Disease in HepG2 Cells. Int J Mol Sci 2024; 25:9591. [PMID: 39273539 PMCID: PMC11395542 DOI: 10.3390/ijms25179591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Vinícius Marques Arruda
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Gabriela Tolentino Azevedo
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Maria Júlia Maia Gonçalves Granato
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| | - André Carlos Pereira Matos
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (A.C.P.M.); (T.G.A.)
| | - Joyce Ferreira da Costa Guerra
- Laboratory of Metabolic Biochemistry and Redox Processes, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas 38700-002, Brazil; (V.M.A.); (G.T.A.); (M.J.M.G.G.)
| |
Collapse
|
12
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
13
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
14
|
Hussein AL, Nema DT, Nasir GA. Evaluation of the role of some non-enzymatic antioxidants among Iraqi patients with non-alcoholic fatty liver disease. Open Life Sci 2024; 19:20220881. [PMID: 38947767 PMCID: PMC11211876 DOI: 10.1515/biol-2022-0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation in individuals consuming little or no alcohol, has become highly prevalent globally. Oxidative stress plays a central role in instigating inflammation and cell death pathways driving NAFLD progression. This case-control study aimed to elucidate the association between circulating levels of the pivotal non-enzymatic antioxidants - coenzyme Q10 and vitamins E and C - and liver injury parameters among 60 Iraqi NAFLD patients versus 30 healthy controls. NAFLD diagnosis entailed over 5% hepatic steatosis on ultrasound excluding other etiologies. Patients spanned three age groups: 20-29, 30-39, and 40-49. Substantially diminished antioxidant levels concurrent with elevated alkaline phosphatase enzyme were unveiled in NAFLD patients relative to controls (all p < 0.001). Age-based analysis reinforced widespread antioxidant depletion and liver enzyme augmentation across NAFLD patients. Significant correlations also emerged between antioxidants and liver parameters. Our novel observations confirm an antioxidant inadequacy likely perpetuating pathogenic oxidative reactions in NAFLD. Restoring such deficits through lifestyle or therapeutic interventions may confer preventative and disease-modifying value.
Collapse
Affiliation(s)
- Ammar L. Hussein
- Department of Biochemistry, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Dunia T. Nema
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Gulboy A. Nasir
- College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
15
|
Nishiyama M, Ishizawa S, Nishi A, Taketomi A, Kono T. Bofutsushosan (Fangfengtongshengsan) improves early stages of NASH via the gut–liver axis in diabetes-induced NASH model mice. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 11:100440. [DOI: 10.1016/j.prmcm.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Kasprzak-Drozd K, Niziński P, Kasprzak P, Kondracka A, Oniszczuk T, Rusinek A, Oniszczuk A. Does Resveratrol Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)? Int J Mol Sci 2024; 25:3746. [PMID: 38612556 PMCID: PMC11012111 DOI: 10.3390/ijms25073746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Paulina Kasprzak
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Agata Rusinek
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| |
Collapse
|
17
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Ramaiah P, Jamel Baljon K, Alsulami SA, Lindsay GM, Chinnasamy L. Diet quality indices and odds of metabolic dysfunction-associated fatty liver disease: a case-control study. Front Nutr 2024; 10:1251861. [PMID: 38260062 PMCID: PMC10800572 DOI: 10.3389/fnut.2023.1251861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/02/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives There are only limited studies investigating the impact of dietary quality indicators, such as dietary quality index (DQI), dietary diversity score (DDS), and alternative healthy eating index (AHEI), on metabolic dysfunction-associated fatty liver disease (MASLD). Furthermore, these indicators may have different components that could lead to varying results. Therefore, this study aims to assess the nutritional quality indicators and their potential association with MASLD. Methods The study included 128 recently diagnosed MASLD patients and 256 controls aged between 20 and 60 years. The dietary intake of participants was evaluated using a validated semi-quantitative food frequency questionnaire that consisted of 168 items. In this study, the method used to evaluate dietary diversity was based on five main food groups, specifically bread and grains, vegetables, fruits, meat, and dairy. The AHEI-2010 was computed using data collected from the FFQ. Results After adjusting for confounders in the fully adjusted model, a significant negative correlation was observed between DDS and the risk of MASLD (OR 0.41, 95% CI 0.20, 0.97). Participants in the top quartile of AHEI had a 76% lower risk of MASLD compared with those in the bottom quartile after controlling for all potential confounders in the fully adjusted model (OR 0.24, 95% CI 0.12, 0.56). Conclusion The results of our study suggest that there is a significant association between adherence to a high-diversity diet and a reduced likelihood of developing MASLD. Similarly, we observed a similar association between adherence to the AHEI diet and a lower risk of MASLD.
Collapse
Affiliation(s)
| | | | - Sana A. Alsulami
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Grace M. Lindsay
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
21
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
22
|
Pansa CC, Molica LR, de Oliveira Júnior FC, Santello LC, Moraes KCM. Cellular and molecular effects of fipronil in lipid metabolism of HepG2 and its possible connection to non-alcoholic fatty liver disease. J Biochem Mol Toxicol 2024; 38:e23595. [PMID: 38050659 DOI: 10.1002/jbt.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global public health problem that affects more than a quarter of the population. The development of this disease is correlated with metabolic dysfunctions that lead to lipid accumulation in the liver. Pesticides are one of etiologies that support NAFLD establishment. Therefore, the effects of the insecticide fipronil on the lipid metabolism of the human hepatic cell line, HepG2, was investigated, considering its widespread use in field crops and even to control domestic pests. To address the goals of the study, biochemical, cellular, and molecular analyses of different concentrations of fipronil in cell cultures were investigated, after 24 h of incubation. Relevant metabolites such as triglycerides, glucose levels, β-oxidation processes, and gene expression of relevant elements correlated with lipid and metabolism of xenobiotics were investigated. The results suggested that at 20 μM, the pesticide increased the accumulation of triglycerides and neutral lipids by reducing fatty acid oxidation and increasing de novo lipogenesis. In addition, changes were observed in genes that control oxidative stress and the xenobiotic metabolism. Together, the results suggest that the metabolic changes caused by the insecticide fipronil may be deleterious if persistent, favoring the establishment of hepatic steatosis.
Collapse
Affiliation(s)
- Camila C Pansa
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Letícia R Molica
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Fabiano C de Oliveira Júnior
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Lara C Santello
- Laboratório de Microbiologia Ambiental, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Karen C M Moraes
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
23
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
24
|
Sandoval C, Reyes C, Rosas P, Godoy K, Souza-Mello V, Farías J. Effectiveness of Cerium Oxide Nanoparticles in Non-Alcoholic Fatty Liver Disease Evolution Using In Vivo and In Vitro Studies: A Systematic Review. Int J Mol Sci 2023; 24:15728. [PMID: 37958712 PMCID: PMC10648767 DOI: 10.3390/ijms242115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of liver abnormalities, from benign steatosis to nonalcoholic steatohepatitis (NASH). Because of their antioxidant capabilities, CeNPs have sparked a lot of interest in biological applications. This review evaluated the effectiveness of CeNPs in NAFLD evolution through in vivo and in vitro studies. Databases such as MEDLINE, EMBASE, Scopus, and Web of Science were looked for studies published between 2012 and June 2023. Quality was evaluated using PRISMA guidelines. We looked at a total of nine primary studies in English carried out using healthy participants or HepG2 or LX2 cells. Quantitative data such as blood chemical markers, lipid peroxidation, and oxidative status were obtained from the studies. Our findings indicate that NPs are a possible option to make medications safer and more effective. In fact, CeNPs have been demonstrated to decrease total saturated fatty acids and foam cell production (steatosis), reactive oxygen species production and TNF-α (necrosis), and vacuolization in hepatic tissue when used to treat NAFLD. Thus, CeNP treatment may be considered promising for liver illnesses. However, limitations such as the variation in durations between studies and the utilization of diverse models to elucidate the etiology of NAFLD must be considered. Future studies must include standardized NAFLD models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolina Reyes
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Pamela Rosas
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 22775-000, Brazil;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
25
|
Hu Y, Peng X, Du G, Zhai Y, Xiong X, Luo X. Dihydroartemisinin ameliorates the liver steatosis in metabolic associated fatty liver disease mice by attenuating the inflammation and oxidative stress and promoting autophagy. Acta Cir Bras 2023; 38:e385023. [PMID: 37851788 PMCID: PMC10578105 DOI: 10.1590/acb385023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE To explore the effect and potential mechanism of dihydroartemisinin (DHA) on metabolism-related fatty liver disease. METHODS A metabolic associated fatty liver disease (MAFLD) mice model was induced with continuous supplies of high-fat diet. DHA was intraperitoneally injected into mice. The weight of mice was monitored. The concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) in serum were detected by an automatic biochemical analyzer. The liver tissues were stained by hematoxylin and eosin and oil red O. The level of inflammation, oxidative stress, and autophagy was assessed by reverse transcription polymerase chain reaction, biochemical examination, Western blot and transmission electron microscope assays. RESULTS DHA treatment reduced theMAFLD-enhanced the level of weight gain, the concentrations of TC, TG, LDL and malonaldehyde, while increasedthe MAFLD-decreased the concentrations of HDL and superoxide dismutase. DHA ameliorated the MAFLD-aggravated pathological changes and the number of lipid droplets. Low dose of DHA declined the MAFLD-induced the enhancement of the expression of inflammatory factor. DHA treatment increased the MAFLD-enhanced the level of autophagy related protein, while decreased the MAFLD-reduced the protein level of p62. The increased level of autophagy was confirmed by transmission electron microscope. CONCLUSIONS DHA can improve liver steatosis in MAFLD mice by inhibiting inflammation and oxidative stress and promoting autophagy.
Collapse
Affiliation(s)
- Yiyi Hu
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
- Shunde Hospital of Southern Medical University – Department of VIP Medical Center – Foshan – China
| | - Xuetao Peng
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Guoping Du
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Yingji Zhai
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Xingbo Xiong
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Xiaoliang Luo
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| |
Collapse
|
26
|
Convertini P, Santarsiero A, Todisco S, Gilio M, Palazzo D, Pappalardo I, Iacobazzi D, Frontuto M, Infantino V. ACLY as a modulator of liver cell functions and its role in Metabolic Dysfunction-Associated Steatohepatitis. J Transl Med 2023; 21:568. [PMID: 37620891 PMCID: PMC10463545 DOI: 10.1186/s12967-023-04431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Non-alcoholic Fatty Liver Disease (NAFLD), now better known as Metabolic (Dysfunction)-Associated Fatty Liver Disease (MAFLD) and its progression to Nonalcoholic Steatohepatitis (NASH), more recently referred to as Metabolic (Dysfunction)-Associated Steatohepatitis (MASH) are the most common causes of liver failure and chronic liver damage. The new names emphasize the metabolic involvement both in relation to liver function and pathological features with extrahepatic manifestations. This study aims to explore the role of the immunometabolic enzyme ATP citrate lyase (ACLY), with a critical function in lipogenesis, carbohydrate metabolism, gene expression and inflammation. METHODS ACLY function was investigated in TNFα-triggered human hepatocytes and in PBMC-derived macrophages from MASH patients. Evaluation of expression levels was carried out by western blotting and/or RT-qPCR. In the presence or absence of ACLY inhibitors, ROS, lipid peroxidation and GSSG oxidative stress biomarkers were quantified. Chromatin immunoprecipitation (ChIP), transient transfections, immunocytochemistry, histone acetylation quantitation were used to investigate ACLY function in gene expression reprogramming. IL-6 and IL-1β were quantified by Lumit immunoassays. RESULTS Mechanistically, ACLY inhibition reverted lipid accumulation and oxidative damage while reduced secretion of inflammatory cytokines in TNFα-triggered human hepatocytes. These effects impacted not only on lipid metabolism but also on other crucial features of liver function such as redox status and production of inflammatory mediators. Moreover, ACLY mRNA levels together with those of malic enzyme 1 (ME1) increased in human PBMC-derived macrophages from MASH patients when compared to age-matched healthy controls. Remarkably, a combination of hydroxycitrate (HCA), the natural ACLY inhibitor, with red wine powder (RWP) significantly lowered ACLY and ME1 mRNA amount as well as IL-6 and IL-1β production in macrophages from subjects with MASH. CONCLUSION Collectively, our findings for the first time highlight a broad spectrum of ACLY functions in liver as well as in the pathogenesis of MASH and its diagnostic and therapeutic potential value.
Collapse
Affiliation(s)
- Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Michele Gilio
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Donatella Palazzo
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Maria Frontuto
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
27
|
Thomaz MS, Sertorio MN, Gazarini ML, Ribeiro DA, Pisani LP, Nagaoka MR. Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet. Biomedicines 2023; 11:2199. [PMID: 37626696 PMCID: PMC10452290 DOI: 10.3390/biomedicines11082199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins' role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcia Regina Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil; (M.S.T.)
| |
Collapse
|
28
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Sergazy S, Shulgau Z, Kamyshanskiy Y, Zhumadilov Z, Krivyh E, Gulyayev A, Aljofan M. Blueberry and cranberry extracts mitigate CCL4-induced liver damage, suppressing liver fibrosis, inflammation and oxidative stress. Heliyon 2023; 9:e15370. [PMID: 37128328 PMCID: PMC10147973 DOI: 10.1016/j.heliyon.2023.e15370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
The current study aims to evaluate potential hepatoprotective effect of lingonberry, cranberry and blueberry polyphenols on carbon tetrachloride (CCL-4)-induced acute and subacute liver injury in rats. A total of 55 male Wistar rats, divided into six experimental and control groups. With the exception of the negative control group, all groups received an intraperitoneal injection of CCl-4, twice a week for 14 days. An extract of lingonberry, cranberry, blueberry polyphenols and the positive control, silymarin were administered daily via intragastric route, for 14 consecutive days. The untreated control group showed characteristic of classical oxidative stress-mediated liver damage with vacuolization of the hepatocyte cytoplasm, infiltration by immune cells and proliferation of collagen fibers, decrease in body weight and increase in liver weight; increased levels of AST and ALT in serum, an increased lipid peroxidation in the liver. However, the use of cranberry and blueberry polyphenols significantly suppressed liver damage, exerting an effect comparable to the hepatoprotective effect of the positive control. The extracts prevented and reduced inflammatory liver damage by reducing IL-6, TNF-α and IFN-γ levels. In conclusion, blueberry and cranberry extracts have a protective effect against acute and subacute CCl4-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Shynggys Sergazy
- National Center for Biotechnology, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Yevgeniy Kamyshanskiy
- National Center for Biotechnology, Astana, Kazakhstan
- Clinic of Medical University “MUK” NCJSC, Karaganda, Kazakhstan
| | | | - Elena Krivyh
- Khanty-Mansiysk State Medical Academy, Khanty-mansiysk, Russian Federation
| | - Alexander Gulyayev
- National Center for Biotechnology, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Mohamad Aljofan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
30
|
Aguilar EC, Fernandes-Braga W, Leocádio PCL, Campos GP, Lemos VS, de Oliveira RP, Caetano de Faria AM, Dos Santos Aggum Capettini L, Alvarez-Leite JI. Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE-/- mice fed a high-fat diet. Food Funct 2023; 14:3332-3347. [PMID: 36940107 DOI: 10.1039/d3fo00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1β, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil. .,Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, USA
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Ana Maria Caetano de Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| |
Collapse
|
31
|
1,25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease. J Mol Histol 2023; 54:119-134. [PMID: 36930413 DOI: 10.1007/s10735-023-10118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest cause of liver morbidity and mortality and has multiple unclear pathogenic mechanisms. Vitamin D deficiency was associated with increased incidence and severity of NAFLD. Increased hepatic expression of 3-mercaptopyruvate sulfur transferase (MPST) and dysregulated hepatocyte apoptosis were involved in NAFLD pathogenesis. We aimed to explore the protective effect of 1,25-Dihydroxycholecalciferol (1,25-(OH)2 D3) against development of NAFLD and the possible underlying mechanisms, regarding hepatic MPST and caspase-3 expression. 60 male adult rats were divided into 4 and 12 week fed groups; each was subdivided into control, high-fat diet (HFD), and HFD + VD. Serum levels of lipid profile parameters, liver enzymes, insulin, glucose, C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and hepatic levels of malondialdehyde (MDA), total antioxidant capacity (TAC), and reactive oxygen species (ROS) were measured. BMI and HOMA-IR were calculated, and liver tissues were processed for histopathological and immunohistochemical studies. The present study found that 1,25-(OH)2 D3 significantly decreased BMI, HOMA-IR, serum levels of glucose, insulin, liver enzymes, lipid profile parameters, CRP, TNF-α, hepatic levels of MDA, ROS, hepatic expression of MPST, TNF-α, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and caspase-3; and significantly increased hepatic TAC in both HFD-fed groups. In conclusion: Administration of 1,25-(OH)2 D3 with HFD abolished the NAFLD changes associated with HFD in 4-week group, and markedly attenuated the changes in 12-week group. The anti-apoptotic effect via decrement of caspase-3 and MPST expression are novel mechanisms suggested to be implicated in the protective effect of 1,25-(OH)2 D3.
Collapse
|
32
|
Lv H, Tao F, Peng L, Chen S, Ren Z, Chen J, Yu B, Wei H, Wan C. In Vitro Probiotic Properties of Bifidobacterium animalis subsp. lactis SF and Its Alleviating Effect on Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15061355. [PMID: 36986084 PMCID: PMC10053994 DOI: 10.3390/nu15061355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with many influencing factors. With the increasing role of the gut–liver axis in various liver diseases, research on the prevention and treatment of NAFLD with probiotics is increasing. In the present study, a Bifidobacterium animalis subsp. strain, B. lactis SF, was isolated from the feces of healthy infants and characterized by sequencing of the 16S rDNA. A systematic probiotic evaluation was carried out, and a diet-induced mouse model was constructed to study the effect and mechanism of B. lactis SF on diet-induced NAFLD. Results show that B. lactis SF has excellent gastrointestinal fluid tolerance and intestinal colonization, and strong antibacterial and antioxidant capabilities. In vivo, B. lactis SF modulated intestinal flora, restored the intestinal barrier, and inhibited LPS entrance into the portal circulation, which subsequently inhibited the TLR4/NF-κB and modulated the PI3K-Akt/AMPK signaling pathway, attenuated the inflammatory response, and reduced lipid accumulation. In addition, B. lactis SF attenuated oxidative stress and further alleviated autophagy, resulting in an ameliorative effect on NAFLD. Therefore, our study provides a new dietary method for the treatment of NAFLD.
Collapse
Affiliation(s)
- Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
| | - Feiyue Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
| | - Bo Yu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China;
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (H.L.); (F.T.); (L.P.); (S.C.); (Z.R.); (J.C.); (H.W.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China;
| | - Cuixiang Wan
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China;
- Correspondence: ; Tel.: +86-791-8833-4578; Fax: +86-791-8833-3708
| |
Collapse
|
33
|
Li X, Bai X, Tang Y, Qiao C, Zhao R, Peng X. Research progress on the P2X7 receptor in liver injury and hepatocellular carcinoma. Chem Biol Drug Des 2023; 101:794-808. [PMID: 36403102 DOI: 10.1111/cbdd.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7 receptor) is an adenosine triphosphate (ATP)-gated ion channel that is widely distributed on the surfaces of immune cells and tissues such as those in the liver, kidney, lung, intestine, and nervous system. Hepatocellular carcinoma (HCC) is one of the most common malignancies with increasing incidence and mortality. Although many treatments for liver cancer have been studied, the prognosis for liver cancer is still very poor. Therefore, new liver cancer treatments are urgently needed. P2X7 receptor activation can secrete proinflammatory factors through the P2X7 receptor-NLRP3 signaling pathway, thereby affecting the progression of liver injury. The P2X7 receptor may be a target for growth inhibition of HCC cells and may affect the invasion and migration of HCC cells through the PI3K/AKT and AMPK signaling pathways. In recent years, P2X7 receptor antagonists or inhibitors have attracted widespread attention as therapeutic targets for hepatocellular carcinoma and liver injury. Therefore, this review covers the basic concepts of the P2X7 receptor and role of the P2X7 receptor in liver cancer and liver injury, providing new potential therapeutic targets for hepatocellular carcinoma and liver injury.
Collapse
Affiliation(s)
- Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
34
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
35
|
Alwadani AH, Almasri SA, Aloud AA, Albadr NA, Alshammari GM, Yahya MA. The Synergistic Protective Effect of γ-Oryzanol (OZ) and N-Acetylcysteine (NAC) against Experimentally Induced NAFLD in Rats Entails Hypoglycemic, Antioxidant, and PPARα Stimulatory Effects. Nutrients 2022; 15:nu15010106. [PMID: 36615764 PMCID: PMC9823776 DOI: 10.3390/nu15010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study estimated that the combined effect of γ-Oryzanol and N-acetylcysteine (NAC) against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats also estimated some of their mechanisms of action. Adult male rats were divided into seven groups (n = 8 each) as control, control + NAC, control + γ-Oryzanol, HFD, HFD + NAC, HFD + γ-Oryzanol, and HFD + NAC + γ-Oryzanol. NAC was administered orally at a final concentration of 200 mg/kg, whereas γ-Oryzanol was added to diets at a concentration of 0.16. All treatments were conducted for 17 weeks and daily. Both NAC and γ-Oryzanol were able to reduce final body weights, fat weights, fasting glucose, fasting insulin, serum, and serum levels of liver function enzymes as well as the inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6), and leptin in HFD-fed rats. They also improved hepatic structure and glucose tolerance, increased adiponectin levels, and reduced serum and hepatic levels of triglycerides (TGs) and cholesterol (CHOL) in these rats. These effects were concomitant with a reduction in the hepatic levels of lipid peroxides (MDA) and serum levels of LDL-C, but also with an increment in the hepatic levels of superoxide dismutase (SOD) and glutathione (GSH). Interestingly, only treatment with γ-Oryzanol stimulated the mRNA levels of proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1) in the liver and white adipose tissue (WAT) of rats. Of note, the combination therapy of both drugs resulted in maximum effects and restored almost normal liver structure and basal levels of all the above-mentioned metabolic parameters. In conclusion, a combination therapy of γ-Oryzanol and NAC is an effective therapy to treat NAFLD, which can act via several mechanisms on the liver and adipose tissue.
Collapse
Affiliation(s)
- Ashwag H. Alwadani
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Home Economics, University College in Farasan, Jazan University, Jazan 54943, Saudi Arabia
| | - Soheir A. Almasri
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Amal A. Aloud
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A. Albadr
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Tavakoli T, Zarban A, Hooshyar R, Salmani F, Tajik H. Improvement of thiol groups and total antioxidant capacity in patients with non-alcoholic fatty liver after treatment with pioglitazone. Arch Physiol Biochem 2022; 128:1591-1595. [PMID: 32608271 DOI: 10.1080/13813455.2020.1784953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate oxidative stress state in non-alcoholic fatty liver (NAFLD) patients at the time of diagnosis and by passing three months from the treatment. METHODS 37 patients with NAFLD in summer 2019 were enrolled in this study. Also, 37 healthy controls that were matched for sex and age were included as a control group. Oxidative stress parameters such as lipid peroxidation (MDA), total antioxidant capacity (TAC), and Thiols were measured by standard methods and were then compared with before treatment. RESULTS At the time of diagnosis, MDA levels were significantly increased and FRAP and Thiol levels were significantly decreased. After 3 months of treatment with pioglitazone, MDA levels decreased and FRAP and Thiol group increased. CONCLUSIONS Non-alcoholic fatty liver disease is associated with the higher levels of MDA and lower serum levels of total antioxidant capacity and Thiol group levels.
Collapse
Affiliation(s)
- Tahmine Tavakoli
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhaneh Hooshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamidreza Tajik
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
37
|
Hidalgo I, Ortiz-Flores M, Villarreal F, Fonseca-Coronado S, Ceballos G, Meaney E, Nájera N. Is it possible to treat nonalcoholic liver disease using a flavanol-based nutraceutical approach? Basic and clinical data. J Basic Clin Physiol Pharmacol 2022; 33:703-714. [PMID: 35119232 DOI: 10.1515/jbcpp-2021-0285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/15/2022] [Indexed: 01/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by a spectrum of diseases, ranging from simple steatosis to hepatocellular carcinoma. The main factors for NAFLD are closely related to obesity, insulin resistance, intestinal microbiota alterations, hyperinsulinism, low-grade systemic inflammation, nitroxidative stress, lipid peroxidation, and mitochondrial dysfunction. Currently, the treatment of NAFLD is based on diet and exercise because, to date, there is no specific pharmacological agent, already approved, that raises the need for new therapeutic strategies. Nutraceuticals, such as polyphenols, have potential beneficial effects for health. In this article, the beneficial effects of epigallocatechin-3-gallate (EGCG) and (-)-epicatechin (EC) are discussed. EGCG is the main catechin in green tea, which has shown in various studies its potential effect preventing and treating NAFLD since it has shown antihyperlipidemic, anti-inflammatory, antifibrotic, antioxidant, and improvement of liver lipid metabolism. However, it has been found that excessive consumption may cause hepatotoxicity. EC is widely distributed in nature (fruits and vegetables). This flavanol has shown many beneficial effects, including antihypertensive, anti-inflammatory, anti-hyperglycemic, antithrombotic, and antifibrotic properties. It increases mitochondrial biogenesis, and it also has effects on the regulation of synthesis and metabolism of lipids. This flavanol is a nontoxic substance; it has been classified by the United States Food and Drug Administration as harmless. The EC-induced effects can be useful for the prevention and/or treatment of NAFLD.
Collapse
Affiliation(s)
- Isabel Hidalgo
- Unidad de Investigación Laboratorio de Investigación en Inmunología y Salud Publica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Miguel Ortiz-Flores
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | | | - Salvador Fonseca-Coronado
- Unidad de Investigación Laboratorio de Investigación en Inmunología y Salud Publica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Guillermo Ceballos
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - Eduardo Meaney
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - Nayelli Nájera
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| |
Collapse
|
38
|
Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11081440. [PMID: 35892642 PMCID: PMC9332159 DOI: 10.3390/antiox11081440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: A Mediterranean diet (MedDiet) is recommended as a therapy for non-alcoholic fatty liver disease (NAFLD) because there is no specific pharmacological treatment for this disease. Objective: To assess the relationship between the adherence to the Mediterranean diet and the intrahepatic fat content (IFC), levels of oxidative stress, and inflammation biomarkers after a 6-month lifestyle intervention in NAFLD patients. Methods: Patients diagnosed with NAFLD (n = 60 adults; 40–60 years old) living in the Balearic Islands, Spain, were classified into two groups, according to the adherence to the MedDiet after 6 months of lifestyle intervention. Anthropometry, blood pressure, IFC, maximal oxygen uptake, and pro/antioxidant and inflammatory biomarkers were measured in plasma and in PBMCs before and after the intervention. Results: Reductions in weight, body mass index, IFC, blood pressure levels, circulating glucose, glycosylated hemoglobin, and markers of liver damage—aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), and cytokeratin 18 (CK-18)—were observed after the intervention. The highest reductions were observed in the group with the best adherence to the MedDiet. A significant improvement in cardiorespiratory fitness was also observed in the group with a higher adherence. The activities of catalase in plasma and catalase and superoxide dismutase in blood mononuclear cells increased only in the group with a higher adherence, as well as the catalase gene expression in the blood mononuclear cells. The plasma levels of malondialdehyde and myeloperoxidase decreased, and resolvin-D1 increased in both groups after the intervention, whereas interleukin-6 levels decreased only in the group with a higher adherence to the MedDiet. Conclusions: A greater adherence to the MedDiet is related to greater improvements in IFC, cardiorespiratory fitness, and pro-oxidative and proinflammatory status in NAFLD patients after a 6-month nutritional intervention based on the MedDiet.
Collapse
|
39
|
Zhang Y, Chen Y. Roles of organelle-specific autophagy in hepatocytes in the development and treatment of non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1673-1681. [PMID: 35950774 PMCID: PMC9509094 DOI: 10.1097/cm9.0000000000002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder of lipid metabolism. The lipotoxic intermediates of lipid metabolism cause mitochondrial dysfunction and endoplasmic reticulum stress. Organelle-specific autophagy is responsible for the removal of dysfunctional organelles to maintain intracellular homeostasis. Lipophagy contributes to lipid turnover by degrading lipid droplets. The level of autophagy changes during the course of NAFLD, and the activation of hepatocyte autophagy might represent a method of treating NAFLD.
Collapse
Affiliation(s)
- Yizhi Zhang
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You’an Hospital Affiliated to Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| |
Collapse
|
40
|
Faraji S, Hosseini Azar MRM, Alizadeh M. Brewed chicory leaf consumption has unexpected side effects along beneficial effects on liver enzymes in non-alcoholic fatty liver disease patients. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Elseweidy MM, Elesawy AE, Sobh MS, Elnagar GM. Ellagic acid ameliorates high fructose-induced hyperuricemia and non-alcoholic fatty liver in Wistar rats: Focusing on the role of C1q/tumor necrosis factor-related protein-3 and ATP citrate lyase. Life Sci 2022; 305:120751. [PMID: 35780841 DOI: 10.1016/j.lfs.2022.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
AIMS High-fructose intake (HF) represents an inducible risk factor for non-alcoholic fatty liver disease (NAFLD). Present study aimed to illustrate the effect of HF diet (HFD) on the induction of NAFLD, hyperuricemia and role of ellagic acid as modulator. MAIN METHODS Twenty-four adult male albino rats were randomly divided into four groups (6/each). The first group received normal chow diet only while the others received 60 % HFD for 4 weeks and subdivided later into 3 groups. The first and second groups received allopurinol and ellagic acid, respectively while the third group received HFD only for extra 4 weeks. KEY FINDINGS Rats fed on HFD for 8 weeks displayed body weight gain, insulin resistance (IR), hyperglycemia, dyslipidemia, hyperuricemia with increased oxidative stress and hepatic lipogenic enzymes such as ATP citrate lyase (ACL), aldolase B, and fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SERBP-1c). C1q /tumor necrosis factor-related protein -3 (CTRP3), and phosphorylated AMP-activated protein kinase (p-AMPK) however showed significant decreases. Ellagic acid or allopurinol administration significantly decreased serum lipids, uric acid, glucose, insulin levels and hepatic contents of enzymes. Malondialdehyde (MDA), FAS, aldolase B, SERBP-1c, and xanthine oxidase (XO) hepatic contents showed significant decreases along with glutathione (GSH) increase as compared to fructose group where ellagic acid was more remarkable compared to allopurinol. SIGNIFICANCE Our findings indicated that ellagic acid had alleviated HFD-induced hyperuricemia, its associated NAFLD pattern as mediated through activation of CTRP3 and inhibition of ACL activities in a pattern more remarkable than allopurinol.
Collapse
Affiliation(s)
| | - Ahmed E Elesawy
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo)BUC), Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
42
|
Gravina AG, Romeo M, Pellegrino R, Tuccillo C, Federico A, Loguercio C. Just Drink a Glass of Water? Effects of Bicarbonate-Sulfate-Calcium-Magnesium Water on the Gut-Liver Axis. Front Pharmacol 2022; 13:869446. [PMID: 35837275 PMCID: PMC9274271 DOI: 10.3389/fphar.2022.869446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background and Aim: Fonte Essenziale® water is a bicarbonate-sulfate-calcium-magnesium water, low in sodium, recognized by the Italian health care system in hydropinotherapy and hepatobiliary dyspepsia therapy. We wanted to explore its effects on the gut-liver axis and microbiota in non-alcoholic fatty liver disease patients. Patients and Methods: We considered enrollment for 70 patients, of which four were excluded. We finally enrolled 55 patients with ultrasound-documented steatosis (SPs+) and 11 patients without it (SPs-). They then drank 400 ml of water for 6 months in the morning on an empty stomach. Routine hematochemical and metabolic parameters, oxidative stress parameters, gastrointestinal hormone levels, and fecal parameters of the gut microbiota were evaluated at three different assessment times, at baseline (T0), after 6 months (T6), and after a further 6 months of water washout (T12). We lost, in follow-up, 4 (T6) and 22 (T12) patients. Results: Between T0-T6, we observed a significant Futuin A and Selenoprotein A decrease and a GLP-1 and PYY increase in SPs+ and the same for Futuin A and GLP-1 in SPs-. Effects were lost at T12. In SPs+, between T0-T12 and T6-12, a significant reduction in Blautia was observed; between T0-T12, a reduction of Collinsella unc. was observed; and between T0-T12 and T6-12, an increase in Subdoligranulum and Dorea was observed. None of the bacterial strains we analyzed varied significantly in the SPs- population. Conclusion: These results indicate beneficial effects of water on gastrointestinal hormones and hence on the gut-liver axis in the period in which subjects drank water both in SPs- and in SPs+.
Collapse
|
43
|
MCD Diet Rat Model Induces Alterations in Zinc and Iron during NAFLD Progression from Steatosis to Steatohepatitis. Int J Mol Sci 2022; 23:ijms23126817. [PMID: 35743260 PMCID: PMC9224179 DOI: 10.3390/ijms23126817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/16/2022] Open
Abstract
We evaluate the effects of the methionine-choline-deficient (MCD) diet on serum and hepatic zinc (Zn) and iron (Fe) and their relationships with matrix metalloproteinases (MMPs) and their modulators (TIMPs and RECK) as well as hepatic fatty acids using male Wistar rats fed 2-, 4- and 8-week MCD diets. Serum and hepatic Zn decrease after an 8-week MCD diet. Serum Fe increases after an 8-week MCD diet and the same occurs for hepatic Fe. An increase in hepatic MMP activity, associated with a decrease in RECK and TIMPs, is found in the MCD 8-week group. Liver Fe shows a positive correlation versus MMPs and RECK, and an inverse correlation versus TIMPs. A positive correlation is found comparing liver Zn with stearic, vaccenic and arachidonic acids, and an inverse correlation is found with linolenic and docosatetraenoic acids. An opposite trend is found between liver Fe versus these fatty acids. During NAFLD progression from steatosis to steatohepatitis, MCD rats exhibit an increase in Zn and a decrease in Fe levels both in serum and tissue associated with alterations in hepatic MMPs and their inhibitors, and fatty acids. The correlations detected between Zn and Fe versus extracellular matrix modulators and fatty acids support their potential role as therapeutic targets.
Collapse
|
44
|
Asghari S, Rezaei M, Rafraf M, Taghizadeh M, Asghari-Jafarabadi M, Ebadi M. Effects of Calorie Restricted Diet on Oxidative/Antioxidative Status Biomarkers and Serum Fibroblast Growth Factor 21 Levels in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Controlled Clinical Trial. Nutrients 2022; 14:nu14122509. [PMID: 35745238 PMCID: PMC9231395 DOI: 10.3390/nu14122509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress plays a fundamental role in the development and progression of nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the effects of a calorie-restricted (CR) diet on oxidative/anti-oxidative status in patients with NAFLD and the potential mediating role of fibroblast growth factor 21 (FGF-21) in this regard. This randomized, controlled clinical trial was carried out on sixty patients with NAFLD aged 20 to 60 years with body mass index (BMI) ranging from 25 to 35 kg/m2. Participants were randomly assigned to either the CR diet group (received a prescribed low-calorie diet for twelve weeks, n = 30) or the control group (n = 30). Fasting blood samples, anthropometric measurements, dietary intake, and physical activity data were collected for all participants at baseline and at the end of the trial. Significant reductions in weight, BMI, waist circumference, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were observed in the CR diet group compared to the control group (all p < 0.05). Liver steatosis grade, serum levels of malondialdehyde (MDA), total antioxidant capacity (TAC), and FGF-21, as well as erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities did not show significant changes in the CR group when compared to the controls at the end of the study (p > 0.05). CR diet with moderate weight loss has some favorable effects on NAFLD but was not able to modify oxidative/anti-oxidative status in these patients. Future studies are warranted to target the effects of long-term interventions with a greater weight loss in this patient population.
Collapse
Affiliation(s)
- Somayyeh Asghari
- Department of Clinical Nutrition, Faculty of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 141556117, Iran; (S.A.); (M.R.); (M.T.)
| | - Mahsa Rezaei
- Department of Clinical Nutrition, Faculty of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 141556117, Iran; (S.A.); (M.R.); (M.T.)
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, Faculty of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 141556117, Iran; (S.A.); (M.R.); (M.T.)
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
- Cabrini Research, Cabrini Health, 154 Wattletree Rd, Malvern, VIC 3144, Australia
| | - Maryam Ebadi
- Division of Gastroenterology & Liver Unit, University of Alberta, Edmonton, AB T6G 2X8, Canada
- Correspondence: ; Tel.: +1-780-248-1892
| |
Collapse
|
45
|
Downregulation of hepatic fat accumulation, inflammation and fibrosis by nerolidol in purpose built western-diet-induced multiple-hit pathogenesis of NASH animal model. Biomed Pharmacother 2022; 150:112956. [PMID: 35447548 DOI: 10.1016/j.biopha.2022.112956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Western diet style (fast food), which includes fatty frozen junk food, lard, processed meats, whole-fat dairy foods, cream, mayonnaise, butter, snacks, and fructose, is a primary etiological determinant for developing nonalcoholic steatohepatitis (NASH) worldwide. Here the primary focus is to see the impact of naturally identified essential oil on disease mechanisms developed in an animal model using the same ingredients. Currently, symptomatic therapies are recommended for the management of NASH due to non-availability of specific treatments. Therefore, the present study was designed to evaluate the potential anti-NASH effect of nerolidol in a rat model fed with a purpose-built diet. The diet substantially induced insulin resistance, hepatic steatosis, dyslipidemia, and elevation of liver enzymes in the experimental animals. The levels of liver oxidative stress markers, nitrites (NO2-), serum pro-inflammatory cytokine (TNF-α) and hepatic collagen were increased in disease control rats. Nerolidol oral treatment in ascending dose order of 250 and 500 mg/kg substantially reduced the steatosis (macrovesicular and microvesicular), degeneration of hepatocytes, and inflammatory cells infiltration. The amounts of circulatory TNF-α and tissue collagen were also reduced at 500 mg/kg dose of nerolidol, expressing its anti-fibrotic effect. The current study described the multiple-hit pathophysiology of NASH as enhanced steatosis, pro-inflammatory markers, and oxidative stress in rats, which resulted in the development of vicious insulin resistance. Nerolidol treatment significantly reduced hepatic lipid accumulation and halted disease progression induced by a hypercaloric diet.
Collapse
|
46
|
Bashir A, Duseja A, De A, Mehta M, Tiwari P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. LIVER RESEARCH 2022; 6:72-83. [PMID: 39958625 PMCID: PMC11791825 DOI: 10.1016/j.livres.2022.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the accumulation of excessive intrahepatic fat, is a leading metabolic disorder also considered as the hepatic manifestation of metabolic syndrome (MS). Though more commonly observed in obese individuals and those with metabolic risk factors, it also develops in a considerable number of non-obese individuals as well as participants without having any component of MS. The basic mechanism involved in the development of fatty liver is the imbalance between lipid uptake, synthesis, and metabolism in the liver, normally controlled by several mechanisms to maintain lipid homeostasis. As a complex progressive liver disorder, the NAFLD pathogenesis is multifactorial, and several new pathogenic phenomena were discovered over time. The available literature suggests the role of both genetic and environmental factors and associated metabolic factors; however, the mechanism of progression is not completely understood. In this review, we discuss different pathogenic mechanisms and their interplay to provide an elaborate idea regarding NAFLD development and progression. Better understanding of pathogenic mechanisms will be useful in finding new treatment for patients with NAFLD.
Collapse
Affiliation(s)
- Aamir Bashir
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manu Mehta
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
47
|
Li M, Xie F, Wang L, Zhu G, Qi LW, Jiang S. Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms. Front Pharmacol 2022; 13:857956. [PMID: 35444532 PMCID: PMC9013942 DOI: 10.3389/fphar.2022.857956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The liver plays an important role in glucose and lipid homeostasis, drug metabolism, and bile synthesis. Metabolic disorder and inflammation synergistically contribute to the pathogenesis of numerous liver diseases, such as metabolic-associated fatty liver disease (MAFLD), liver injury, and liver cancer. Celastrol, a triterpene derived from Tripterygium wilfordii Hook.f., has been extensively studied in metabolic and inflammatory diseases during the last several decades. Here we comprehensively review the pharmacological activities and the underlying mechanisms of celastrol in the prevention and treatment of liver diseases including MAFLD, liver injury, and liver cancer. In addition, we also discuss the importance of novel methodologies and perspectives for the drug development of celastrol. Although celastrol has been claimed as a promising agent against several metabolic diseases, both preclinical and clinical studies are highly required to accelerate the clinical transformation of celastrol in treating different liver illness. It is foreseeable that celastrol-derived therapeutics is evolving in the field of liver ailments.
Collapse
Affiliation(s)
- Mengzhen Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Faren Xie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
48
|
HAN S. Aging and gender-related effects of tauroursodeoxycholic acid treatment on liver functions, plasma lipid profile, and oxidative stress. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1023909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Wang D, Chen J, Sun H, Chen W, Yang X. MCFA alleviate H 2 O 2 -induced oxidative stress in AML12 cells via the ERK1/2/Nrf2 pathway. Lipids 2022; 57:153-162. [PMID: 35262212 DOI: 10.1002/lipd.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is an important factor in the occurrence and development of liver disease. Medium-chain fatty acids (MCFAs) have potential antioxidant function, whereas the exact underlying mechanism of MCFA in oxidative injury of hepatocytes remains unclear. In our present study, three different MCFAs, 8-carbon octanoic acid (OA), 10-carbon capric acid (CA), and 12-carbon lauric acid (LA), have been performed to observe their protective action for hepatocyte under the H2 O2 challenge. The result showed that MCFA treatment significantly increased the cell viability, T-AOC, and expression of antioxidant-related genes in AML12 cells under oxidative stress condition, and reduced reactive oxygen species (ROS) production. Moreover, MCFA treatment significantly increased the protein expression of Nrf2 and the phosphorylation level of ERK1/2; LA treatment significantly promoted the Nrf2 nuclear translocation. With a further test, the rescue ability of MCFA was blocked by treating with the ERK inhibitor U0126. Overall, our data suggested that MCFA treatment has positive impact on protecting AML12 cells against oxidative stress through ERK1/2/Nrf2 pathway.
Collapse
Affiliation(s)
- Danping Wang
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Jinglong Chen
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Huangbing Sun
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Wenjing Chen
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaojing Yang
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
50
|
Dysregulation of S-adenosylmethionine Metabolism in Nonalcoholic Steatohepatitis Leads to Polyamine Flux and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23041986. [PMID: 35216100 PMCID: PMC8878801 DOI: 10.3390/ijms23041986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease worldwide, with 25% of these patients developing nonalcoholic steatohepatitis (NASH). NASH significantly increases the risk of cirrhosis and decompensated liver failure. Past studies in rodent models have shown that glycine-N-methyltransferase (GNMT) knockout results in rapid steatosis, fibrosis, and hepatocellular carcinoma progression. However, the attenuation of GNMT in subjects with NASH and the molecular basis for its impact on the disease process is still unclear. To address this knowledge gap, we show the reduction of GNMT protein levels in the liver of NASH subjects compared to healthy controls. To gain insight into the impact of decreased GNMT in the disease process, we performed global label-free proteome studies on the livers from a murine modified amylin diet-based model of NASH. Histological and molecular characterization of the animal model demonstrate a high resemblance to human disease. We found that a reduction of GNMT leads to a significant increase in S-adenosylmethionine (AdoMet), an essential metabolite for transmethylation reactions and a substrate for polyamine synthesis. Further targeted proteomic and metabolomic studies demonstrated a decrease in GNMT transmethylation, increased flux through the polyamine pathway, and increased oxidative stress production contributing to NASH pathogenesis.
Collapse
|