1
|
Morris AK, McCarrick RM, Lorigan GA. Comparison of lipid dynamics and permeability in styrene-maleic acid and diisobutylene-maleic acid copolymer lipid nanodiscs by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 2025; 30:103-110. [PMID: 39797925 DOI: 10.1007/s00775-024-02091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid. Lineshape analysis at varying temperatures reveal a major change in the phase transition behavior of the lipids from a sharp melting curve in liposomes to a more gradual transition in nanoparticles. Electron spin echo envelope modulation (ESEEM) spectroscopy reveals changes in water permeability between mimetic systems, which is further supported by power-saturation measurements showing increased dequenching of spin lipids in diisobutylene-maleic acid nanoparticles compared to maleic acid nanoparticles. These results suggest that diisobutylene-maleic acid nanoparticles may have more physiological fluid properties than styrene-maleic acid nanoparticles when incorporated with saturated phospholipids.
Collapse
Affiliation(s)
- Andrew K Morris
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
| |
Collapse
|
2
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
3
|
Buachi C, Thananukul K, Khongphinitbunjong K, Molloy R, Punyamoonwongsa P. A single-step extraction and immobilization of soybean lipolytic enzymes by using a purpose-designed copolymer of styrene and maleic acid as a membrane lysis agent. Heliyon 2024; 10:e31313. [PMID: 38831811 PMCID: PMC11145489 DOI: 10.1016/j.heliyon.2024.e31313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Approaches aiming to recover proteins without denaturation represent attractive strategies. To accomplish this, a membrane lysis agent based on poly(styrene-alt-maleic acid) or PSMA was synthesized by photopolymerization using Irgacure® 2959 and carbon tetrabromide (CBr4) as a radical initiator and a reversible chain transfer agent, respectively. Structural elucidation of our in-house synthesized PSMA, so-called photo-PSMA, was performed by using NMR spectroscopy. The use of this photo-PSMA in soybean enzyme extraction was also demonstrated for the first time in this study. Without a severe cell rupture, energy input or any organic solvent, recovery of lipolytic enzymes directly into nanometric-sized particles was accomplished in one-step process. Due to the improved structural regularity along the photo-PSMA backbone, the most effective protective reservoir for enzyme immobilization was generated through the PSMA aggregation. Formation of such reservoir enabled soybean enzymes to be shielded from the surroundings and resolved in their full functioning state. This was convinced by the increased specific lipolytic activity to 1,950 mU/mg, significantly higher than those of sodium dodecyl sulfate (SDS) and the two commercially-available PSMA sources (1000P and 2000P). Our photo-PSMA had thus demonstrated its great potential for cell lyse application, especially for soybean hydrolase extraction.
Collapse
Affiliation(s)
- Chatmani Buachi
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | | | - Robert Molloy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | |
Collapse
|
4
|
Ayub H, Murray RJ, Kuyler GC, Napier-Khwaja F, Gunner J, Dafforn TR, Klumperman B, Poyner DR, Wheatley M. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs. Arch Biochem Biophys 2024; 754:109946. [PMID: 38395122 DOI: 10.1016/j.abb.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and β-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.
Collapse
Affiliation(s)
- Hoor Ayub
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK.
| | - Rebecca J Murray
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gestél C Kuyler
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Joseph Gunner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bert Klumperman
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Mark Wheatley
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
5
|
Glukhov G, Karlova M, Kravchuk E, Glukhova A, Trifonova E, Sokolova OS. Purification of Potassium Ion Channels Using Styrene-Maleic Acid Copolymers. Methods Mol Biol 2024; 2796:73-86. [PMID: 38856895 DOI: 10.1007/978-1-0716-3818-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Structural studies require the production of target proteins in large quantities and with a high degree of purity. For membrane proteins, the bottleneck in determining their structure is the extraction of the target protein from the cell membranes. A detergent that improperly mimics the hydrophobic environment of the protein of interest can also significantly alter its structure. Recently, using lipodiscs with styrene-maleic acid (SMA), copolymers became a promising strategy for the purification of membrane proteins. Here, we describe in detail the one-step affinity purification of potassium ion channels solubilized in SMA and sample preparation for future structural studies.
Collapse
Affiliation(s)
- Grigory Glukhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Maria Karlova
- Faculty of Biology, Moscow Lomonosov University, Moscow, Russia
| | | | - Anna Glukhova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | | | - Olga S Sokolova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Faculty of Biology, Moscow Lomonosov University, Moscow, Russia.
| |
Collapse
|
6
|
Neville GM, Morrison KA, Shilliday ER, Doutch J, Dalgliesh R, Price GJ, Edler KJ. The effect of polymer end-group on the formation of styrene - maleic acid lipid particles (SMALPs). SOFT MATTER 2023; 19:8507-8518. [PMID: 37889133 DOI: 10.1039/d3sm01180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A series of block copolymers comprising styrene and maleic acid (SMA) has been prepared using RAFT polymerisation. RAFT often results in a large hydrophobic alkylthiocarbonylthio end group and this work examines its effect on the solution behaviour of the copolymers. SMA variants with, and without, this end group were synthesised and their behaviour compared with a commercially-available random copolymer of similar molecular weight. Dynamic light scattering and surface tension measurements found the RAFT-copolymers preferentially self-assembled into higher-order aggregates in aqueous solution. Small angle neutron scattering using deuterated styrene varients add support to the accepted model that these agreggates comprise a solvent-protected styrenic core with an acid-rich shell. Replacing the hydrophobic RAFT end group with a more hydrophilic nitrile caused differences in the resulting surface activity, attributed to the ability of the adjoining styrene homoblock to drive aggregation. Each of the copolymers formed SMALP nanodiscs with DMPC lipids, which were found to encapsulate a model membrane protein, gramicidin. However, end group variation affected solubilisition of DPPC, a lipid with a higher phase transition temperature. When using RAFT-copolymers terminated with a hydrophobic group, swelling of the bilayer and greater penetration of the homoblock into the nanodisc core occurred with increasing homoblock length. Conversely, commercial and nitrile-terminated RAFT-copolymers produced nanodisc sizes that stayed constant, instead indicating interaction at the edge of the lipid patch. The results highlight how even minor changes to the copolymer can modify the amphiphilic balance between regions, knowledge useful towards optimising copolymer structure to enhance and control nanodisc formation.
Collapse
Affiliation(s)
- George M Neville
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kerrie A Morrison
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ella R Shilliday
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Robert Dalgliesh
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Gareth J Price
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Karen J Edler
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
7
|
Workman CE, Bag P, Cawthon B, Ali FH, Brady NG, Bruce BD, Long BK. Alternatives to Styrene- and Diisobutylene-Based Copolymers for Membrane Protein Solubilization via Nanodisc Formation. Angew Chem Int Ed Engl 2023; 62:e202306572. [PMID: 37682083 PMCID: PMC10591821 DOI: 10.1002/anie.202306572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Styrene-maleic acid copolymers (SMAs), and related amphiphilic copolymers, are promising tools for isolating and studying integral membrane proteins in a native-like state. However, they do not exhibit this ability universally, as several reports have found that SMAs and related amphiphilic copolymers show little to no efficiency when extracting specific membrane proteins. Recently, it was discovered that esterified SMAs could enhance the selective extraction of trimeric Photosystem I from the thylakoid membranes of thermophilic cyanobacteria; however, these polymers are susceptible to saponification that can result from harsh preparation or storage conditions. To address this concern, we herein describe the development of α-olefin-maleic acid copolymers (αMAs) that can extract trimeric PSI from cyanobacterial membranes with the highest extraction efficiencies observed when using any amphiphilic copolymers, including diisobutylene-co-maleic acid (DIBMA) and functionalized SMA samples. Furthermore, we will show that αMAs facilitate the formation of photosystem I-containing nanodiscs that retain an annulus of native lipids and a native-like activity. We also highlight how αMAs provide an agile, tailorable synthetic platform that enables fine-tuning hydrophobicity, controllable molar mass, and consistent monomer incorporation while overcoming shortcomings of prior amphiphilic copolymers.
Collapse
Affiliation(s)
| | - Pushan Bag
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Bridgie Cawthon
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Fidaa H Ali
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| | - Brian K Long
- Department of Chemistry, University of Tennessee, Knoxville, USA
| |
Collapse
|
8
|
Lenz J, Larsen AH, Keller S, Luchini A. Effect of Cholesterol on the Structure and Composition of Glyco-DIBMA Lipid Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3569-3579. [PMID: 36854196 PMCID: PMC10018766 DOI: 10.1021/acs.langmuir.2c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.
Collapse
Affiliation(s)
- Julia Lenz
- Molecular
Biophysics, Technische Universität
Kaiserslautern, Erwin-Schrödinger-Strasse
13, 67663 Kaiserslautern, Germany
| | | | - Sandro Keller
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Alessandra Luchini
- European
Spallation Source - ERIC, Partikel Gatan, Lund 224
84, Sweden
- Department
of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
9
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
10
|
Krishnarjuna B, Im SC, Ravula T, Marte J, Auchus RJ, Ramamoorthy A. Non-Ionic Inulin-Based Polymer Nanodiscs Enable Functional Reconstitution of a Redox Complex Composed of Oppositely Charged CYP450 and CPR in a Lipid Bilayer Membrane. Anal Chem 2022; 94:11908-11915. [PMID: 35977417 PMCID: PMC10851674 DOI: 10.1021/acs.analchem.2c02489] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although polymer-based lipid nanodiscs are increasingly used in the structural studies of membrane proteins, the charge of the belt-forming polymer is a major limitation for functional reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This limitation also rules out the reconstitution of a protein-protein complex composed of oppositely charged membrane proteins. In this study, we report the first successful functional reconstitution of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid nanodiscs. The gel-to-liquid-crystalline phase-transition temperature (Tm) of DMPC:DMPG (7:3 w/w) lipids in polymer nanodiscs was determined by differential scanning calorimetry (DSC) and 31P NMR experiments. The CYP450-CPR redox complex reconstitution in polymer nanodiscs was characterized by size-exclusion chromatography (SEC), and the electron transfer kinetics was carried out using the stopped-flow technique under anaerobic conditions. The Tm of DMPC:DMPG (7:3 w/w) in polymer nanodiscs measured from 31P NMR agrees with that obtained from DSC and was found to be higher than that for liposomes due to the decreased cooperativity of lipids present in the nanodiscs. The stopped-flow measurements revealed the CYP450-CPR redox complex reconstituted in nanodiscs to be functional, and the electron transfer kinetics was found to be temperature-dependent. Based on the successful demonstration of the use of non-ionic inulin-based polymer nanodiscs reported in this study, we expect them to be useful in studying the function and structures of a variety of membrane proteins/complexes irrespective of the charge of the molecular components. Since the polymer nanodiscs were shown to align in an externally applied magnetic field, they can also be used to measure residual dipolar couplings (RDCs) and residual quadrupolar couplings (RQCs) for various molecules ranging from small molecules to soluble proteins and nucleic acids.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Richard J. Auchus
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
11
|
Mechanisms of membrane protein crystallization in 'bicelles'. Sci Rep 2022; 12:11109. [PMID: 35773455 PMCID: PMC9246360 DOI: 10.1038/s41598-022-13945-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress, mainly due to the development of LCP and ‘bicelle’ crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the “bicelle” crystallization matrix in the course of MP crystal growth. Initially, the matrix corresponds to liquid-like bicelle state. However, after adding the precipitant, the crystallization matrix transforms to jelly-like state. The data suggest that this final phase is composed of interconnected ribbon-like bilayers, where crystals grow. A small amount of multilamellar phase appears, and its volume increases concomitantly with the volume of growing crystals. We suggest that the lamellar phase surrounds the crystals and is critical for crystal growth, which is also common for LCP crystallization. The study discloses mechanisms of “bicelle” MP crystallization and will support rational design of crystallization.
Collapse
|