1
|
|
Panebianco C, Villani A, Potenza A, Favaro E, Finocchiaro C, Perri F, Pazienza V. Targeting Gut Microbiota in Cancer Cachexia: Towards New Treatment Options. Int J Mol Sci 2023;24. [PMID: 36768173 DOI: 10.3390/ijms24031849] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/19/2023] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome whose hallmarks are weight loss due to the wasting of muscle tissue with or without the loss of adipose tissue, anorexia, systemic inflammation, and multi-organ metabolic alterations, which negatively impact patients' response to anticancer treatments, quality of life, and overall survival. Despite its clinical relevance, cancer cachexia often remains an underestimated complication due to the lack of rigorous diagnostic and therapeutic pathways. A number of studies have shown alterations in gut microbiota diversity and composition in association with cancer cachexia markers and symptoms, thus supporting a central role for dysbiosis in the pathogenesis of this syndrome. Different tools of microbiota manipulation, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been investigated, demonstrating encouraging improvements in cachexia outcomes. Albeit pioneering, these studies pave the way for future research with the aim of exploring the role of gut microbiota in cancer cachexia more deeply and setting up effective microbiota-targeting interventions to be translated into clinical practice.
Collapse
|
2
|
|
Hakozaki T, Nolin-Lapalme A, Kogawa M, Okuma Y, Nakamura S, Moreau-Amaru D, Tamura T, Hosomi Y, Takeyama H, Richard C, Hosokawa M, Routy B. Cancer Cachexia among Patients with Advanced Non-Small-Cell Lung Cancer on Immunotherapy: An Observational Study with Exploratory Gut Microbiota Analysis. Cancers (Basel) 2022;14. [PMID: 36358821 DOI: 10.3390/cancers14215405] [Cited by in Crossref: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/06/2022] Open
Abstract
Cancer cachexia exerts a negative clinical influence on patients with advanced non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICI). The prognostic impact of body weight change during ICI treatment remains unknown. The gut microbiota (GM) is a key contributor to the response to ICI therapy in cancer patients. However, the association between cancer cachexia and GM and their association with the response to ICIs remains unexplored. This study examined the association of cancer cachexia with GM composition and assessed the impact of GM on clinical outcomes in patients with NSCLC treated with ICIs. In this observational, prospective study, which included 113 Japanese patients with advanced NSCLC treated with ICIs, the prevalence of cachexia was 50.4% (57/113). The median progression-free survival (PFS) and overall survival (OS) were significantly shorter in the cachexia group than in the non-cachexia group (4.3 vs. 11.6 months (p = 0.003) and 12.0 months vs. not reached (p = 0.02), respectively). A multivariable analysis revealed that baseline cachexia was independently associated with a shorter PFS. Moreover, a gain in body weight from the baseline (reversible cachexia) was associated with a significantly longer PFS and OS compared to irreversible cachexia. Microbiome profiling with 16S rRNA analysis revealed that the cachexia group presented an overrepresentation of the commensal bacteria, Escherichia-Shigella and Hungatella, while the non-cachexia group had a preponderance of Anaerostipes, Blautia, and Eubacterium ventriosum. Anaerostipes and E. ventriosum were associated with longer PFS and OS. Moreover, a cachexia status correlated with the systemic inflammatory marker-derived-neutrophil-to-lymphocytes ratio (dNLR) and Lung Immune Prognostic Index (LIPI) indexes. Our study demonstrates that cachexia and longitudinal bodyweight change have a prognostic impact on patients with advanced NSCLC treated with ICI therapy. Moreover, our study demonstrates that bacteria associated with ICI resistance are also linked to cachexia. Targeted microbiota interventions may represent a new type of treatment to overcome cachexia in patients with NSCLC.
Collapse
|
3
|
|
Kienesberger B, Obermüller B, Singer G, Arneitz C, Gasparella P, Klymiuk I, Horvath A, Stadlbauer V, Magnes C, Zügner E, López-garcía P, Trajanoski S, Miekisch W, Fuchs P, Till H, Castellani C. Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC® AAD10) and Effects of Its Postbiotic Culture Supernatant. Nutrients 2022;14:1194. [PMID: 35334850 DOI: 10.3390/nu14061194] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/01/2023] Open
Abstract
Background: We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. Methods: Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. Results: A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. Conclusions: The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo.
Collapse
|
4
|
|
Xia H, Shi X, Zhou B, Sui J, Yang C, Liu H, Yang L, Wang S, Sun G. Milled flaxseed-added diets ameliorated hepatic inflammation by reducing gene expression of TLR4/NF-κB pathway and altered gut microbiota in STZ-induced type 1 diabetic mice. FOOD SCI HUM WELL 2022;11:32-40. [DOI: 10.1016/j.fshw.2021.07.004] [Cited by in Crossref: 2] [Cited by in RCA: 3] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/12/2022] Open
|
5
|
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2021;:101427. [PMID: 34973469 DOI: 10.1016/j.molmet.2021.101427] [Cited by in Crossref: 6] [Cited by in RCA: 10] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Background Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. Scope of the review This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods – effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. Major conclusions Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions. The gut microbiota is involved in the control of nutrient availability, appetite, and body weight. Both obesity and cachexia are associated with altered gut microbiota. Specific dietary and surgical approaches positively impact body weight and gut microbiota. Manipulation of the gut microbiota alone is insufficient to alter body weight in humans.
Collapse
|
6
|
|
Ni Y, Lohinai Z, Heshiki Y, Dome B, Moldvay J, Dulka E, Galffy G, Berta J, Weiss GJ, Sommer MOA, Panagiotou G. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J 2021;15:3207-20. [PMID: 34002024 DOI: 10.1038/s41396-021-00998-8] [Cited by in Crossref: 24] [Cited by in RCA: 20] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/03/2023] Open
Abstract
Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.
Collapse
|
7
|
|
Castellani C, Obermüller B, Kienesberger B, Singer G, Peterbauer C, Grabherr R, Mayrhofer S, Klymiuk I, Horvath A, Stadlbauer V, Russmayer H, Miekisch W, Fuchs P, Till H, Heinl S. Production, Storage Stability, and Susceptibility Testing of Reuterin and Its Impact on the Murine Fecal Microbiome and Volatile Organic Compound Profile. Front Microbiol 2021;12:699858. [PMID: 34394042 DOI: 10.3389/fmicb.2021.699858] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/18/2022] Open
Abstract
Background: Probiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases. Methods: Reuterin supernatant was cultured from Lentilactobacillus diolivorans in a bioreactor in a two-step process. Storage stability at −20°C and effect of repeated freeze-thaw cycles were assessed by high performance liquid chromatography (HPLC). Antimicrobial activity was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus (S.) aureus, Staphylococcus epidermidis, Streptococcus (S.) agalactiae, Propionibacterium acnes, and Pseudomonas aeruginosae. Male BALBc mice were gavage fed with reuterin supernatant (n = 10) or culture medium (n = 10). Fecal volatile organic compounds (VOC) were assessed by gas chromatography mass spectroscopy; the microbiome was examined by 16S rRNA gene sequencing. Results: The supernatant contained 13.4 g/L reuterin (3-hydroxypropionaldehyde; 3-HPA). 3-HPA content remained stable at −20°C for 35 days followed by a slow decrease of its concentration. Repeated freezing/thawing caused a slow 3-HPA decrease. Antimicrobial activity was encountered against S. aureus, S. epidermidis, and S. agalactiae. Microbiome analysis showed no differences in alpha and beta diversity markers. Linear discriminant effect size (LEfSe) analysis identified Lachnospiraceae_bacterium_COE1 and Ruminoclostridium_5_uncultured_Clostridiales_ bacterium (in the reuterin medium group) and Desulfovibrio_uncultured_ bacterium, Candidatus Arthromitus, Ruminococcae_NK4A214_group, and Eubacterium_xylanophilum_group (in the reuterin group) as markers for group differentiation. VOC analysis showed a significant decrease of heptane and increase of 3-methylbutanal in the reuterin group. Conclusion: The supernatant produced in this study contained acceptable amounts of 3-HPA remaining stable for 35 days at −20°C and exhibiting an antimicrobial effect against S. aureus, S. agalactiae, and S. epidermidis. Under in vivo conditions, the reuterin supernatant caused alterations of the fecal microbiome. In the fecal, VOC analysis decreased heptane and increased 3-methylbutanal were encountered. These findings suggest the high potential of the reuterin system to influence the intestinal microbiome in health and disease, which needs to be examined in detail in future projects.
Collapse
|
8
|
|
Kienesberger B, Obermüller B, Singer G, Mittl B, Grabherr R, Mayrhofer S, Heinl S, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Klymiuk I, Till H, Castellani C. (S)-Reutericyclin: Susceptibility Testing and In Vivo Effect on Murine Fecal Microbiome and Volatile Organic Compounds. Int J Mol Sci 2021;22:6424. [PMID: 34203988 DOI: 10.3390/ijms22126424] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Download PDF] [Figures] [Indexed: 11/17/2022] Open
Abstract
We aimed to assess the in vitro antimicrobial activity and the in vivo effect on the murine fecal microbiome and volatile organic compound (VOC) profile of (S)-reutericyclin. The antimicrobial activity of (S)-reutericyclin was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Staphylococcus (S.) epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa and Propionibacterium acnes. Reutericyclin or water were gavage fed to male BALBc mice for 7 weeks. Thereafter stool samples underwent 16S based microbiome analysis and VOC analysis by gas chromatography mass spectrometry (GC-MS). (S)-reutericyclin inhibited growth of S. epidermidis only. Oral (S)-reutericyclin treatment caused a trend towards reduced alpha diversity. Beta diversity was significantly influenced by reutericyclin. Linear discriminant analysis Effect Size (LEfSe) analysis showed an increase of Streptococcus and Muribaculum as well as a decrease of butyrate producing Ruminoclostridium, Roseburia and Eubacterium in the reutericyclin group. VOC analysis revealed significant increases of pentane and heptane and decreases of 2,3-butanedione and 2-heptanone in reutericyclin animals. The antimicrobial activity of (S)-reutericyclin differs from reports of (R)-reutericyclin with inhibitory effects on a multitude of Gram-positive bacteria reported in the literature. In vivo (S)-reutericyclin treatment led to a microbiome shift towards dysbiosis and distinct alterations of the fecal VOC profile.
Collapse
|
9
|
|
Ziemons J, Smidt ML, Damink SO, Rensen SS. Gut microbiota and metabolic aspects of cancer cachexia. Best Pract Res Clin Endocrinol Metab 2021;35:101508. [PMID: 33648847 DOI: 10.1016/j.beem.2021.101508] [Cited by in Crossref: 10] [Cited by in RCA: 7] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a metabolic syndrome characterized by unintended weight loss and muscle wasting. It has a strong negative impact on survival. Its underlying mechanisms involve systemic inflammation and insulin resistance, which are known to be influenced by the gut microbiota. Preclinical studies support a role for the gut microbiota in cancer cachexia by demonstrating that cachectic mice display: 1) various gut microbiota composition changes; 2) increased gut permeability and translocation of pro-inflammatory microbial compounds; 3) muscle atrophy-related processes linked to gut microbiota properties; 4) positive effects of microbiota-modulating interventions. Data on the relationships between gut microbiota, insulin resistance, and hepatic/adipose tissue metabolism in cachexia models are lacking. Nevertheless, the available data and existing evidence for the impact of gut microbiota on metabolic aberrations in human obesity urge for exploration of its role in human cancer cachexia. We provide practical recommendations and discuss the challenges for such future clinical studies.
Collapse
|
10
|
|
van Krimpen SJ, Jansen FAC, Ottenheim VL, Belzer C, van der Ende M, van Norren K. The Effects of Pro-, Pre-, and Synbiotics on Muscle Wasting, a Systematic Review-Gut Permeability as Potential Treatment Target. Nutrients 2021;13:1115. [PMID: 33805286 DOI: 10.3390/nu13041115] [Cited by in Crossref: 11] [Cited by in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/08/2023] Open
Abstract
Muscle wasting is a frequently observed, inflammation-driven condition in aging and disease, known as sarcopenia and cachexia. Current treatment strategies target the muscle directly and are often not able to reverse the process. Because a reduced gut function is related to systemic inflammation, this might be an indirect target to ameliorate muscle wasting, by administering pro-, pre-, and synbiotics. Therefore, this review aimed to study the potential of pro-, pre-, and synbiotics to treat muscle wasting and to elucidate which metabolites and mechanisms affect the organ crosstalk in cachexia. Overall, the literature shows that Lactobacillus species pluralis (spp.) and possibly other genera, such as Bifidobacterium, can ameliorate muscle wasting in mouse models. The beneficial effects of Lactobacillus spp. supplementation may be attributed to its potential to improve microbiome balance and to its reported capacity to reduce gut permeability. A subsequent literature search revealed that the reduction of a high gut permeability coincided with improved muscle mass or strength, which shows an association between gut permeability and muscle mass. A possible working mechanism is proposed, involving lactate, butyrate, and reduced inflammation in gut–brain–muscle crosstalk. Thus, reducing gut permeability via Lactobacillus spp. supplementation could be a potential treatment strategy for muscle wasting.
Collapse
|
11
|
|
Wyart E, Bindels LB, Mina E, Menga A, Stanga S, Porporato PE. Cachexia, a Systemic Disease beyond Muscle Atrophy. Int J Mol Sci 2020;21:E8592. [PMID: 33202621 DOI: 10.3390/ijms21228592] [Cited by in Crossref: 8] [Cited by in RCA: 10] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.
Collapse
|
12
|
|
Amelio I, Bertolo R, Bove P, Candi E, Chiocchi M, Cipriani C, Di Daniele N, Ganini C, Juhl H, Mauriello A, Marani C, Marshall J, Montanaro M, Palmieri G, Piacentini M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Cancer predictive studies.Biol Direct. 2020;15:18. [PMID: 33054808 DOI: 10.1186/s13062-020-00274-3] [Cited by in Crossref: 25] [Cited by in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/21/2022] Open
Abstract
The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1–4 & 4S), where stages 3–4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite highly intensive basic research, improvements on clinical outcome have been predominantly observed for less aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3–4 NB are still complicated at the therapeutic level and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline how cancer prediction studies can help at steering preclinical and clinical research toward the identification and exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing harmful effects in cancer patients.
Collapse
|