1
|
Suhail M, Badshah SF, Chiu IH, Ullah A, Khan A, Ullah H, Al-Sowayan NS, Tsai MJ, Wu PC. A Novel Approach of Polyvinyl Alcohol/Acrylic Acid Based Hydrogels for Controlled Delivery of Diclofenac Sodium. Curr Pharm Biotechnol 2025; 26:477-489. [PMID: 38623980 DOI: 10.2174/0113892010296120240327055943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
AIM AND OBJECTIVE The aim of this study was to prepare polyvinyl alcohol/acrylic acid (PVA/AA) hydrogels for the controlled release of diclofenac sodium as controlled release carriers to overcome not only the side effects of diclofenac sodium but also sustain its release for an extended period. BACKGROUND Diclofenac sodium is employed for relieving pain and fever. The half-life of diclofenac sodium is very short (1-2 h). Hence, multiple intakes of diclofenac sodium are required to maintain a constant pharmacological action. Multiple GI adverse effects are produced as a result of diclofenac sodium intake. METHODS A free radical polymerization technique was used for crosslinking PVA with AA in the presence of APS. EGDMA was used as a cross-linker. FTIR and XRD confirmed the preparation and loading of the drug by prepared hydrogels. An increase in the thermal stability of PVA was shown by TGA and DSC analysis. Surface morphology was investigated by SEM. Similarly, water penetration and drug loading were demonstrated by porosity and drug loading studies. The pH-sensitive nature of PVA/AA hydrogels was investigated at different pH values by swelling and drug release studies. RESULTS The development and drug loading of PVA/AA hydrogels were confirmed by FTIR and XRD analysis. TGA and DSC indicated high thermal stability of prepared hydrogels as compared to unreacted PVA. SEM indicated a hard and compact network of developed hydrogels. The swelling and drug release studies indicated maximum swelling and drug release at high pH as compared to low pH values, indicating the pH-sensitive nature of prepared hydrogels. Moreover, we demonstrated that drug release was sustained for a prolonged time in a controlled pattern by prepared hydrogels by comparing the drug release of the developed hydrogels with the commercial product Cataflam. CONCLUSION The results indicated that prepared PVA/AA hydrogels can be used as an alternative approach for the controlled delivery of diclofenac sodium.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Institute of Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, 10250, Pakistan
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Arif Ullah
- Department of Pharmacy, University of Science and Technology Bannu, Bannu, 28100, Pakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Khawaja Fareed Campus (Railway Road), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | | | - Ming-Jun Tsai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
2
|
Karyasa IW, Kusumawati ED, Agustarini R, Andadari L, Sari H. Organic-Inorganic Hybridization of Silkworm Cocoon Filaments Using Nano Pastes of Silica-Phosphate-M (M = Cu, Fe, or Al). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1697. [PMID: 39513777 PMCID: PMC11547458 DOI: 10.3390/nano14211697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Inorganic-organic hybrid biomaterials have recently attracted much attention because of their widespread use. Silkworm cocoon filaments resulting from sericulture as prospective nanobiomaterials need to be improved, and their properties need to be used for broader purposes. This study was aimed at investigating methods for siliconization of silkworm cocoon filaments and characterizing their cocoon filament properties in terms of their yarn quality, natural dyeing, and antibacterial properties. Three methods of hybridization processes were used in this experiment, namely, in situ natural dyeing of silk yarns while silk filaments were spined, feed engineering through spraying the mulberry leaves with natural dyes and silica-phosphate-M (M = Cu, Fe, or Al) nano pastes, and a combination of both methods. The resulting cocoon filaments were characterized by their siliconization of filament fibers by using FTIR, XRD, and SEM-EDS methods. The yarn tensile strength, color quality, color fastness properties affected by the siliconization of silk filament fibers, and antibacterial properties were also investigated. Results showed that the combination method produced better siliconization of silk fibers, and, consequently, the better siliconization of silk fibers produced better natural dyeing as well as antibacterial properties of their resulting silk yarns.
Collapse
Affiliation(s)
- I Wayan Karyasa
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Pendidikan Ganesha, Buleleng 81116, Bali, Indonesia
| | - Enike Dwi Kusumawati
- Faculty of Animal Husbandry, Universitas PGRI Kanjuruhan Malang, Malang 65148, Jawa Timur, Indonesia;
| | - Retno Agustarini
- Center for Applied Zoology, Badan Riset dan Inovasi Nasional, Jakarta 10340, Jakarta Pusat, Indonesia; (R.A.); (L.A.); (H.S.)
| | - Lincah Andadari
- Center for Applied Zoology, Badan Riset dan Inovasi Nasional, Jakarta 10340, Jakarta Pusat, Indonesia; (R.A.); (L.A.); (H.S.)
| | - Herman Sari
- Center for Applied Zoology, Badan Riset dan Inovasi Nasional, Jakarta 10340, Jakarta Pusat, Indonesia; (R.A.); (L.A.); (H.S.)
| |
Collapse
|
3
|
Hassan MA, Basha AA, Eraky M, Abbas E, El-Samad LM. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int J Pharm 2024; 662:124494. [PMID: 39038721 DOI: 10.1016/j.ijpharm.2024.124494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
4
|
Deb D, Khatun B, M BD, Khan MR, Sen Sarma N, Sankaranarayanan K. Utilizing Silk Sericin as a Biomaterial for Drug Encapsulation in a Hydrogel Matrix with Polycaprolactone: Formulation and Evaluation of Antibacterial Activity. ACS OMEGA 2024; 9:32706-32716. [PMID: 39100358 PMCID: PMC11292657 DOI: 10.1021/acsomega.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/06/2024]
Abstract
Hydrogels have emerged as a potential tool for enhancing bioavailability and regulating the controlled release of therapeutic agents. Owing to its excellent biocompatibility, silk sericin-based hydrogels have garnered interest in biomedical applications. This study focuses on synthesizing a soft hydrogel by blending silk sericin (SS) and polycaprolactone (PCL) at room temperature. The physicochemical characteristics of the hydrogels have been estimated by different analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The rheological studies demonstrate the non-Newtonian behavior of the hydrogels. Further, the porosity analysis indicates a commendable absorption capacity of the hydrogels. The swelling degree of the hydrogels has been checked in both distilled water and buffer solutions of different pHs (2-10). Moreover, the drug release profile of the hydrogels, using diclofenac sodium (DS) as a model drug, has revealed a substantial release of approximately 67% within the first 130 min with a drug encapsulation efficiency of 60.32%. Moreover, both the empty and the drug-loaded hydrogels have shown antibacterial properties against Gram-positive and Gram-negative bacteria, with the drug-loaded hydrogels displaying enhanced effectiveness. Additionally, the prepared hydrogels are biodegradable, demonstrating their future prospects in biomedical applications.
Collapse
Affiliation(s)
- Dona Deb
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bably Khatun
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Bidyarani Devi M
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Mojibur R. Khan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Neelotpal Sen Sarma
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Kamatchi Sankaranarayanan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Teimouri M, Mirzaee M, Nemati A, Salehi M, Amoli A. Polysilsesquioxane decorated ZIF-8 as a potential pH-responsive vehicle for topical delivery and release of acyclovir and tetracycline: Investigation of blood compatibility, cytotoxicity and antibacterial properties. Int J Biol Macromol 2024; 271:132542. [PMID: 38801848 DOI: 10.1016/j.ijbiomac.2024.132542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
In this research, poly-chloropropylmethyl-silsesquioxanen was prepared and decorated with ZIF-8 in order to investigate its loading capacity for acyclovir and tetracycline. Before and after drug loadings, the composites were characterized by FT-IR, SEM-EDS, XRD, and XPS analyses. Then, the in-vitro release of these drugs was investigated by UV-Vis spectroscopy in different buffers (pH = 5, 7.4, and 9.1). The results showed that the release of ACV reached a maximum amount of 41.3 mg at pH = 7.4 during 12 h. In comparison, the release of TC reached a maximum amount of 22.5 mg at pH = 5 during 6 h. The blood compatibility, in-vitro cytotoxicity on the L929 fibroblast cells line, and antibacterial assay against Staphylococcus aureus and Pseudomonas aeruginosa were also investigated for this composite as a drug carrier.
Collapse
Affiliation(s)
- Maryam Teimouri
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Mahdi Mirzaee
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran.
| | - Andya Nemati
- Encyclopedia Research Faculty, Institute for Humanities and Cultural Studies, Tehran, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Adonis Amoli
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
6
|
Al Faysal A, Cetinkaya A, Kaya SI, Erdoğan T, Ozkan SA, Gölcü A. Development and Fabrication of a Molecularly Imprinted Polymer-Based Electroanalytical Sensor for the Determination of Acyclovir. ACS OMEGA 2024; 9:9564-9576. [PMID: 38434833 PMCID: PMC10905707 DOI: 10.1021/acsomega.3c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Acyclovir (ACV), a synthetic nucleoside derivative of purine, is one of the most potent antiviral medications recommended in the specific management of varicella-zoster and herpes simplex viruses. The molecularly imprinted polymer (MIP) was utilized to create an effective and specific electrochemical sensor using a straightforward photopolymerization process to determine ACV. The polymeric thin coating was developed using the template molecule ACV, a functional monomer acrylamide, a basic monomer 2-hydroxyethyl methacrylate, a cross-linker ethylene glycol dimethacrylate, and a photoinitiator 2-hydroxy-2-methyl propiophenone on the exterior of the glassy carbon electrode (GCE). Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed for the purpose of characterizing the constructed sensor (AM-ACV@MIP/GCE). Differential pulse voltammetry and a 5 mM ferrocyanide/ferricyanide ([Fe(CN)6]3-/4-) redox reagent were used to detect the ACV binding to the specific cavities on MIP. The study involves density functional theory (DFT) calculations, which were conducted to investigate template-functional monomer interactions thoroughly, calculate template-functional monomer interaction energies, and determine the optimal template/functional monomer ratio. DFT calculations were performed using Becke's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) method and 6-31G(d,p) basis set. The sensor exhibits linear performance throughout the concentration region 1 × 10-11 to 1 × 10-10 M, and the limit of detection and limit of quantification were 7.15 × 10-13 M and 2.38 × 10-12 M, respectively. For the electrochemical study of ACV, the sensor demonstrated high accuracy, precision, robustness, and a short detection time. Furthermore, the developed electrochemical sensor exhibited exceptional recovery in tablet dosage form and commercial human blood samples, with recoveries of 99.40 and 100.44%, respectively. The findings showed that the AM-ACV@MIP/GCE sensor would effectively be used to directly assess pharmaceuticals from actual specimens and would particularly detect ACV compared to structurally similar pharmaceutical compounds.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty
of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Ahmet Cetinkaya
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
- Graduate
School of Health Sciences, Ankara University, Ankara 06110, Turkey
| | - Sariye Irem Kaya
- Gulhane
Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara 06018, Turkey
| | - Taner Erdoğan
- Kocaeli
Vocational School, Department of Chemistry and Chemical Processing
Technologies, Kocaeli University, Kocaeli 41140, Turkey
| | - Sibel A. Ozkan
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| | - Ayşegül Gölcü
- Faculty
of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
7
|
Tolkou AK, Tsoutsa EK, Kyzas GZ, Katsoyiannis IA. Sustainable use of low-cost adsorbents prepared from waste fruit peels for the removal of selected reactive and basic dyes found in wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14662-14689. [PMID: 38280170 PMCID: PMC10884073 DOI: 10.1007/s11356-024-31868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Agricultural wastes are potential sustainable adsorbents since they are available in large quantities, are low-cost, and may require little or no treatment, in some cases. In this study, several fruit peels, such as banana, orange, and pomegranate, were collected from local markets and prepared by a simple and eco-friendly method and used as natural adsorbents for the removal of both anionic (Reactive Red 120 (RR120), Reactive Black 5 (RB5), Remazol Brilliant Blue R (RBBR)) and cationic Methylene Blue (MB) dyes found in wastewaters. Many industries, such as leather and textiles, can release huge amounts of synthetic dyes into the wastewater during dyeing processes. These are one of the most important pollutants of water pollution as they cause enormous damage to the water body and also affect the health of organisms due to their toxicity and carcinogenicity. The search for a sustainable and at the same time efficient material for the removal of a wide variety of dyes is the innovation of this work. These peels were prepared by washing, drying, grinding, and finally sieving, under natural sustainable conditions. Porosometry (BET analysis), FTIR, SEM/EDS, and XRD techniques were used to characterize the fruit peels before and after the adsorption process. Factors affecting the adsorption of dyes (adsorbent dosage, pH solution, initial concentration of dyes, contact time, and temperature) were investigated. According to the results, in terms of the effectiveness of fruit peels as (natural) adsorbent materials, for anionic dyes, 5.0-6.0 g/L of banana or orange dry peels was sufficient to remove near or even more than 90% anionic dyes at pH 2.0, and 4.0 g/L was sufficient to remove 98% of cationic MB dye at pH 9.0. Similar amount of pomegranate peels had lower efficiency for anionic dyes (50-70%), while cationic MB was still efficiently removed (98%) at pH 9.0. Moreover, the adsorption process in all cases was found to better fit to pseudo-second-order model, in comparison to pseudo-first-order model. According to isotherms, Freundlich model fitted better in some cases to the equilibrium data, while the Langmuir model in others. Finally, this study demonstrates the viability of reusing the banana, orange, and pomegranate peel adsorbents for eight, four, and five cycles, showing a gradual reduction of around 50% of their effectiveness.
Collapse
Affiliation(s)
- Athanasia K Tolkou
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | - Eleftheria K Tsoutsa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, 65404, Kavala, Greece
| | - Ioannis A Katsoyiannis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
8
|
Munusamy R, Shanmugasundharam S. Enhanced gastric residence time of acyclovir by floating raft formulation using box-behnken design. Heliyon 2024; 10:e24301. [PMID: 38293518 PMCID: PMC10825352 DOI: 10.1016/j.heliyon.2024.e24301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
This research paper reports enhancing Acyclovir's gastric residence time by implementing a raft-forming drug delivery system. Because acyclovir is a narrow absorption window drug, it has a poor bioavailability of 10-20 % and a short half-life (t1/2) of 2.5 h. The guar gum and GMS-based floating raft formulation retain the drug in the stomach for an extended period by enhancing GRT. The Box-Behnken design is used to optimize the amount of guar gum, glyceryl monostearate, and calcium carbonate and to study how they affect the in vitro gelation time, viscosity, and in vitro drug release. The ratio of drug and excipients in guar gum (1:0.5), GMS (1:1.25) based FRF suspension containing sodium citrate (0.25 %), carbopol (0.1 %), and calcium carbonate (1:1.5). Seventeen runs were developed through the Box-Behnken design to study all the optimal interactions between variables and responses through a polynomial equation. The optimized formulation is then characterized using various physicochemical tests such as rheological analysis, in vitro drug release, kinetic drug release, and in vitro permeation studies. The in vitro gelation time, viscosity, and in vitro drug release time of optimized FRF are 12 s, 1090 cps, and 88 % at 24 h, respectively. The flux and permeability coefficient of the optimized batch have a higher value indicating higher permeability of acyclovir. The FRF follows non-fickian diffusion as a drug release mechanism. The results show that the raft-forming drug delivery system significantly enhances the absorption of Acyclovir by prolonging drug release and also improving its gastric residence time in the stomach. This research contributes to the field of drug delivery systems by providing a novel approach for improving the therapeutic efficacy of acyclovir and potentially other drugs with similar characteristics.
Collapse
Affiliation(s)
- Rajalakshmi Munusamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, 603203, India
| | | |
Collapse
|
9
|
Munusamy R, Shanmugasundharam S. Improved gastric residence time of famotidine by raft-forming drug delivery system using DOE. Int J Immunopathol Pharmacol 2024; 38:3946320241249429. [PMID: 38721971 PMCID: PMC11084990 DOI: 10.1177/03946320241249429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE This study investigated the raft-forming suspension of famotidine as an anti-reflux formulation to improve the oral bioavailability of narrow absorption window drugs by enhancing gastric residence time (GRT) and preventing gastro-esophageal reflux disease (GERD). METHOD Various combinations of raft-forming agents, such as Tragacanth gum (TG), guar gum (GG), and xanthan gum (XG), were evaluated alongside sodium alginate (SA) to develop an effective raft. Preformulation studies and preliminary screening were conducted to identify the most suitable raft-forming agent, and GG was chosen due to its mucilaginous properties. The formulation was optimized using a 32 full factorial design, with the quantities of GG and SA as independent factors and apparent viscosity and in-vitro drug release (%) as dependent factors. The in vivo floating behavior study was performed for optimized and stabilized formulation. RESULTS Among the tested batches, F6 was selected as the optimized formulation. It exhibited desirable characteristics such as adequate raft weight for extended floating in gastric fluid, improved apparent viscosity, and a significant percentage of drug release at 12 h. A mathematical model was applied to the in-vitro data to gain insights into the drug release mechanism of the formulation. The stability of the suspension was assessed under accelerated conditions, and it demonstrated satisfactory stability. The formulation remains floating in the Rabbit stomach for more than 12 h. CONCLUSION It concludes that the developed formulation has enhanced bioavailability in the combination of GG and SA. The floating layer of the raft prevents acid reflux, and the famotidine is retained for an extended period of time in the gastric region, preventing excess acid secretion. The developed formulations are effective for stomach ulcers and GERD, with the effect of reducing acid secretion by H2 receptor antagonists.
Collapse
Affiliation(s)
- Rajalakshmi Munusamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRMIST, Kattankulathur, India
| | | |
Collapse
|
10
|
Luo P, Shu L, Huang Z, Huang Y, Wu C, Pan X, Hu P. Utilization of Lyotropic Liquid Crystalline Gels for Chronic Wound Management. Gels 2023; 9:738. [PMID: 37754419 PMCID: PMC10530416 DOI: 10.3390/gels9090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.
Collapse
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| |
Collapse
|
11
|
Suhail M, Chiu IH, Lai YR, Khan A, Al-Sowayan NS, Ullah H, Wu PC. Xanthan-Gum/Pluronic-F-127-Based-Drug-Loaded Polymeric Hydrogels Synthesized by Free Radical Polymerization Technique for Management of Attention-Deficit/Hyperactivity Disorder. Gels 2023; 9:640. [PMID: 37623095 PMCID: PMC10453617 DOI: 10.3390/gels9080640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Smart and intelligent xanthan gum/pluronic F-127 hydrogels were fabricated for the controlled delivery of atomoxetine HCl. Different parameters such as DSC, TGA, FTIR, XRD, SEM, drug loading, porosity, swelling index, drug release, and kinetics modeling were appraised for the prepared matrices of hydrogels. FTIR confirmed the successful synthesis of the hydrogel, while TGA and DSC analysis indicated that the thermal stability of the reagents was improved after the polymerization technique. SEM revealed the hard surface of the hydrogel, while XRD indicated a reduction in crystallinity of the reagents. High gel fraction was achieved with high incorporated contents of the polymers and the monomer. An increase in porosity, drug loading, swelling, and drug release was observed with the increase in the concentrations of xanthan gum and acrylic acid, whereas Pluronic F-127 showed the opposite effect. A negligible swelling index was shown at pH 1.2 and 4.6 while greater swelling was observed at pH 7.4, indicating a pH-responsive nature of the designed hydrogels. Furthermore, a higher drug release was found at pH 7.4 compared to pH 1.2 and 4.6, respectively. The first kinetics order was followed by the prepared hydrogel formulations. Thus, it is signified from the discussion that smart xanthan gum/pluronic F-127 hydrogels have the potential to control the release of the atomoxetine HCl in the colon for an extended period of time.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (I.-H.C.); (H.U.)
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (I.-H.C.); (H.U.)
| | - Yi-Ru Lai
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (I.-H.C.); (H.U.)
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Khawaja Fareed Campus (Railway Road), The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | | | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (I.-H.C.); (H.U.)
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (I.-H.C.); (H.U.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Suhail M, Fang CW, Chiu IH, Khan A, Wu YC, Lin IL, Tsai MJ, Wu PC. Synthesis and Evaluation of Alginate-Based Nanogels as Sustained Drug Carriers for Caffeine. ACS OMEGA 2023; 8:23991-24002. [PMID: 37426260 PMCID: PMC10324385 DOI: 10.1021/acsomega.3c02699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The objective of this study is to design a polymeric network of nanogels for sustained release of caffeine. Therefore, alginate-based nanogels were fabricated by a free-radical polymerization technique for the sustained delivery of caffeine. Polymer alginate was crosslinked with monomer 2-acrylamido-2-methylpropanesulfonic acid by crosslinker N',N'-methylene bisacrylamide. The prepared nanogels were subjected to sol-gel fraction, polymer volume fraction, swelling, drug loading, and drug release studies. A high gel fraction was seen with the increasing feed ratio of polymer, monomer, and crosslinker. Greater swelling and drug release were observed at pH 4.6 and 7.4 as compared to pH 1.2 due to the deprotonation and protonation of functional groups of alginate and 2-acrylamido-2-methylpropanesulfonic acid. An increase was observed in swelling, loading, and release of the drug with the incorporation of a high feed ratio of polymer and monomer, while a reduction was seen with the increase in crosslinker feed ratio. Similarly, an HET-CAM test was used to evaluate the safety of the prepared nanogels, which showed that the prepared nanogels have no toxic effect on the chorioallantoic membrane of fertilized chicken eggs. Similarly, different characterizations techniques such as FTIR, DSC, SEM, and particle size analysis were carried out to determine the development, thermal stability, surface morphology, and particle size of the synthesized nanogels, respectively. Thus, we can conclude that the prepared nanogels can be used as a suitable agent for the sustained release of caffeine.
Collapse
Affiliation(s)
- Muhammad Suhail
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Wun Fang
- Division
of Pharmacy, Zuoying Branch of Kaohsiung
Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - I-Hui Chiu
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Arshad Khan
- Department
of Pharmaceutics, Faculty of Pharmacy, The
Islamia University of Bahawalpur, Khawaja Fareed Campus (Railway Road), Bahawalpur 63100, Pakistan
| | - Yi-Chun Wu
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department
of Medicine Laboratory Science and Biotechnology, College of Health
Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Laboratory Medicine, Kaohsiung Medical
University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Jun Tsai
- School
of Medicine, College of Medicine, China
Medical University, Taichung 404, Taiwan
- Department
of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- Department
of Neurology, An-Nan Hospital, China Medical
University, Tainan 709, Taiwan
| | - Pao-Chu Wu
- School
of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 807, Taiwan
- Drug
Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Ullah A, Lee GJ, Kim H, Kwon HT, In Lim S. Development and evaluation of bioinspired pH-responsive sericin-chitosan-based hydrogel for controlled colonic delivery of PETase: Harnessing PETase-triggered degradation of microplastics. Int J Biol Macromol 2023; 242:124698. [PMID: 37146860 DOI: 10.1016/j.ijbiomac.2023.124698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
The gravity of threats posed by microplastic pollution to the environment cannot be overestimated. Being ubiquitous in the living environment, microplastics reach humans through the food chain causing various hazardous effects. Microplastics can be effectively degraded by PETase enzymes. The current study reports, for the first time, a hydrogel-encapsulated, bioinspired colonic delivery of PETase. A free radical polymerization-assisted hydrogel system was synthesized from sericin, chitosan, and acrylic acid using N,N'-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The hydrogel was characterized with FTIR, PXRD, SEM, and thermal analysis to confirm the development of a stabilized hydrogel system. The hydrogel showed 61 % encapsulation efficiency, maximum swelling, and cumulative PETase release (96 %) at pH 7.4. The mechanism of PETase release exhibited the Higuchi pattern of release with an anomalous transport mechanism. SDS-PAGE analysis confirmed the preservation of the post-release structural integrity of PETase. The released PETase exhibited concentration- and time-dependent degradation of polyethylene terephthalate in vitro. The developed hydrogel system exhibited the intended features of a stimulus-sensitive carrier system that can be efficiently used for the colonic delivery of PETase.
Collapse
Affiliation(s)
- Aziz Ullah
- School of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Gyu-Jin Lee
- School of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyunji Kim
- School of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- School of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung In Lim
- School of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Marine BioResource Co., Ltd., 365, Sinseon-ro, Nam-gu, Busan 48548, Republic of Korea.
| |
Collapse
|
14
|
Aslam A, Ashraf MU, Barkat K, Mahmood A, Hussain MA, Farid-ul-Haq M, Lashkar MO, Gad HA. Fabrication of Stimuli-Responsive Quince/Mucin Co-Poly (Methacrylate) Hydrogel Matrices for the Controlled Delivery of Acyclovir Sodium: Design, Characterization and Toxicity Evaluation. Pharmaceutics 2023; 15:650. [PMID: 36839971 PMCID: PMC9961270 DOI: 10.3390/pharmaceutics15020650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Free-radical polymerization technique was adopted to fabricate a stimuli-responsive intelligent quince/mucin co-poly (methacrylate) hydrogel for the controlled delivery of acyclovir sodium. The developed hydrogel matrices were appraised using different parameters, such as drug loading (%), swelling kinetics, pH- and electrolyte-responsive swelling, and sol-gel fraction. Drug-excipient compatibility study, scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, in vitro drug release studies, drug release kinetics and acute oral toxicity studies were conducted. The results of drug loading revealed an acyclovir sodium loading of 63-75% in different formulations. The hydrogel discs exhibited pH-responsive swelling behavior, showing maximum swelling in a phosphate buffer with a pH of 7.4, but negligible swelling was obvious in an acidic buffer with a pH of 1.2. The swelling kinetics of the developed hydrogel discs exhibited second-order kinetics. Moreover, the hydrogel discs responded to the concentration of electrolytes (CaCl2 and NaCl). The results of the FTIR confirm the formation of the hydrogel via free-radical polymerization. However, the major peaks of acyclovir remain intact, proving drug-excipient compatibility. The results of the SEM analysis reveal the porous, rough surface of the hydrogel discs with multiple cracks and pores over the surface. The results of the PXRD disclose the amorphous nature of the fabricated hydrogel. The dissolution studies showed a minor amount of acyclovir sodium released in an acidic environment, while an extended release up to 36 h in the phosphate buffer was observed. The drug release followed Hixen-Crowell's kinetics with Fickian diffusion mechanism. The toxicity studies demonstrated the non-toxic nature of the polymeric carrier system. Therefore, these results signify the quince/mucin co-poly (methacrylate) hydrogel as a smart material with the potential to deliver acyclovir into the intestine for an extended period of time.
Collapse
Affiliation(s)
- Aysha Aslam
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan
| | | | | | - Manar O. Lashkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
15
|
He ML, Dong X, Zuo LL, Niu YY, Wang HY. Effects of sericin and egg white on the inflammation of damaged skin in mice. Biomed Mater 2023; 18. [PMID: 36735969 DOI: 10.1088/1748-605x/acb8f0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Sericin and egg white (EW) have shown the ability to promote wound healing. However, there have been insufficient studies regarding the effects of sericin and EW mixtures on wound healing. This study aimed to investigate the effects of a hybrid sericin and EW solution on wound repair and inflammation-related indicators in mouse skin. In this work, sericin with a low molecular weight was first mixed with homogeneous EW to prepare a hybrid wound dressing. Histology evaluation, the expression of C-reactive protein (CRP) and inflammatory cytokines in mice were tested to determine the effects of this dressing on skin injuries in mice. The results showed that sericin and the hybrid solution of sericin and EW effectively promoted wound healing in mouse skin. The wound recovery rates of mice 12 days after treatment with a medium dose of sericin (0.2 g ml-1) and the same dosage of sericin with added EW were 1.32 and 1.65 times that of mice treated with phosphate buffer saline as a control, respectively. In addition, the mixture solution was more effective in wound healing than sericin alone. Sericin with EW significantly reduced the expression of CRP and inflammatory cytokines in mice during wound healing. A sericin and EW hybrid solution can effectively shorten the time needed for wound healing and reduce inflammation-related indicators in mice, making it a promising candidate for wound dressing.
Collapse
Affiliation(s)
- Mei-Ling He
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, People's Republic of China
| | - Xuan Dong
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ling-Li Zuo
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, People's Republic of China
| | - Ya-Yan Niu
- Department of Pulmonary Disease, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hai-Yan Wang
- Department of Obstetrics and Gynecology, The People's Hospital of Suzhou New District, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Suhail M, Chiu IH, Liu JY, Ullah H, Lin IL, Minhas MU, Tsai MJ, Wu PC. Fabrication and In vitro Evaluation of Carbopol/Polyvinyl Alcohol-based pH-sensitive Hydrogels for Controlled Drug Delivery. Curr Pharm Des 2023; 29:2489-2500. [PMID: 37881070 DOI: 10.2174/0113816128268132231016061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jia-Yu Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | | | - Ming-Jun Tsai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Neurology, An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
18
|
Hu D, Li T, Liang W, Wang Y, Feng M, Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J Control Release 2023; 353:303-316. [PMID: 36402235 DOI: 10.1016/j.jconrel.2022.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Silk sericin is a class of protein biopolymers produced by silkworms. Increasing attention has been paid to silk sericin for biomedical applications in the last decade, not only because of its excellent biocompatibility and biodegradability but also due to the pharmacological activities stemming from its unique amino acid compositions. In this review, the biological properties of silk sericin, including curing specific diseases and promoting tissue regeneration, as well as underlying mechanisms are summarized. We consider the antioxidant activity of silk sericin as a fundamental property, which could account for partial biological activities, despite the exact mechanisms of silk sericin's effect remaining unknown. Based on the reactive groups on silk sericin, approaches of bottom-up fabrication of silk sericin-based biomaterials are highlighted, including non-covalent interactions and chemical reactions (reduction, crosslinking, bioconjugation, and polymerization). We then briefly present the cutting-edge advances of silk sericin-based biomaterials applied in tissue engineering and drug delivery. The challenges of silk sericin-based biomaterials are proposed. With more bioactivities and underlying mechanisms of silk sericin uncovered, it is going to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen'an Liang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Min Feng
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
19
|
Novel Black Seed Polysaccharide Extract-g-Poly (Acrylate) pH-Responsive Hydrogel Nanocomposites for Safe Oral Insulin Delivery: Development, In Vitro, In Vivo and Toxicological Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010062. [PMID: 36678691 PMCID: PMC9864008 DOI: 10.3390/pharmaceutics15010062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral delivery of insulin has always been a challenging task due to harsh gut environment involving variable pH and peptidase actions. Currently, no Food and Drug Administration (FDA) approved oral insulin formulation is commercially available, only intravenous (IV) or subcutaneous (SC) routes. Therefore, it is really cumbersome for diabetic patients to go through invasive approaches for insulin delivery on daily basis. In the present study, a novel pH-responsive hydrogel nanocomposite (NC) system was developed and optimized for safe oral delivery of insulin. Black seed polysaccharide extract-based hydrogel (BA hydrogel) was formulated by free radical polymerization and loaded with insulin. Blank BA hydrogel was also incorporated with insulin-loaded montmorillonite nanoclay (Ins-Mmt) to form an Ins-Mmt-BA hydrogel NC and compared with the insulin-loaded hydrogel. Swelling, sol-gel analysis and in vitro release studies proved that Ins-Mmt-BA6 hydrogel NC has the best formulation, with 96.17% maximum insulin released in 24 h. Kinetic modeling applied on insulin release data showed the Korsemeyer-Peppas model (R2 = 0.9637) as the best fit model with a super case II transport mechanism for insulin transport (n > 0.89). Energy Dispersive X-ray (EDX) Spectroscopy, Fourier Transformed Infrared (FTIR) spectroscopy and Powdered X-ray diffraction (PXRD) analysis results also confirmed successful development of a hydrogel NC with no significant denaturation of insulin. Toxicity results confirmed the safety profile and biocompatibility of the developed NC. In vivo studies showed a maximum decrease in blood glucose levels of 52.61% and percentage relative bioavailability (% RBA) of 26.3% for an Ins-Mmt-BA hydrogel NC as compared to BA hydrogels and insulin administered through the SC route.
Collapse
|
20
|
Development and Optimization of Tamarind Gum-β-Cyclodextrin-g-Poly(Methacrylate) pH-Responsive Hydrogels for Sustained Delivery of Acyclovir. Pharmaceuticals (Basel) 2022; 15:ph15121527. [PMID: 36558978 PMCID: PMC9785578 DOI: 10.3390/ph15121527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Acyclovir has a short half-life and offers poor bioavailability. Its daily dose is 200 mg five times a day. A tamarind gum and β-cyclodextrin-based pH-responsive hydrogel network for sustained delivery of acyclovir was developed using the free-radical polymerization technique. Developed networks were characterized by FTIR, DSC, TGA, PXRD, EDX, and SEM. The effect of varying feed ratios of polymers, monomers, and crosslinker on the gel fraction, swelling, and release was also investigated. FTIR findings confirmed the compatibility of the ingredients in a new complex polymer. The thermal stability of acyclovir was increased within the newly synthesized polymer. SEM photomicrographs confirmed the porous texture of hydrogels. The gel fraction was improved (from 90.12% to 98.12%) with increased reactant concentrations. The pH of the dissolution medium and the reactant contents affected swelling dynamics and acyclovir release from the developed carrier system. Based on the R2 value, the best-fit model was zero-order kinetics with non-Fickian diffusion as a release mechanism. The biocompatibility of the developed network was confirmed through hematology, LFT, RFT, lipid profile, and histopathological examinations. No sign of pathology, necrosis, or abrasion was observed. Thus, a pH-responsive and biocompatible polymeric system was developed for sustained delivery of acyclovir to reduce the dosing frequency and improve patient compliance.
Collapse
|
21
|
Suhail M, Ullah H, Vu QL, Khan A, Tsai MJ, Wu PC. Preparation of pH-Responsive Hydrogels Based on Chondroitin Sulfate/Alginate for Oral Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102110. [PMID: 36297545 PMCID: PMC9606947 DOI: 10.3390/pharmaceutics14102110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
This study investigates pH-sensitive hydrogels based on biocompatible, biodegradable polysaccharides and natural polymers such as chondroitin sulfate and alginate in combination with synthetic monomer such as acrylic acid, as controlled drug carriers. Investigations were conducted for chondroitin sulfate/alginate-graft-poly(acrylic acid) hydrogel in various mixing ratios of chondroitin sulfate, alginate and acrylic acid in the presence of ammonium persulfate and N',N'-Methylene bisacrylamide. Crosslinking and loading of drug were confirmed by Fourier transform infrared spectroscopy. Thermal stability of both polymers was enhanced after crosslinking as indicated by thermogravimetric analysis and differential scanning calorimeter thermogram of developed hydrogel. Similarly, surface morphology was evaluated by scanning electron microscopy, whereas crystallinity of the polymers and developed hydrogel was investigated by powder X-ray diffraction. Furthermore, swelling and drug-release studies were investigated in acidic and basic medium of pH 1.2 and 7.4 at 37 °C, respectively. Maximum swelling and drug release were detected at pH 7.4 as compared to pH 1.2. Increased incorporation of hydrogel contents led to an increase in porosity, drug loading, and gel fraction while a reduction in sol fraction was seen. The polymer volume fraction was found to be low at pH 7.4 compared to pH 1.2, indicating a prominent and greater swelling of the prepared hydrogels at pH 7.4. Likewise, a biodegradation study revealed a slow degradation rate of the developed hydrogel. Hence, we can conclude from the results that a fabricated system of hydrogel could be used as a suitable carrier for the controlled delivery of ketorolac tromethamine.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Quoc Lam Vu
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Str., Thai Nguyen City 24000, Vietnam
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Khawaja Fareed Campus (Railway Road), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurology, An-Nan Hospital, China Medical University, Tainan 404, Taiwan
- Correspondence: (M.-J.T.); (P.-C.W.); Tel.: +886-4-2205-2121 (M.-J.T.); +886-7-3121-101 (P.-C.W.)
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-J.T.); (P.-C.W.); Tel.: +886-4-2205-2121 (M.-J.T.); +886-7-3121-101 (P.-C.W.)
| |
Collapse
|
22
|
Preparation, In Vitro Characterization, and Cytotoxicity Evaluation of Polymeric pH-Responsive Hydrogels for Controlled Drug Release. Pharmaceutics 2022; 14:pharmaceutics14091864. [PMID: 36145612 PMCID: PMC9506008 DOI: 10.3390/pharmaceutics14091864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of the current investigation was based on the development of pH-responsive hydrogels of chondroitin sulfate, carbopol, and polyvinyl alcohol polymerized with acrylic acid in the presence of ammonium persulfate and ethylene glycol dimethylacrylate for controlled drug delivery. A free radical polymerization technique was used for the preparation of these pH-responsive hydrogels. The gel fraction of the prepared hydrogels was increased with the increase in the chondroitin sulfate, carbopol, polyvinyl alcohol, and acrylic acid content, while the sol-fraction was decreased. Swelling and drug release studies were performed in various pH conditions. Greater swelling and drug release were observed at high pH values (pH 4.6 and 7.4) as compared to low pH value (pH 1.2), representing the pH-responsive nature of the synthesized hydrogels. Porosity and drug loading were increased with the incorporation of high concentrations of hydrogel contents except polyvinyl alcohol, which showed reverse effects. Similarly, biodegradation study reported a slow degradation rate of the prepared hydrogels with the increase in hydrogel constituents. Cytotoxicity study proved the safe use of developed hydrogels as no toxic effect was shown on T84 human colon cancer cells. Similarly, various characterizations, including Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy, were performed for prepared hydrogels. Hence, we could demonstrate that the prepared hydrogels can be used as a promising drug carrier for the controlled delivery of drugs.
Collapse
|
23
|
Li J, Wen P, Qin G, Zhang J, Zhao P, Ye Y. Toxicological evaluation of water-extract sericin from silkworm (Bombyx mori) in pregnant rats and their fetus during pregnancy. Front Pharmacol 2022; 13:982841. [PMID: 36120341 PMCID: PMC9478611 DOI: 10.3389/fphar.2022.982841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sericin is a natural protein produced by the silkworm Bombyx mori, which has a wide range of biological activities and has a broad application prospect in multiple areas. However, systemic toxicity and safety assessment of sericin is still rare. This study was aimed to evaluate the toxic effects of water-extract sericin from cocoons of Bombyx mori in pregnant rats and their fetuses during pregnancy. Eighty pregnant rats were randomly divided into three treatment groups, one negative and one positive control group. The treatment groups were administered water-extract sericin solutions at doses of 1,000, 500, and 250 mg/kg, while the negative and positive control groups were administered pure water and 300 mg/kg aspirin, respectively. Rats were exposed daily by oral gavage from the seventh day of gestation for 10 consecutive days and sacrificed on the 20th day of gestation. The results showed that water-extract sericin did not induce any treatment-related changes on pregnant rats (clinical signs, body weights, food consumption, ovarian and uterine weights) and fetuses (body weights, body lengths, tail lengths, visceral, and skeletal development). The no-observed-adverse-effect-level (NOAEL) of sericin was determined to be 1,000 mg/kg body weight in rats. These results indicated that water-extract sericin is of low teratogenic potential under the experimental conditions of this study.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Pingjing Wen
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
- *Correspondence: Guangqiu Qin, ; Jiehong Zhang,
| | - Jiehong Zhang
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
- *Correspondence: Guangqiu Qin, ; Jiehong Zhang,
| | - Peng Zhao
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Yixin Ye
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
24
|
Suhail M, Shih CM, Liu JY, Hsieh WC, Lin YW, Lin IL, Wu PC. Synthesis of glutamic acid/polyvinyl alcohol based hydrogels for controlled drug release: In-vitro characterization and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Suhail M, Fang CW, Chiu IH, Hung MC, Vu QL, Lin IL, Wu PC. Designing and In Vitro Characterization of pH-Sensitive Aspartic Acid-Graft-Poly(Acrylic Acid) Hydrogels as Controlled Drug Carriers. Gels 2022; 8:gels8080521. [PMID: 36005122 PMCID: PMC9407557 DOI: 10.3390/gels8080521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/06/2023] Open
Abstract
Acetaminophen is an odorless and white crystalline powder drug, used in the management of fever, pain, and headache. The half-life of acetaminophen is very short; thus, multiple intakes of acetaminophen are needed in a day to maintain a constant pharmacological action for an extended period of time. Certain severe adverse effects are produced due to the frequent intake of acetaminophen, especially hepatotoxicity and skin rashes. Therefore, a drug carrier system is needed which not only prolongs the release of acetaminophen, but also enhances the patient compliance. Therefore, the authors prepared novel aspartic acid-graft-poly(acrylic acid) hydrogels for the controlled release of acetaminophen. The novelty of the prepared hydrogels is based on the incorporation of pH-sensitive monomer acrylic acid with polymer aspartic acid in the presence of ethylene glycol dimethacrylate. Due to the pH-sensitive nature, the release of acetaminophen was prolonged for an extended period of time by the developed hydrogels. Hence, a series of studies was carried out for the formulated hydrogels including sol-gel fraction, FTIR, dynamic swelling, polymer volume analysis, thermal analysis, percent porosity, SEM, in vitro drug release studies, and PXRD analysis. FTIR analysis confirmed the grafting of acrylic acid onto the backbone of aspartic acid and revealed the development of hydrogels. The thermal studies revealed the high thermal stability of the fabricated hydrogels as compared to pure aspartic acid. An irregular surface with a few pores was indicated by SEM. PXRD revealed the amorphous state of the developed hydrogels and confirmed the reduction in the crystallinity of the unreacted aspartic acid by the formulated hydrogels. An increase in gel fraction was observed with the increasing concentration of aspartic acid, acrylic acid, and ethylene glycol dimethacrylate due to the availability of a high amount of free radicals. The porosity study was influenced by the various compositions of developed hydrogels. Porosity was increased due to the enhancement in the concentrations of aspartic acid and acrylic acid, whereas it decreased with the increase in ethylene glycol dimethacrylate concentration. Similarly, the pH-responsive properties of hydrogels were evaluated by dynamic swelling and in vitro drug release studies at two different pH levels (1.2 and 7.4), and a greater dynamic swelling and acetaminophen release were exhibited at pH 7.4 as compared to pH 1.2. An increase in swelling, drug loading, and drug release was seen with the increased incorporation of aspartic acid and acrylic acid, whereas a decrease was detected with the increase in the concentration of ethylene glycol dimethacrylate. Conclusively, the formulated aspartic acid-based hydrogels could be employed as a suitable nonactive pharmaceutical ingredient for the controlled delivery of acetaminophen.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Chih-Wun Fang
- Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Ming-Chia Hung
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Quoc Lam Vu
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Str., Thai Nguyen 24000, Vietnam
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121-101
| |
Collapse
|
26
|
Development, characterization and In-vitro evaluation of guar gum based new polymeric matrices for controlled delivery using metformin HCl as model drug. PLoS One 2022; 17:e0271623. [PMID: 35901085 PMCID: PMC9333214 DOI: 10.1371/journal.pone.0271623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, hydrogels are considered as ideal biomaterials due to their unique structure and characteristics that facilitates considerable hydrophilicity, swelling, drug loading and release. In this study, we report pH-responsive GG-MAA-AMPS hydrogel delivery system prepared via free radical polymerization technique. Hydrogels were loaded with Metformin HCl as a model drug. Hydrogels were characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). FTIR confirmed the successful crosslinking of reactants, hydrogel network formation and drug loading. TGA and DSC proved the higher thermal stability of reactants after crosslinking and drug loading. XRD analysis showed decrease in crystallinity of drug after loading into the hydrogels. SEM revealed smooth and glassy appearance of both loaded and unloaded hydrogels. Gel content was increased with increase in concentration of reactants. Drug entrapment was decreased by increasing concentration of GG and AMPS while MAA acted inversely. Hydrogels displayed pH-dependent swelling and drug release behavior being high at pH 6.8 and 7.4 while low at acidic pH (1.2). Oral tolerability in rabbits showed that hydrogels were safe without causing any hematological or histopathological changes in healthy rabbits. Based on the obtained results, GG-MAA-AMPS can be considered as potential carrier for metformin HCl as well as other hydrophilic drugs.
Collapse
|
27
|
Suhail M, Chiu IH, Hung MC, Vu QL, Lin IL, Wu PC. In Vitro Evaluation of Smart and pH-Sensitive Chondroitin Sulfate/Sodium Polystyrene Sulfonate Hydrogels for Controlled Drug Delivery. Gels 2022; 8:gels8070406. [PMID: 35877491 PMCID: PMC9323728 DOI: 10.3390/gels8070406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ibuprofen is an antipyretic and analgesic drug used for the management of different inflammatory diseases, such as rheumatoid arthritis and osteoarthritis. Due to a short half-life and rapid elimination, multiple doses of ibuprofen are required in a day to maintain pharmacological action for a long duration of time. Due to multiple intakes of ibuprofen, certain severe adverse effects, such as gastric irritation, bleeding, ulcers, and abdominal pain are produced. Therefore, a system is needed which not only prolongs the release of ibuprofen but also overcomes the drug’s adverse effects. Hence, the authors have synthesized chondroitin sulfate/sodium polystyrene sulfonate–co-poly(acrylic acid) hydrogels by the free radical polymerization technique for the controlled release of ibuprofen. Sol-gel, porosity, swelling, and drug release studies were performed on the fabricated hydrogel. The pH-responsive behavior of the fabricated hydrogel was determined by both swelling and drug release studies in three different pH values, i.e., pH 1.2, 4.6, and 7.4. Maximum swelling and drug release were observed at pH 7.4, as compared to pH 4.6 and 1.2. Similarly, the structural arrangement and crosslinking of the hydrogel contents were confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) evaluated the hard and irregular surface with a few macrospores of the developed hydrogel, which may be correlated with the strong crosslinking of polymers with monomer content. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the high thermal stability of the formulated hydrogel, as compared to pure polymers. A decrease in the crystallinity of chondroitin sulfate and sodium polystyrene sulfonate after crosslinking was revealed by powder X-ray diffraction (PXRD). Thus, considering the results, we can demonstrate that a developed polymeric network of hydrogel could be used as a safe, stable, and efficient carrier for the controlled release of ibuprofen.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - Ming-Chia Hung
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - Quoc Lam Vu
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Str., Thai Nguyen City 24000, Vietnam;
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
28
|
Han AS, Kim J, Park JW, Jin SG. Novel acyclovir-loaded film-forming gel with enhanced mechanical properties and skin permeability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Formulation, Characterization, and In Vitro Drug Release Study of β-Cyclodextrin-Based Smart Hydrogels. Gels 2022; 8:gels8040207. [PMID: 35448108 PMCID: PMC9031272 DOI: 10.3390/gels8040207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, novel pH-responsive polymeric β-cyclodextrin-graft-poly(acrylic acid/itaconic acid) hydrogels were fabricated by the free radical polymerization technique. Various concentrations of β-cyclodextrin, acrylic acid, and itaconic acid were crosslinked by ethylene glycol dimethacrylate in the presence of ammonium persulfate. The crosslinked hydrogels were used for the controlled delivery of theophylline. Loading of theophylline was conducted by the absorption and diffusion method. The fabricated network of hydrogel was evaluated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The crosslinking among hydrogel contents and drug loading by the fabricated hydrogel were confirmed by FTIR analysis, while TGA indicated a high thermal stability of the prepared hydrogel as compared to pure β-cyclodextrin and itaconic acid. The high thermal stability of the developed hydrogel indicated an increase in the thermal stability of β-cyclodextrin and itaconic acid after crosslinking. Similarly, a decrease in crystallinity of β-cyclodextrin and itaconic acid was observed after crosslinking, as evaluated by XRD analysis. SEM revealed an irregular and hard surface of the prepared hydrogel, which may be correlated with strong crosslinking among hydrogel contents. Crosslinked insoluble and uncrosslinked soluble fractions of hydrogel were evaluated by sol–gel analysis. An increase in gel fraction was seen with the increase in compositions of hydrogel contents, while a decrease in sol fraction was observed. Dynamic swelling and dissolution studies were performed in three various buffer solutions of pH 1.2, 4.6, and 7.4, respectively. Maximum swelling and drug release were observed at higher pH values as compared to the lower pH value due to the deprotonation and protonation of functional groups of the hydrogel contents; thus, the pH-sensitive nature of the fabricated hydrogel was demonstrated. Likewise, water penetration capability and polymer volume were evaluated by porosity and polymer volume studies. Increased incorporation of β-cyclodextrin, acrylic acid, and itaconic acid led to an increase in swelling, drug release, drug loading, and porosity of the fabricated hydrogel, whereas a decrease was detected with the increasing concentration of ethylene glycol dimethacrylate. Conclusively, the prepared hydrogel could be employed as a suitable and promising carrier for the controlled release of theophylline.
Collapse
|
30
|
Khan MA, Azad AK, Safdar M, Nawaz A, Akhlaq M, Paul P, Hossain MK, Rahman MH, Baty RS, El-Kott AF, Kamel M, Bungau SG, Abdel-Daim MM. Synthesis and Characterization of Acrylamide/Acrylic Acid Co-Polymers and Glutaraldehyde Crosslinked pH-Sensitive Hydrogels. Gels 2022; 8:47. [PMID: 35049582 PMCID: PMC8774986 DOI: 10.3390/gels8010047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
This project aims to synthesize and characterize the pH-sensitive controlled release of 5-fluorouracil (5-FU) loaded hydrogels (5-FULH) by polymerization of acrylamide (AM) and acrylic acid (AA) in the presence of glutaraldehyde (GA) as a crosslinker with ammonium persulphate as an initiator. The formulation's code is named according to acrylamide (A1, A2, A3), acrylic acid (B1, B2, B3) and glutaraldehyde (C1, C2, C3). The optimized formulations were exposed to various physicochemical tests, namely swelling, diffusion, porosity, sol gel analysis, and attenuated total reflection-Fourier transform infrared (ATR-FTIR). These 5-FULH were subjected to kinetic models for drug release data. The 5-FU were shown to be soluble in distilled water and phosphate buffer media at pH 7.4, and sparingly soluble in an acidic media at pH 1.2. The ATR-FTIR data confirmed that the 5-FU have no interaction with other ingredients. The lowest dynamic (0.98 ± 0.04% to 1.90 ± 0.03%; 1.65 ± 0.01% to 6.88 ± 0.03%) and equilibrium swelling (1.85 ± 0.01% to 6.68 ± 0.03%; 10.12 ± 0.02% to 27.89 ± 0.03%) of formulations was observed at pH 1.2, whereas the higher dynamic (4.33 ± 0.04% to 10.21 ± 0.01%) and equilibrium swelling (22.25 ± 0.03% to 55.48 ± 0.04%) was recorded at pH 7.4. These findings clearly indicated that the synthesized 5-FULH have potential swelling characteristics in pH 6.8 that will enhance the drug's release in the same pH medium. The porosity values of formulated 5-FULH range from 34% to 62% with different weight ratios of AM, AA, and GA. The gel fractions data showed variations ranging from 74 ± 0.4% (A1) to 94 ± 0.2% (B3). However, formulation A1 reported the highest 24 ± 0.1% and B3 the lowest 09 ± 0.3% sol fractions rate among the formulations. Around 20% drug release from the 5-FULH was found at 1 h in an acidic media (pH1.2), whereas >65% of drug release (pH7.4) was observed at around 25 h. These findings concluded that GA crosslinked 5-FU loaded AM and AA based hydrogels would be a potential pH-sensitive oral controlled colon drug delivery carrier.
Collapse
Affiliation(s)
- Munir Ahmad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Muhammad Safdar
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asif Nawaz
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Akhlaq
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Pijush Paul
- Department of Pharmacy, Gono Bishwabidyalay, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Md Kamal Hossain
- Institute of Health and Sports, Victoria University, Melbourne 3011, Australia
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61421, Saudi Arabia
- Zoology Department, Faculty of Science, Damanhour Univesity, Damanhour 22511, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Simona G Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
31
|
Synthesis and In Vitro Evaluation of Aspartic Acid Based Microgels for Sustained Drug Delivery. Gels 2021; 8:gels8010012. [PMID: 35049547 PMCID: PMC8775008 DOI: 10.3390/gels8010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
The main focus of the current study was to sustain the releasing behavior of theophylline by fabricated polymeric microgels. The free radical polymerization technique was used for the development of aspartic acid-co-poly(2-acrylamido-2-methylpropanesulfonic acid) microgels while using various combinations of aspartic acid, 2-acrylamido-2-methylpropanesulfonic acid, and N′,N′-methylene bisacrylamide as a polymer, monomer, and cross-linker, respectively. Ammonium peroxodisulfate and sodium hydrogen sulfite were used as initiators. Characterizations such as DSC, TGA, SEM, FTIR, and PXRD were performed for the fabricated microgels to assess their thermal stability with unreacted polymer and monomer, their surface morphology, the formation of a new polymeric system of microgels by evaluating the cross-linking of functional groups of the microgels’ contents, and to analyze the reduction in crystallinity of the theophylline by fabricated microgels. Various studies such as dynamic swelling, drug loading, sol–gel analysis, in vitro drug release studies, and kinetic modeling were carried out for the developed microgels. Both dynamic swelling and percent drug release were found higher at pH 7.4 as compared to pH 1.2 due to the deprotonation of functional groups of aspartic acid and AMPS. Similarly, sol–gel analysis was performed and an increase in gel fraction was observed with the increasing concentration of microgel contents, while sol fraction was decreased. Conclusively, the prepared carrier system has the potential to sustain the release of the theophylline for an extended period of time.
Collapse
|
32
|
Synthesis, Characterization, In-Vitro and In-Vivo Evaluation of Ketorolac Tromethamine-Loaded Hydrogels of Glutamic Acid as Controlled Release Carrier. Polymers (Basel) 2021; 13:polym13203541. [PMID: 34685304 PMCID: PMC8541255 DOI: 10.3390/polym13203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamic acid-co-poly(acrylic acid) (GAcPAAc) hydrogels were prepared by the free radical polymerization technique using glutamic acid (GA) as a polymer, acrylic acid (AAc) as a monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and ammonium persulfate (APS) as an initiator. Increase in gel fraction was observed with the increasing concentration of glutamic acid, acrylic acid, and ethylene glycol dimethylacrylate. High percent porosity was indicated by developed hydrogels with the increase in the concentration of glutamic acid and acrylic acid, while a decrease was seen with the increasing concentration of EGDMA, respectively. Maximum swelling and drug release was exhibited at high pH 7.4 compared to low pH 1.2 by the newly synthesized hydrogels. Similarly, both swelling and drug release increased with the increasing concentration of glutamic acid and acrylic acid and decreased with the increase in ethylene glycol dimethylacrylate concentration. The drug release was considered as non-Fickian transport and partially controlled by viscoelastic relaxation of hydrogel. In-vivo study revealed that the AUC0–∞ of fabricated hydrogels significantly increased compared to the drug solution and commercial product Keten. Hence, the results indicated that the developed hydrogels could be used as a suitable carrier for controlled drug delivery.
Collapse
|
33
|
Formulation and In-Vitro Characterization of pH-Responsive Semi-Interpenetrating Polymer Network Hydrogels for Controlled Release of Ketorolac Tromethamine. Gels 2021; 7:gels7040167. [PMID: 34698162 PMCID: PMC8544598 DOI: 10.3390/gels7040167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ketorolac tromethamine is a non-steroidal anti-inflammatory drug used in the management of severe pain. The half-life of Ketorolac tromethamine is within the range of 2.5–4 h. Hence, repeated doses of Ketorolac tromethamine are needed in a day to maintain the therapeutic level. However, taking several doses of Ketorolac tromethamine in a day generates certain complications, such as acute renal failure and gastrointestinal ulceration. Therefore, a polymeric-controlled drug delivery system is needed that could prolong the release of Ketorolac tromethamine. Therefore, in the current study, pH-responsive carbopol 934/sodium polystyrene sulfonate-co-poly(acrylic acid) (CP/SpScPAA) hydrogels were developed by the free radical polymerization technique for the controlled release of Ketorolac tromethamine. Monomer acrylic acid was crosslinked with the polymers carbopol 934 and sodium polystyrene sulfonate by the cross-linker N’,N’-methylene bisacrylamide. Various studies were conducted to evaluate and assess the various parameters of the fabricated hydrogels. The compatibility of the constituents used in the preparation of hydrogels was confirmed by FTIR analysis, whereas the thermal stability of the unreacted polymers and developed hydrogels was analyzed by TGA and DSC, respectively. A smooth and porous surface was indicated by SEM. The crystallinity of carbopol 934, sodium polystyrene sulfonate, and the prepared hydrogels was evaluated by PXRD, which revealed a reduction in the crystallinity of reactants for the developed hydrogels. The pH sensitivity of the polymeric hydrogel networks was confirmed by dynamic swelling and in vitro release studies with two different pH media i.e., pH 1.2 and 7.4, respectively. Maximum swelling was exhibited at pH 7.4 compared to pH 1.2 and, likewise, a greater percent drug release was perceived at pH 7.4. Conclusively, we can demonstrate that the developed pH-sensitive hydrogel network could be employed as a suitable carrier for the controlled delivery of Ketorolac tromethamine.
Collapse
|
34
|
Kumar A, Kumari K, Raman APS, Jain P, Kumar D, Singh P. An insight for the interaction of drugs (acyclovir/ganciclovir) with various ionic liquids: DFT calculations and molecular docking. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ajay Kumar
- Department of Chemistry Indian Institute of Technology Delhi India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College University of Delhi Delhi India
| | - Anirudh Pratap Singh Raman
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology, NCR Campus, Delhi‐NCR Campus Ghaziabad India
- Department of Chemistry, Atma Ram Sanatan Dharma College University of Delhi Delhi India
| | - Pallavi Jain
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology, NCR Campus, Delhi‐NCR Campus Ghaziabad India
| | - Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College University of Delhi Delhi India
- Department of Chemistry, Maitreyi College University of Delhi Delhi India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College University of Delhi Delhi India
| |
Collapse
|
35
|
Peres RM, Sousa JML, de Oliveira MO, Rossi MV, de Oliveira RR, de Lima NB, Bernussi A, Warzywoda J, Sarmento B, Munhoz AH. Pseudoboehmite as a drug delivery system for acyclovir. Sci Rep 2021; 11:15448. [PMID: 34326377 PMCID: PMC8322319 DOI: 10.1038/s41598-021-94325-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Herpes simplex virus is among the most prevalent sexually transmitted infections. Acyclovir is a potent, selective inhibitor of herpes viruses and it is indicated for the treatment and management of recurrent cold sores on the lips and face, genital herpes, among other diseases. The problem of the oral bioavailability of acyclovir is limited because of the low permeability across the gastrointestinal membrane. The use of nanoparticles of pseudoboehmite as a drug delivery system in vitro assays is a promising approach to further the permeability of acyclovir release. Here we report the synthesis of high purity pseudoboehmite from aluminium nitrate and ammonium hydroxide containing nanoparticles, using the sol–gel method, as a drug delivery system to improve the systemic bioavailability of acyclovir. The presence of pseudoboehmite nanoparticles were verified by infrared spectroscopy, transmission electron microscopy, and X-ray diffraction techniques. In vivo tests were performed with Wistar rats to compare the release of acyclovir, with and without the addition of pseudoboehmite. The administration of acyclovir with the addition of pseudoboehmite increased the drug content by 4.6 times in the plasma of Wistar rats after 4 h administration. We determined that the toxicity of pseudoboehmite is low up to 10 mg/mL, in gel and the dried pseudoboehmite nanoparticles.
Collapse
Affiliation(s)
- Renato Meneghetti Peres
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil
| | - Jéssica Maiara Leme Sousa
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil
| | | | - Maura Vincenza Rossi
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil
| | | | | | - Ayrton Bernussi
- Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX, 79409, USA
| | - Juliusz Warzywoda
- Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica and i3S-Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal
| | - Antonio Hortencio Munhoz
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil.
| |
Collapse
|
36
|
Suhail M, Hsieh YH, Khan A, Minhas MU, Wu PC. Preparation and In Vitro Evaluation of Aspartic/Alginic Acid Based Semi-Interpenetrating Network Hydrogels for Controlled Release of Ibuprofen. Gels 2021; 7:68. [PMID: 34207688 PMCID: PMC8293266 DOI: 10.3390/gels7020068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022] Open
Abstract
Different combinations of polymers, aspartic acid (ASP), alginic acid (AL), and monomer acrylic acid (AA) were crosslinked in the presence of an initiator ammonium peroxodisulfate (APS) and cross-linker ethylene glycol dimethacrylate (EGDMA) to develop aspartic acid/alginic acid-co-poly(acrylic acid) (ASP/ALPAA) (semi-interpenetrating polymer network (SIPN)) hydrogels by the free radical polymerization technique for the controlled delivery of ibuprofen (IBP). Various studies such as dynamic swelling studies, drug loading, in vitro drug release and sol-gel analysis were carried out for the hydrogels. Higher swelling was observed at higher pH 7.4 as compared to lower pH 1.2, due to the presence of carboxylic groups of polymers and the monomer. Hence, pH-dependent swelling was exhibited by the developed hydrogels which led to a pH-dependent drug release and vice versa. The structural properties of the hydrogels were assessed by FTIR, PXRD, TGA, DSC, and SEM which confirmed the fabrication and stability of the developed structure. FTIR analysis revealed the reaction of both polymers with the monomer during the polymerization process and confirmed the overlapping of the monomer on the backbone of the both polymers. The disappearance of high intense crystalline peaks and the encapsulation of the drug by the hydrogel network was confirmed by PXRD. TGA and DSC showed that the developed hydrogels were thermally more stable than their basic ingredients. Similarly, the surface morphology of the hydrogels was analyzed by SEM and showed a smooth surface with few pores. Conclusively, ASP/ALPAA hydrogels have the potential to deliver IBP for a long period of time in a controlled way.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan;
| | - Yi-Han Hsieh
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan;
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Khawaja Fareed Campus (Railway Road), The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | | | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| |
Collapse
|