1
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
2
|
Alhakamy NA, Caruso G, Privitera A, Ahmed OAA, Fahmy UA, Md S, Mohamed GA, Ibrahim SRM, Eid BG, Abdel-Naim AB, Caraci F. RETRACTED: Alhakamy et al. Fluoxetine Ecofriendly Nanoemulsion Enhances Wound Healing in Diabetic Rats: In Vivo Efficacy Assessment. Pharmaceutics 2022, 14, 1133. Pharmaceutics 2024; 16:157. [PMID: 38399351 PMCID: PMC10892615 DOI: 10.3390/pharmaceutics16020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
The journal retracts the article, "Fluoxetine Ecofriendly Nanoemulsion Enhances Wound Healing in Diabetic Rats: In Vivo Efficacy Assessment" [...].
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
3
|
Asfour HZ, Alhakamy NA, Ahmed OAA, Fahmy UA, El-moselhy MA, Rizg WY, Alghaith AF, Eid BG, Abdel-Naim AB. RETRACTED: Asfour et al. Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats. Pharmaceutics 2022, 14, 1792. Pharmaceutics 2024; 16:152. [PMID: 38276524 PMCID: PMC10820755 DOI: 10.3390/pharmaceutics16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Pharmaceutics retracted the article "Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats" [...].
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (W.Y.R.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (W.Y.R.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (W.Y.R.)
| | - Mohamed A. El-moselhy
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.); (W.Y.R.)
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
4
|
Sultana A, Borgohain R, Rayaji A, Saha D, Kumar Das B. Promising Phytoconstituents in Diabetes-related Wounds: Mechanistic Insights and Implications. Curr Diabetes Rev 2024; 21:e270224227477. [PMID: 38424430 DOI: 10.2174/0115733998279112240129074457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The onset of diabetes mellitus (DM), a metabolic disorder characterized by high blood glucose levels and disrupted glucose metabolism, results in 20% of people with diabetes suffering from diabetes-related wounds worldwide. A minor wound, such as a cut or abrasion, can lead to infections and complications in diabetic patients. We must understand the mechanism/s contributing to this delayed wound healing to develop effective prevention strategies. The potential benefits of bioactive phytochemicals for diabetic wound healing have been reported in numerous studies. METHOD A bioactive compound may have multiple actions, including antioxidants, antiinflammatory, antimicrobial, and angiogenesis. Compounds derived from these plants have shown promising results in wound healing, inflammation reduction, collagen synthesis, and neovascularization improvement. RESULTS Consequently, this review provides an update to our understanding of how phytoconstituents promote wound healing in diabetics. A thorough literature review was conducted on diabetes, wound healing, and phytoconstituents for this study. Only English publications until June 2023 were included in the search, which used multiple search engines and the main keywords. Summing up, phytochemical-based interventions might improve the quality of life for diabetics by improving wound healing. CONCLUSION However, to fully understand the efficacy and safety of these phytochemicals in managing diabetic wounds, more research and clinical trials are needed.
Collapse
Affiliation(s)
- Arjina Sultana
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Ranadeep Borgohain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Ashwini Rayaji
- Department of Pharmaceutical Chemistry, KRE's Karnataka College of Pharmacy, Bidar 585403, Karnataka, India
| | - Dipankar Saha
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
5
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
6
|
Nikolic M, Andjic M, Bradic J, Kocovic A, Tomovic M, Samanovic AM, Jakovljevic V, Veselinovic M, Capo I, Krstonosic V, Kladar N, Petrovic A. Topical Application of Siberian Pine Essential Oil Formulations Enhance Diabetic Wound Healing. Pharmaceutics 2023; 15:2437. [PMID: 37896197 PMCID: PMC10610429 DOI: 10.3390/pharmaceutics15102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to develop novel topical formulations based on a natural component (0.5% of Siberian pine essential oil) and to assess its wound-healing capacity through macroscopic, histopathological, and biochemical examination. The phytochemical profile of Pinus sibirica essential oil (PSEO) and rheological analysis and safety potential of formulations were determined. The wound-healing effect was evaluated on an excision wound model in diabetic Wistar albino rats randomly divided into the following groups topically treated with (1) untreated, (2) 1% silver sulfadiazine, (3) ointment base, (4) gel base, (5) PSEO ointment, and (6) PSEO gel. Formulations containing PSEO were stable and safe for skin application. Three weeks of treatment with both PSEO formulations (ointment and gel) led to a significant reduction in wound size (98.14% and 96.28%, respectively) and a remarkably higher level of total hydroxyproline content (9.69 µg/mg and 7.26 µg/mg dry tissue, respectively) relative to the control group (65.97%; 1.81 µg/mg dry tissue). These findings were in correlation with histopathological results. Topically applied PSEO formulations were associated with a significant reduction in most of the measured pro-oxidants and enhanced activity of the antioxidant defense system enzymes (p < 0.05). Our findings showed that gel and ointment with PSEO demonstrated significant wound-repairing capabilities in the excision wound model.
Collapse
Affiliation(s)
- Milica Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (M.N.); (M.A.); (J.B.); (A.K.); (M.T.)
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (M.N.); (M.A.); (J.B.); (A.K.); (M.T.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (A.M.S.); (V.J.)
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (M.N.); (M.A.); (J.B.); (A.K.); (M.T.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (A.M.S.); (V.J.)
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (M.N.); (M.A.); (J.B.); (A.K.); (M.T.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (A.M.S.); (V.J.)
| | - Marina Tomovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (M.N.); (M.A.); (J.B.); (A.K.); (M.T.)
| | - Andjela Milojevic Samanovic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (A.M.S.); (V.J.)
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (A.M.S.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Mirjana Veselinovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Ivan Capo
- Center for Medical and Pharmaceutical Investigations and Quality Control, University of Novi Sad, 21000 Novi Sad, Serbia; (I.C.); (N.K.)
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Veljko Krstonosic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nebojsa Kladar
- Center for Medical and Pharmaceutical Investigations and Quality Control, University of Novi Sad, 21000 Novi Sad, Serbia; (I.C.); (N.K.)
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (M.N.); (M.A.); (J.B.); (A.K.); (M.T.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (A.M.S.); (V.J.)
| |
Collapse
|
7
|
Baniya P, Tebyani M, Asefifeyzabadi N, Nguyen T, Hernandez C, Zhu K, Li H, Selberg J, Hsieh HC, Pansodtee P, Yang HY, Recendez C, Keller G, Hee WS, Aslankoohi E, Isseroff RR, Zhao M, Gomez M, Rolandi M, Teodorescu M. A system for bioelectronic delivery of treatment directed toward wound healing. Sci Rep 2023; 13:14766. [PMID: 37679425 PMCID: PMC10485133 DOI: 10.1038/s41598-023-41572-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The development of wearable bioelectronic systems is a promising approach for optimal delivery of therapeutic treatments. These systems can provide continuous delivery of ions, charged biomolecules, and an electric field for various medical applications. However, rapid prototyping of wearable bioelectronic systems for controlled delivery of specific treatments with a scalable fabrication process is challenging. We present a wearable bioelectronic system comprised of a polydimethylsiloxane (PDMS) device cast in customizable 3D printed molds and a printed circuit board (PCB), which employs commercially available engineering components and tools throughout design and fabrication. The system, featuring solution-filled reservoirs, embedded electrodes, and hydrogel-filled capillary tubing, is assembled modularly. The PDMS and PCB both contain matching through-holes designed to hold metallic contact posts coated with silver epoxy, allowing for mechanical and electrical integration. This assembly scheme allows us to interchange subsystem components, such as various PCB designs and reservoir solutions. We present three PCB designs: a wired version and two battery-powered versions with and without onboard memory. The wired design uses an external voltage controller for device actuation. The battery-powered PCB design uses a microcontroller unit to enable pre-programmed applied voltages and deep sleep mode to prolong battery run time. Finally, the battery-powered PCB with onboard memory is developed to record delivered currents, which enables us to verify treatment dose delivered. To demonstrate the functionality of the platform, the devices are used to deliver H[Formula: see text] in vivo using mouse models and fluoxetine ex vivo using a simulated wound environment. Immunohistochemistry staining shows an improvement of 35.86% in the M1/M2 ratio of H[Formula: see text]-treated wounds compared with control wounds, indicating the potential of the platform to improve wound healing.
Collapse
Affiliation(s)
- Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Cristian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Kan Zhu
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, 95816, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, 95817, USA
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Hsin-Ya Yang
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, 95816, USA
| | - Cynthia Recendez
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, 95816, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, 95817, USA
| | - Gordon Keller
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Wan Shen Hee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, 95816, USA
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA, 95816, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, 95817, USA
| | - Marcella Gomez
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
8
|
Nasrullah MZ. Caffeic Acid Phenethyl Ester Loaded PEG-PLGA Nanoparticles Enhance Wound Healing in Diabetic Rats. Antioxidants (Basel) 2022; 12:antiox12010060. [PMID: 36670922 PMCID: PMC9854644 DOI: 10.3390/antiox12010060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Delayed wound healing is a serious complication of diabetes and a main reason for foot amputation. Caffeic acid phenethyl ester (CAPE) is a main active constituent of honeybee propolis with reported appealing pharmacological activities. In the current study, CAPE was loaded onto PEG-PLGA nanoparticles and showed a particle size of 198 ± 7.3 nm and polydispersity index of 0.43 ± 0.04. An in vivo study was performed to appraise the wound-healing activity of CAPE-loaded PEG-PLGA nanoparticles (CAPE-NPs) in diabetic rats. Wound closure was significantly accelerated in rats treated with CAPE-NPs. This was confirmed via histological examinations of skin tissues that indicated expedited healing and enhanced collagen deposition. This was accompanied by observed antioxidant activity as evidenced by the prevention of lipid peroxidation and the exhaustion of superoxide dismutase (SOD) and catalase (CAT) activities. In addition, CAPE-NPs showed superior anti-inflammatory activity as compared with the regular formula of CAPE, as they prevented the expression of interleukin-6 (IL-6) as well as tumor necrosis-alpha (TNF-α). The pro-collagen actions of CAPE-NPs were highlighted by the enhanced hyroxyproline content and up-regulation of Col 1A1 mRNA expression. Furthermore, the immunohistochemial assessment of skin tissues indicated that CAPE-NPs enhance proliferation and angiogenesis, as shown by the increased expression of transforming growth factor β1 (TGF-β1) and platelet-derived growth factor subunit B (PDGF-B). In conclusion, CAPE-loaded PEG-PLGA nanoparticles possess potent healing effects in diabetic wounds. This is mediated, at least partially, by its antioxidant, anti-inflammatory, and pro-collagen as well as angiogenic activities.
Collapse
Affiliation(s)
- Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Fatima F, Aleemuddin M, Ahmed MM, Anwer MK, Aldawsari MF, Soliman GA, Mahdi WA, Jafar M, Hamad AM, Alshehri S. Design and Evaluation of Solid Lipid Nanoparticles Loaded Topical Gels: Repurpose of Fluoxetine in Diabetic Wound Healing. Gels 2022; 9:gels9010021. [PMID: 36661789 PMCID: PMC9858001 DOI: 10.3390/gels9010021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The current study aimed to prepare a topical gel containing solid lipid nanoparticles (SLNs) encapsulating fluoxetine for diabetic wound healing effects. Fluoxetine (FX) was loaded into SLNs by employing an emulsion solvent evaporation technique using stearic acid as a lipid, and soya lecithin as a surfactant. SLNs were then evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), percent entrapment efficiency (%EE), percent drug loading (%DL), and in vitro drug release. The optimized SLN (FS3) composed of FX (100 mg), SA (150 mg), and SA (100 mg) displayed mean particle size (467.3 ± 2.2nm), PDI (0.435 ± 0.02), ZP (-32.2 ± 4.47mV), EE (95.8 ± 3.38%), and DL (16.4 ± 2.4%). FTIR and DSC studies denote drug-polymer compatibility and the amorphous nature of FX in the SLNs. The drug release at 24 h was found to be (98.89 ± 2.57%) which followed the fickian diffusion mechanism. SLN (FS3) was further loaded into carbopol gel and tested for pH, spreadability, and extrudability of pharmaceutical parameters. In-vitro release of FX from the SLN gel and plain gel was compared, diabetic wound healing gel (DWH) showed sustained drug delivery. An in vivo study was also performed for DWH gel in streptozotocin-induced diabetic rats. Histopathological examination exhibited DWH gel-treated wounds have increased hydroxyproline, cellular proliferation, a rise in the number of blood vessels, and the level of collagen synthesis. Thus, DWH gel-loaded SLN encapsulated with FX could be a potential carrier for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: or
| | - Mohammad Aleemuddin
- Department of Community Medicine (SPM), MNR Medical College, MNR Nagar, Fasalwadi Narsapur Road, Sangareddy 502294, Telangana, India
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abubaker M. Hamad
- Basic Sciences Department, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pathophysiology, College of Health Sciences, AL-Rayan Colleges, Al-Hijra Road, Madinah Al Munawwarah 41411, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Asfour HZ, Alhakamy NA, Ahmed OAA, Fahmy UA, El-moselhy MA, Rizg WY, Alghaith AF, Eid BG, Abdel-Naim AB. Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats. Pharmaceutics 2022; 14:1792. [PMID: 36145540 PMCID: PMC9503070 DOI: 10.3390/pharmaceutics14091792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the healing activity of amitriptyline (Amitrip) in rat diabetic wounds. A nanoformula of the drug was prepared as Amitrip-based biodegradable PEG-PLGA self-assembled nanoparticles (Amitrip-NPs) with a mean particle size of 67.4 nm. An in vivo investigation was conducted to evaluate the wound-healing process of Amitrip-NPs in streptozotocin-induced diabetic rats. Wound contraction was accelerated in rats treated with Amitrip-NPs. Histological examinations confirmed these findings, with expedited remodeling and collagen deposition in the NPs-treated animals. The formula showed anti-inflammatory activities as demonstrated by inhibition of interleukin-6 (IL-6) expression and tumor necrosis factor-α (TNF-α) expression, as well as enhanced expression of interleukin-10 (IL-10). In addition, Amitrip-NPs protected against malondialdehyde (MDA) buildup and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. The pro-collagen activity of Amitrip-NPs was confirmed by the observed enhancement of hydroxyproline wounded skin content, upregulation of Col 1A1 mRNA expression and immune expression of collagen type IV expression. Further, Amitrip-NPs significantly increased expression transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), platelet-derived growth factor-B (PDGF-B) and cluster of differentiation 31 (CD31). In conclusion, the developed Amitrip-NPs expedited wound healing in diabetic rats. This involves anti-inflammatory, antioxidant, pro-collagen and angiogenic activities of the prepared NPs. This opens the gate for evaluating the usefulness of other structurally related tricyclic antidepressants in diabetic wounds.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. El-moselhy
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|