1
|
Wang X, Stihl A, Höppener C, Vitz J, Schacher FH, Deckert V. Nanoscale Investigation of Elasticity Changes and Augmented Rigidity of Block Copolymer Micelles Induced by Reversible Core-Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27557-27567. [PMID: 40266783 DOI: 10.1021/acsami.5c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Drug-delivery systems have attracted considerable attention due to their potential to increase the bioavailability of certain drugs and mitigate side effects by enabling targeted drug release. Reversibly core-cross-linked block copolymer micelles providing a hydrophilic and potentially nonimmunogenic shell and a hydrophobic core suitable for the uptake of hydrophobic drugs are frequently considered because of their high stability against environmental changes and dilution. Ultimately, triggering core-de-cross-linking enables the implementation of strategies for targeted drug release, which requests insights into the impact of varying nanomechanical properties on the stability of individual micelles. Here, atomic force microscopy nanoindentation in aqueous media is applied to intact α-allyl-PEG80-b-P(tBGE52-co-FGE12) micelles to quantify changes in their nanomechanical properties induced by dithiobismaleimidoethane (DTME)-mediated Diels-Alder cross-linking of furfuryl moieties and sequential de-cross-linking by reduction of its disulfide bond by tris(2-carboxyethyl)phosphine. As a result of crosslinking by DTME, the apparent Young's modulus of the micelles roughly doubles to 1.18 GPa. Changes to the Young's modulus can be largely reversed by de-cross-linking. Cross-linked and de-cross-linked micelles maintain their structural integrity even in diluted aqueous media below the critical micelle concentration, in contrast to the micelles prior to crosslinking. Understanding the structure-property relationships associated with the observed augmented mechanical stability in native environments is crucial for improving the efficiency of drug encapsulation and introducing refined temporal and spatially controlled drug-release mechanisms.
Collapse
Affiliation(s)
- Xinyue Wang
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Philosophenweg 7, D-07743 Jena, Germany
| | - Christiane Höppener
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Jürgen Vitz
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University, D-07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Philosophenweg 7, D-07743 Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller University, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
2
|
Ning Q, Yu G, Yi W, Gu M, Xu Q, Ye Z, Zhang M, Tang S. Development of GSH-Stimuli-Responsive Micelles Using a Targeted Paclitaxel Prodrug for Enhanced Anticancer Effect. Pharmaceutics 2025; 17:538. [PMID: 40284532 PMCID: PMC12030733 DOI: 10.3390/pharmaceutics17040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Cancer ranks as a leading cause of death worldwide. It is urgent to develop intelligent co-delivery systems for cancer chemotherapy to achieve reduced side-effects and enhanced therapeutic efficacy. Methods: We chose oligo-hyaluronic acid (oHA, a low molecular weight of HA) as the carrier, and adriamycin (ADM) and paclitaxel (PTX) as the co-delivered drugs. The oHA-ss-PTX macromolecular prodrug was synthesized by introducing glutathione-stimuli-responsive disulfide bonds through chemical reactions. Then, we constructed ADM-loading micelles (ADM/oHA-ss-PTX) in one step by microfluidic preparation. The delivery efficacy was evaluated comprehensively in vitro and in vivo. The biocompatibility of ADM/oHA-ss-PTX was assessed by hemolysis activity analysis, BSA adsorption testing, and cell viability assay in endothelial cells. Results: The resulting ADM/oHA-ss-PTX micelles possessed a dynamic size (127 ± 1.4 nm, zeta potential -9.0 mV), a high drug loading content of approximately 21.2% (PTX) and 7.6% (ADM). Compared with free ADM+PTX, ADM/oHA-ss-PTX showed enhanced blood stability and more efficiently inhibited cancer cell proliferation. Moreover, due to the CD44-mediated endocytosis pathway, a greater number of ADM/oHA-ss-PTX micelles were absorbed by A549 cells than by oHA-saturated A549 cells. In vivo experiments also showed that ADM/oHA-ss-PTX micelles had excellent therapeutic effects and targeting ability. These results show that ADM/oHA-ss-PTX micelles were a promising platform for co-delivery sequential therapy in CD44-positive cancer. Conclusions: In conclusion, these results convincingly demonstrate that ADM/oHA-ss-PTX micelles hold great promise as a novel platform for co-delivering multiple drugs. Their enhanced properties not only validate the potential of this approach for sequential cancer therapy in CD44-positive cancers but also pave the way for future clinical translation and further optimization in cancer treatment.
Collapse
Affiliation(s)
- Qian Ning
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410127, China;
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
| | - Guangping Yu
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wenkai Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
| | - Minhui Gu
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
| | - Qianqian Xu
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
| | - Zhiting Ye
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Shengsong Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410127, China;
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (G.Y.); (W.Y.); (M.G.); (Q.X.); (Z.Y.)
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
3
|
Gaviria-Soteras L, Sharma AK, Sanmartín C, Plano D. Recent Insights into Bioactive Dichalcogen Derivatives: From Small Molecules to Complex Materials. Int J Mol Sci 2025; 26:2436. [PMID: 40141080 PMCID: PMC11942125 DOI: 10.3390/ijms26062436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Organodichalcogenides have been explored due to their therapeutic properties. They have been demonstrated to be active against several diseases such as cancer, bacteria, viruses, parasites, or neurological diseases. Among the different classes of dichalcogenides, disulfide derivatives have been widely studied, and many studies cover their therapeutical use. For this reason, this review includes the latest studies of diselenides and ditellurides derivatives with biological applications. With this aim, several bioactive small molecules containing the diselenide or ditelluride bond in their structure have been discussed. Furthermore, it should be highlighted that, in recent years, there has been an increasing interest in the development of nanomaterials for drug delivery due to their therapeutic advantages. In this context, diselenide and ditelluride-containing nanocarriers have emerged as novel approaches. The information compiled in this review includes small molecules and more complex materials containing diselenide or ditelluride bonds in their structure for different therapeutical applications, which could be helpful for the further development of novel drugs for the treatment of different diseases.
Collapse
Affiliation(s)
- Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Molecular and Precision Medicine, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
4
|
Sukumar K, Bharathi M, Hirad AH, Alarfaj AA, Hussein-Al-Ali SH, Surya P. Development of Chitosan-Coated Graphene Oxide and Iron Oxide Nanocomposites for Targeted Delivery of Camptothecin to Liver Cancer Cells. Chem Biodivers 2025; 22:e202401817. [PMID: 39394807 DOI: 10.1002/cbdv.202401817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Innovative drug delivery platforms for selective, regulated, and sustained release of anticancer drugs are crucial in cancer treatment. This study presents nanoparticles developed from chitosan (CS), graphene oxide (GO), and magnetite (Fe3O4), and their nanocomposites to enhance the loading and release efficiency of camptothecin (CPT). Nanostructures were characterized using imaging microscopy, FT-IR, and X-ray diffraction, with an average crystallite size of 5.5 nm. Camptothecin binding proportions were 70 % for CS, 81 % for CS@Fe3O4, 58 % for CS@GO, and 74 % for CS@GO/Fe3O4. At pH 5.0, CPT release ratios were 87 %, 80 %, 88 %, and 90 %, respectively, and at pH 7.4, 84 %, 72 %, 89 %, and 87 %. Cytotoxicity was assessed using the MTT assay against HepG2 and SMMC-7721 cancer cells. CPT-CS@GO/Fe3O4 exhibited the highest survival at 5 μM and 12.5 μM concentrations, indicating it as the most effective nanocarrier for camptothecin delivery. The study demonstrates CS@GO/Fe3O4's potential as a superior drug delivery system.
Collapse
Affiliation(s)
- Kalpana Sukumar
- Department of Physics, Saveetha Engineering College, Saveetha Nagar, Thandalam, Chennai, 602105, India
| | - Muruganantham Bharathi
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Parthasarathy Surya
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
5
|
Mekuria SL, Li G, Wang Z, Girma WM, Li A, He M, Wang H, Hameed MMA, El-Newehy M, Shi X, Shen M. Dendrimer nanoclusters loaded with gold nanoparticles for enhanced tumor CT imaging and chemotherapy via an amplified EPR effect. J Mater Chem B 2024; 12:9524-9532. [PMID: 39301737 DOI: 10.1039/d4tb01747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The design of efficient multifunctional nanomedicines to overcome adverse side effects within biological systems and to achieve desirable computed tomography (CT) imaging and therapeutics of tumors remains challenging. Herein, we report the design of multifunctional nanoclusters (NCs) based on generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers. In brief, G3 dendrimers were crosslinked with 4,4'-dithiodibutryic acid (DA) to generate disulfide-bond-containing dendrimer nanoclusters (DNCs), functionalized with 1,3-propane sultone (1,3-PS) to be zwitterionic, in situ loaded with gold nanoparticles (Au NPs), and finally encapsulated with the drug doxorubicin (DOX). The designed DOX/Au@DNCs-PS possess a favorable colloidal stability with a hydrodynamic size of 249.4 nm, a redox-responsive drug release profile, and enhanced cellular uptake in vitro. We show that DOX/Au@DNCs-PS have a greater DOX penetration and growth inhibition of three-dimensional (3D) tumor spheroids than the single dendrimer counterpart in vitro. Furthermore, the developed Au@DNCs-PS enable a better Au-mediated X-ray attenuation property than the single dendrimer counterpart material. Likely due to the amplified enhanced permeability and retention (EPR) effect, the created Au@DNCs-PS and DOX/Au@DNCs-PS enable better CT imaging and chemotherapeutic effect of a mouse breast tumor model, respectively, than the single dendrimer counterparts. With its proven biocompatibility, the constructed formulation may hold promising potential for development for different cancer nanomedicine applications.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, 196, Gondar, Ethiopia
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Wubshet Mekonnen Girma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Aiyu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Khabbazian S, Mirhadi E, Gheybi F, Askarizadeh A, Jaafari MR, Alavizadeh SH. Liposomal delivery of organoselenium-cisplatin complex as a novel therapeutic approach for colon cancer therapy. Colloids Surf B Biointerfaces 2024; 242:114085. [PMID: 39018910 DOI: 10.1016/j.colsurfb.2024.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cisplatin is a widely-used chemotherapeutic agent for the treatment of various solid neoplasms including colon cancer. Cisplatin-induced DNA damage is restricted due to dose-related adverse reactions as well as primary resistance mechanisms. Therefore, it is imperative to utilize novel therapeutic approaches to circumvent cisplatin limitations and attenuate its normal tissues toxicity. In this study, we exploited a novel PEGylated liposomes with greater efficiency to treat colon cancer. For this, an organoselenium compound (diselanediylbis decanoic acid (DDA)) was synthesized, and liposomes composed of Egg PC or HSPC, as well as DOPE, mPEG2000-DSPE, cholesterol and DDA at varying molar ratios were prepared by using thin-film method. Cisplatin loading was performed through incubation with liposomes. Characterization of nanoliposomes indicated a favarable size range of 91-122 nm and negative zeta potential of -9 to -22 mv. The organoselenium compound significantly improved cisplatin loading efficiency within the liposomes (83.4 %). Results also revealed an efficient bioactivity of cisplatin liposome on C26 cells compared to the normal cells. Further, DDA bearing liposomes significantly improved drug residence time in circulation, reduced toxicity associated with the normal tissues, and enhanced drug accumulation within the oxidative tumor microenvironment. Collectively, results indicated that cisplatin encasement within liposomes by using this method could significantly improve the therapeutic efficacy in vivo, and merits further investigations.
Collapse
Affiliation(s)
- Samin Khabbazian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Lin Q, Li J, Abudousalamu Z, Sun Y, Xue M, Yao L, Chen M. Advancing Ovarian Cancer Therapeutics: The Role of Targeted Drug Delivery Systems. Int J Nanomedicine 2024; 19:9351-9370. [PMID: 39282574 PMCID: PMC11401532 DOI: 10.2147/ijn.s478313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal reproductive system cancer and a leading cause of cancer-related death. The high mortality rate and poor prognosis of OC are primarily due to its tendency for extensive abdominal metastasis, late diagnosis in advanced stages, an immunosuppressive tumor microenvironment, significant adverse reactions to first-line chemotherapy, and the development of chemoresistance. Current adjuvant chemotherapies face challenges such as poor targeting, low efficacy, and significant side effects. Targeted drug delivery systems (TDDSs) are designed to deliver drugs precisely to the tumor site to enhance efficacy and minimize side effects. This review highlights recent advancements in the use of TDDSs for OC therapies, including drug conjugate delivery systems, nanoparticle drug delivery systems, and hydrogel drug delivery systems. The focus is on employing TDDS to conduct direct, effective, and safer interventions in OC through methods such as targeted tumor recognition and controlled drug release, either independently or in combination. This review also discusses the prospects and challenges for further development of TDDSs. Undoubtedly, the use of TDDSs shows promise in the battle against OCs.
Collapse
Affiliation(s)
- Qianhan Lin
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zulimire Abudousalamu
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yating Sun
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengyang Xue
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liangqing Yao
- Department of Gynecologic Oncology, Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mo Chen
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Wang G, Zhang M, Lai W, Gao Y, Liao S, Ning Q, Tang S. Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release. Mol Pharm 2024; 21:4217-4237. [PMID: 39056442 DOI: 10.1021/acs.molpharmaceut.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Weiwei Lai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Gao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shengsong Tang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Mirhadi E, Askarizadeh A, Farhoudi L, Mashreghi M, Behboodifar S, Alavizadeh SH, Arabi L, Jaafari MR. The impact of phospholipids with high transition temperature to enhance redox-sensitive liposomal doxorubicin efficacy in colon carcinoma model. Chem Phys Lipids 2024; 261:105396. [PMID: 38621603 DOI: 10.1016/j.chemphyslip.2024.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Behboodifar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Zhang Y, Liang Y. Fabrication of folic acid-modified bovine serum albumin cloaked dual-drug loaded hollow mesoporous silica nanoparticles for pH-responsive and targeted delivery of gastric cancer therapy. Heliyon 2024; 10:e29274. [PMID: 38699737 PMCID: PMC11063411 DOI: 10.1016/j.heliyon.2024.e29274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Combination therapy is a highly successful way to address the limitations of using a single treatment method and improve therapy's overall efficacy. In this study, we developed a unique hollow mesoporous silica nanoparticle (HMSN) coated with folic acid (FA)-modified bovine serum albumin (FA-BSA). This nanoparticle, referred to as HFB, was designed to target cancer cells and release dual therapeutic drugs, Indocyanine green (ICG) and Paclitaxel (PTX), in response to specific stimuli termed as HFB@IP. The BSA protein acts as a "gatekeeper" to prevent early drug releases and cargo leakage by detaching from BSA in reaction to GSH. The FA facilitates the targeted transport of the drug into cancer cells that express folate receptors (FR), enhancing the effectiveness of chemo-photodynamic treatment (PDT). The drug nanocarrier demonstrated in vitro pH/redox-triggered drug release from HFB@IP due to breaking the imine bonds between aldehyde-functionalized HMSN (CHO-HMSN) and FA-BSA with the disulfide bond inside BSA. In addition, various biological assessments, including cell uptake experiments, demonstrated that HFB@IP effectively targets SGC-7901 cells and induces apoptosis in vitro. Further, it exhibits remarkable efficiency in synergistically killing cancer cells through chemo-photodynamic therapy, as indicated by a combination index (CI) of 0.328. The results showed that combining HMSN with biodegradable stimuli-responsive BSA molecules could offer a promising approach for precise chemo-photodynamic therapy in treating gastric cancer, allowing for the controlled release of drugs as necessary.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Shengzhou Branch of Zhejiang University First Hospital, Shengzhou People's Hospital, Shengzhou, 312400, China
| | - Yuanxiao Liang
- Xinchang County People's Hospital, Xinchang, 312500, China
| |
Collapse
|
11
|
Gioldasis C, Gkamas A, Vlahos C. Impact of Copolymer Architecture on Demicellization and Cargo Release via Head-to-Tail Depolymerization of Hydrophobic Blocks or Branches. Polymers (Basel) 2024; 16:1127. [PMID: 38675046 PMCID: PMC11053811 DOI: 10.3390/polym16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Utilizing molecular dynamics simulations, we explored the demicellization and cargo release dynamics of linear and miktoarm copolymers, featuring one, two, and three hydrophobic blocks or branches, each capable of head-to-tail depolymerization. Our findings revealed that, under stoichiometric trigger molecule concentrations, miktoarms with three branches exhibited consistently faster depolymerization rates than those with two branches and linear copolymers. Conversely, at constant trigger molecule concentrations, the depolymerization rates of copolymers exhibited more complex behaviors influenced by two opposing factors: the excess of trigger molecules, which increased with a decrease in the number of hydrophobic branches or blocks, and simultaneous head-to-tail depolymerization, which intensified with an increasing number of branches. Our study elucidates the intricate interplay between copolymer architecture, trigger molecule concentrations, and depolymerization dynamics, providing valuable insights for the rational design of amphiphilic copolymers with tunable demicellization and cargo release properties.
Collapse
Affiliation(s)
| | | | - Costas Vlahos
- Chemistry Department, University of Ioannina, 45110 Ioannina, Greece; (C.G.); (A.G.)
| |
Collapse
|
12
|
Hu Y, Liu P. Diselenide-Bridged Doxorubicin Dimeric Prodrug: Synthesis and Redox-Triggered Drug Release. Molecules 2024; 29:1709. [PMID: 38675530 PMCID: PMC11052396 DOI: 10.3390/molecules29081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The diselenide bond has attracted intense interest in redox-responsive drug delivery systems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond, namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy. The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respectively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom. The resultant solubility-controlled slow drug release performance makes it a promising candidate as a long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations in the design of self-immolation traceless linkers was also proposed for the first time as another key factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.
Collapse
Affiliation(s)
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
13
|
Lai S, Liang X, Zeng Q. Recent Progress in Synthesis and Application of Chiral Organoselenium Compounds. Chemistry 2024; 30:e202304067. [PMID: 38078625 DOI: 10.1002/chem.202304067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Chiral organoselenium compounds have shown an important role as intermediates in many areas, such as drug discovery, organic catalysis, and nanomaterials. A lot of different methods have been developed to synthesize chiral compounds which contain selenium, because they have interesting properties and can be used in real life. Over the last few decades, a lot of progress has been made in synthesizing chiral organoselenium compounds. This work gives an overview of the progress made in creating new ways to synthesize chiral organoselenium compounds by categorizing them into groups based on the reactions they undergo. In addition, the use of chiral organoselenium compounds is also discussed.
Collapse
Affiliation(s)
- Shuyan Lai
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|