1
|
Zhu M, Wang X, Li X. Genome-wide identification and expression analysis of glutamate receptor-like genes in three Dendrobium species. Biochim Biophys Acta Gen Subj 2025; 1869:130789. [PMID: 40058613 DOI: 10.1016/j.bbagen.2025.130789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/21/2025]
Abstract
Glutamate receptor-like (GLRs) genes play essential roles in plant growth and development, and in coping with environmental stresses; however, information on GLR genes in Dendrobium species is lacking. We identified 25 GLR genes in three Dendrobium species, which were classified into three subfamilies based on their phylogenetic relationships. These genes have been relatively conserved during evolution. Analysis of cis-acting elements and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations revealed the complexity and diversity of GLR gene regulation and functions. Further, gene expression analysis showed that different GLR members exhibited different expression patterns during Dendrobium growth and development, and some were involved in pathogen infection and in response to hormones. These results provide important information on the GLR gene family of Dendrobium, and a foundation for further functional, and trait regulation and improvement studies.
Collapse
Affiliation(s)
- Miao Zhu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui 553004, China
| | - Xuying Wang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui 553004, China.
| | - Xinran Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui 553004, China.
| |
Collapse
|
2
|
Gulzar RMA, Ren CX, Fang X, Xu YP, Saand MA, Cai XZ. Glutamate Receptor-like (GLR) Family in Brassica napus: Genome-Wide Identification and Functional Analysis in Resistance to Sclerotinia sclerotiorum. Int J Mol Sci 2024; 25:5670. [PMID: 38891858 PMCID: PMC11172227 DOI: 10.3390/ijms25115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.
Collapse
Affiliation(s)
- Rana Muhammad Amir Gulzar
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chun-Xiu Ren
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi Fang
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Mumtaz Ali Saand
- Department of Botany, Shah Abdul Latif University, Khairpur 66020, Sindh, Pakistan
| | - Xin-Zhong Cai
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
3
|
León-García F, García-Laynes F, Estrada-Tapia G, Monforte-González M, Martínez-Estevez M, Echevarría-Machado I. In Silico Analysis of Glutamate Receptors in Capsicum chinense: Structure, Evolution, and Molecular Interactions. PLANTS (BASEL, SWITZERLAND) 2024; 13:812. [PMID: 38592787 PMCID: PMC10975470 DOI: 10.3390/plants13060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Plant glutamate receptors (GLRs) are integral membrane proteins that function as non-selective cation channels, involved in the regulation of developmental events crucial in plants. Knowledge of these proteins is restricted to a few species and their true agonists are still unknown in plants. Using tomato SlGLRs, a search was performed in the pepper database to identify GLR sequences in habanero pepper (Capsicum chinense Jacq.). Structural, phylogenetic, and orthology analysis of the CcGLRs, as well as molecular docking and protein interaction networks, were conducted. Seventeen CcGLRs were identified, which contained the characteristic domains of GLR. The variation of conserved residues in the M2 transmembrane domain between members suggests a difference in ion selectivity and/or conduction. Also, new conserved motifs in the ligand-binding regions are reported. Duplication events seem to drive the expansion of the species, and these were located in the evolution by using orthologs. Molecular docking analysis allowed us to identify differences in the agonist binding pocket between CcGLRs, which suggest the existence of different affinities for amino acids. The possible interaction of some CcGLRs with proteins leads to suggesting specific functions for them within the plant. These results offer important functional clues for CcGLR, probably extrapolated to other Solanaceae.
Collapse
Affiliation(s)
| | | | | | | | | | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, #130, x 32 and 34, Mérida 97205, Yucatán, Mexico; (F.L.-G.); (M.M.-G.); (M.M.-E.)
| |
Collapse
|
4
|
Zhu M, Li X. Genome-wide identification of the glutamate receptor-like gene family in Vanilla planifolia and their response to Fusarium oxysporum infection. PLANT SIGNALING & BEHAVIOR 2023; 18:2204654. [PMID: 37096589 PMCID: PMC10132242 DOI: 10.1080/15592324.2023.2204654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glutamate receptor-like genes (GLRs) are essential for plant growth and development and for coping with environmental (biological and non-biological) stresses. In this study, 13 GLR members were identified in the Vanilla planifolia genome and attributed to two subgroups (Clade I and Clade III) based on their physical relationships. Cis-acting element analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated the GLR gene regulation's complexity and their functional diversity. Expression analysis revealed a relatively higher and more general expression pattern of Clade III members compared to the Clade I subgroup in tissues. Most GLRs showed significant differences in expression during Fusarium oxysporum infection. This suggested that GLRs play a critical role in the response of V. planifolia to pathogenic infection. These results provide helpful information for further functional research and crop improvement of VpGLRs.
Collapse
Affiliation(s)
- Miao Zhu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Xinran Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
- CONTACT Xinran Li School of Biological Science and Technology, Liupanshui normal University, No.288 Minghu Road, Liupanshui, Guizhou, China
| |
Collapse
|
5
|
Hu Y, Dai Z, Huang J, Han M, Wang Z, Jiao W, Gao Z, Liu X, Liu L, Ma Z. Genome-wide identification and expression analysis of the glutamate receptor gene family in sweet potato and its two diploid relatives. FRONTIERS IN PLANT SCIENCE 2023; 14:1255805. [PMID: 38179475 PMCID: PMC10764598 DOI: 10.3389/fpls.2023.1255805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Plant glutamate receptor (GLR) homologs are crucial calcium channels that play an important role in plant development, signal transduction, and response to biotic and abiotic stresses. However, the GLR gene family has not yet been thoroughly and systematically studied in sweet potato. In this study, a total of 37 GLR genes were identified in the cultivated hexaploid sweet potato (Ipomoea batatas), and 32 GLR genes were discovered in each of the two diploid relatives (Ipomoea trifida and Ipomoea triloba) for the first time. Based on their evolutionary relationships to those of Arabidopsis, these GLRs were split into five subgroups. We then conducted comprehensive analysis to explore their physiological properties, protein interaction networks, promoter cis-elements, chromosomal placement, gene structure, and expression patterns. The results indicate that the homologous GLRs of the cultivated hexaploid sweet potato and its two relatives are different. These variations are reflected in their functions related to plant growth, hormonal crosstalk, development of tuberous roots, resistance to root rot, and responses to abiotic stress factors, all of which are governed by specific individual GLR genes. This study offers a comprehensive analysis of GLR genes in sweet potato and its two diploid relatives. It also provides a theoretical basis for future research into their regulatory mechanisms, significantly influencing the field of molecular breeding in sweet potatoes.
Collapse
Affiliation(s)
- Yaya Hu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jinan Huang
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Meikun Han
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiwei Wang
- Department of Agriculture Forestry and Biological Engineering, Baoding Vocational and Technical College, Baoding, Hebei, China
| | - Weijing Jiao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiyuan Gao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinliang Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lanfu Liu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhimin Ma
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Li X, Zhu T, Wang X, Zhu M. Genome-wide identification of glutamate receptor-like gene family in soybean. Heliyon 2023; 9:e21655. [PMID: 38027661 PMCID: PMC10651524 DOI: 10.1016/j.heliyon.2023.e21655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Glutamate receptor-like genes (GLRs) are essential in the growth and development of plants and many physiological and biochemical processes; however, related information in soybean is lacking. In this study, 105 GLRs, including 67 Glycine soja and 38 Glycine max GLRs, were identified and divided into two clades (Clades II and III) according to their phylogenetic relationships. GLR members in the same branch had a relatively conservative motif composition and genetic structure. Furthermore, the soybean GLR family mainly experienced purification selection during evolution. Cis-acting element analysis, gene ontology, and Kyoto Encyclopedia of Genes and Genomic annotations indicated the complexity of the gene regulation and functional diversity of the soybean GLR. Moreover, transcriptome data analysis showed that these GLRs had different expression profiles in different tissues, and Clade III members had higher and more common expression patterns. Additionally, the expression profiles under jasmonic acid treatment and salt stress indicate that the GLR participated in the jasmonic acid signaling pathway and plays a role in salt treatment. This study provides information for a comprehensive understanding of the soybean GLR family and a reference for further functional research and genetic improvement.
Collapse
Affiliation(s)
- Xinran Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Tianhao Zhu
- College of Mathematical Sciences, Harbin Engineering University, Harbin, China
| | - Xuying Wang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Miao Zhu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
7
|
Yin L, Liu S, Sun W, Ke X, Zuo Y. Genome-wide identification of glutamate receptor genes in adzuki bean and the roles of these genes in light and rust fungal response. Gene 2023:147593. [PMID: 37364697 DOI: 10.1016/j.gene.2023.147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Plant glutamate receptor proteins (GLRs) are involved in plant development, biotic stress, and light-signal transduction. Vigna angularis is a traditional crop with important economic value in China, and the identification of functional genes can facilitate the breeding of stress resistant varieties. Here, we identified the members of the GLR gene family in the adzuki bean genome and investigated gene expression under light and rust fungal (Uromyces vignae) stimuli. Sixteen GLR genes were identified in V. angularis (VaGLRs), and these genes clustered in a single clade (clade III) with two groups. Evolutionary analysis showed that three VaGLRs result from tandem duplications and four result from whole genome/segmental duplications. To understand the regulation of expression of VaGLRs, cis-acting elements were analyzed in the promoter regions of the VaGLRs including cis-acting elements associated with light and stress responsiveness. Expression analysis by qRT-PCR revealed transcripts of eight and 10 VaGLRs in response to light stimuli and rust infection, respectively. For light responsiveness, the expression levels of XP_017430569.1 and XP_017425299.1 were higher under light condition than in darkness, while the expression levels of XP_017406996.1, XP_017425763.1, and XP_017423557.1 gradually recovered during dark treatment. Additionally, the relative expression levels of XP_017413816.1, XP_017436268.1, and XP_017425299.1 were significantly elevated during U. vignae infection in a resistant cultivar compared to the expression levels in a susceptible cultivar. XP_017425299.1 expression was induced both by light and rust infection, suggesting this gene may link light and disease resistance signaling pathways. Our results provide insight into how the VaGLRs contribute to adzuki bean response to light stimulus and pathogen attack. These identified VaGLRs also provide important reference to improve adzuki bean germplasm resources.
Collapse
Affiliation(s)
- Lihua Yin
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shengmiao Liu
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Weina Sun
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiwang Ke
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yuhu Zuo
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
8
|
Ahmed I, Kumar A, Bheri M, Srivastava AK, Pandey GK. Glutamate receptor like channels: Emerging players in calcium mediated signaling in plants. Int J Biol Macromol 2023; 234:123522. [PMID: 36758765 DOI: 10.1016/j.ijbiomac.2023.123522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Glutamate receptors like channels (GLRs) are ligand gated non-selective cation channels and are multigenic in nature. They are homologs of mammalian ionic glutamate receptors (iGLRs) that play an important role in neurotransmission. It has been more than 25 years of discovery of plant GLRs, since then, significant progress has been made to unravel their structure and function in plants. Recently, the first crystal structure of plant GLR has been resolved that suggests that, though, plant GLRs contain the conserved signature domains of iGLRs, their unique features enable agonist/antagonist-dependent change in their activity. GLRs exhibit diverse subcellular localization and undergo dynamic expression variation in response to developmental and environmental stress conditions in plants. The combined use of genetic, electrophysiology and calcium imaging using different genetically encoded calcium indicators has revealed that GLRs are involved in generating calcium (Ca2+) influx across the plasma membrane and are involved in shaping the Ca2+ signature in response to different developmental and environmental stimuli. These findings indicate that GLRs influence cytosolic Ca2+ dynamics, thus, highlighting "GLR-Ca2+-crosstalk (GCC)" in developmental and stress-responsive signaling pathways. With this background, the present review summarises the recent developments pertaining to GLR function, in the broader context of regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|