1
|
Kyritsi M, Tsiolas G, Tsoureki A, Schoretsaniti V, Gougouli M, Michailidou S, Argiriou A. Genomic and Transcriptomic Profiling of Bacillus cereus in Milk: Insights into the Sweet Curdling Defect. Foods 2025; 14:780. [PMID: 40077483 PMCID: PMC11899114 DOI: 10.3390/foods14050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Bacillus cereus sensu lato (B. cereus s.l.) are significant spoilage and pathogenic microorganisms found in various foodstuffs. They are responsible for defects like sweet curdling in milk, which impacts dairy product storage and distribution. Nevertheless, the genetic mechanisms underlying B. cereus-induced sweet curdling remain poorly characterized. In this study, we investigated the genetic and functional basis underlying this phenomenon through whole genome sequencing of the newly isolated B. cereus strain BC46 and transcriptome sequencing at two phases of its growth in milk. Hybrid assembly of Illumina and Nanopore reads resulted in a 5.6 Mb genome with 35.1% GC content, classifying BC46 as B. cereus sensu stricto (B. cereus s.s.) within the panC group IV. Several virulence factors, antimicrobial resistance genes, and cold shock proteins were identified in the genome. A distinct functional profile of BC46 was observed before and after the development of sweet curdling in milk. Genes associated with sporulation, toxin production, hydrolysis, and proteolysis were upregulated in sweet-curdled samples. Our findings highlight potential gene targets that may play an important role in the BC46-induced sweet curdling in milk, enhancing our understanding of its molecular basis and supporting the development of new genetic approaches for early spoilage detection.
Collapse
Affiliation(s)
- Maria Kyritsi
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (M.K.); (G.T.); (A.T.); (S.M.)
| | - George Tsiolas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (M.K.); (G.T.); (A.T.); (S.M.)
- Reframe Food Astiki Mi Kerdoskopiki Etairia, 57001 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (M.K.); (G.T.); (A.T.); (S.M.)
| | | | | | - Sofia Michailidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (M.K.); (G.T.); (A.T.); (S.M.)
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (M.K.); (G.T.); (A.T.); (S.M.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Greece
| |
Collapse
|
2
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
3
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
4
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
5
|
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022; 10:1528. [PMID: 36013946 PMCID: PMC9415082 DOI: 10.3390/microorganisms10081528] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.
Collapse
Affiliation(s)
- Ntombikhona Appear Koza
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
6
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
7
|
Metabolic engineering of Corynebacterium glutamicum for de novo production of 3-hydroxycadaverine. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Novel enzyme-metal-organic framework composite for efficient cadaverine production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wang X, Guo X, Wang J, Li H, He F, Xu S, Chen K, Ouyang P. Ameliorating end-product inhibition to improve cadaverine production in engineered Escherichia coli and its application in the synthesis of bio-based diisocyanates. Synth Syst Biotechnol 2021; 6:243-253. [PMID: 34584992 PMCID: PMC8446744 DOI: 10.1016/j.synbio.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Cadaverine is an important C5 platform chemical with a wide range of industrial applications. However, the cadaverine inhibition on the fermenting strain limited its industrial efficiency of the strain. In this study, we report an engineered Escherichia coli strain with high cadaverine productivity that was generated by developing a robust host coupled with metabolic engineering to mitigate cadaverine inhibition. First, a lysine producing E. coli was treated with a combination of radiation (ultraviolet and visible spectrum) and ARTP (atmospheric and room temperature plasma) mutagenesis to obtain a robust host with high cadaverine tolerance. Three mutant targets including HokD, PhnI and PuuR are identified for improved cadaverine tolerance. Further transcriptome analysis suggested that cadaverine suppressed the synthesis of ATP and lysine precursor. Accordingly, the related genes involved in glycolysis and lysine precursor, as well as cadaverine exporter was engineered to release the cadaverine inhibition. The final engineered strain was fed-batch cultured and a titer of 58.7 g/L cadaverine was achieved with a yield of 0.396 g/g, both of which were the highest level reported to date in E. coli. The bio-based cadaverine was purified to >99.6% purity, and successfully used for the synthesis of polyurethane precursor 1,5-pentamethylene diisocyanate (PDI) through the approach of carbamate decomposition.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Xing Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Jing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Hui Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Feng He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China Bbitechnology and Bioengineering
| |
Collapse
|
10
|
Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv 2021; 11:23922-23942. [PMID: 35479032 PMCID: PMC9036910 DOI: 10.1039/d1ra02764f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cadaverine has great potential to be used as an important monomer for the development of a series of high value-added products with market prospects. The most promising strategies for cadaverine synthesis involve using green chemical and bioconversion technologies. Herein, the review focuses on the progress and strategies towards the green chemical synthesis and biosynthesis of cadaverine. Specifically, we address the specific biosynthetic pathways of cadaverine from different substrates as well as extensively discussing the origination, structure and catalytic mechanism of the key lysine decarboxylases. The advanced strategies for process intensification, the separation and purification of cadaverine have been summarized. Furthermore, the challenging issues of the environmental, economic, and applicable impact for cadaverine production are also highlighted. This review concludes with the promising outlooks of state-of-the-art applications of cadaverine along with some insights toward their challenges and potential improvements.
Collapse
Affiliation(s)
- Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
- Zhongke Langfang Institute of Process Engineering Langfang 065001 China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanling Ma
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hai Zhao
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Gerlach T, Nugroho DL, Rother D. The Effect of Visible Light on the Catalytic Activity of PLP-Dependent Enzymes. ChemCatChem 2021; 13:2398-2406. [PMID: 34249169 PMCID: PMC8251830 DOI: 10.1002/cctc.202100163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Indexed: 11/08/2022]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are a versatile class of biocatalysts and feature a variety of industrial applications. However, PLP is light sensitive and can cause inactivation of enzymes in certain light conditions. As most of the PLP-dependent enzymes are usually not handled in dark conditions, we evaluated the effect of visible light on the activity of PLP-dependent enzymes during production as well as transformation. We tested four amine transaminases, from Chromobacterium violaceum, Bacillus megaterium, Vibrio fluvialis and a variant from Arthrobacter species as well as two lysine decarboxylases, from Selenomonas ruminantium and the LDCc from Escherichia coli. It appeared that five of these six enzymes suffered from a significant decrease in activity by up to 90 % when handled in laboratory light conditions. Surprisingly, only the amine transaminase variant from Arthrobacter species appeared to be unaffected by light exposure and even showed an activation to 150 % relative activity over the course of 6 h regardless of the light conditions.
Collapse
Affiliation(s)
- Tim Gerlach
- Institute of Bio- and Geosciences: Biotechnology Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Department Aachen Biology and BiotechnologyRWTH Aachen UniversityWorringer Weg 152062AachenGermany
| | - David Limanhadi Nugroho
- Institute of Bio- and Geosciences: Biotechnology Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences: Biotechnology Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Department Aachen Biology and BiotechnologyRWTH Aachen UniversityWorringer Weg 152062AachenGermany
| |
Collapse
|
12
|
Wang X, Gao S, Wang J, Xu S, Li H, Chen K, Ouyang P. The production of biobased diamines from renewable carbon sources: Current advances and perspectives. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Improvement of cadaverine production in whole cell system with baker's yeast for cofactor regeneration. Bioprocess Biosyst Eng 2021; 44:891-899. [PMID: 33486578 DOI: 10.1007/s00449-020-02497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
Cadaverine, 1,5-diaminopentane, is one of the most promising chemicals for biobased-polyamide production and it has been successfully produced up to molar concentration. Pyridoxal 5'-phosphate (PLP) is a critical cofactor for inducible lysine decarboxylase (CadA) and is required up to micromolar concentration level. Previously the regeneration of PLP in cadaverine bioconversion has been studied and salvage pathway pyridoxal kinase (PdxY) was successfully introduced; however, this system also required a continuous supply of adenosine 5'-triphosphate (ATP) for PLP regeneration from pyridoxal (PL) which add in cost. Herein, to improve the process further a method of ATP regeneration was established by applying baker's yeast with jhAY strain harboring CadA and PdxY, and demonstrated that providing a moderate amount of adenosine 5'-triphosphate (ATP) with the simple addition of baker's yeast could increase cadaverine production dramatically. After optimization of reaction conditions, such as PL, adenosine 5'-diphosphate, MgCl2, and phosphate buffer, we able to achieve high production (1740 mM, 87% yield) from 2 M L-lysine. Moreover, this approach could give averaged 80.4% of cadaverine yield after three times reactions with baker's yeast and jhAY strain. It is expected that baker's yeast could be applied to other reactions requiring an ATP regeneration system.
Collapse
|
14
|
Osire T, Yang T, Xu M, Zhang X, Long M, Ngon NKA, Rao Z. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. Int J Biol Macromol 2020; 169:8-17. [PMID: 33301846 DOI: 10.1016/j.ijbiomac.2020.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Several approaches for efficient production of cadaverine, a bio-based diamine with broad industrial applications have been explored. Here, Serratia marcescens lysine decarboxylase (SmcadA) was expressed in E. coli; mild surfactants added in biotransformation reactions; the E. coli native lysine/cadaverine antiporter cadB, E. coli pyridoxal kinases pdxK and pdxY overexpressed and synthetic RBS libraries screened. Addition of mild surfactants and overexpression of antiporter cadB increased cadaverine biosynthesis of SmcadA. Moreover, expression of pdxY gene yielded 19.82 g/L in a reaction mixture containing added cofactor precursor pyridoxal (PL), without adding exogenous PLP. The screened synthetic RBS1, applied to fully exploit pdxY gene expression, ultimately resulted in PLP self-sufficiency, producing 27.02 g/L cadaverine using strain T7R1_PL. To boost SmcadA catalytic activity, the designed mutants Arg595Lys and Ser512Ala had significantly improved cumulative cadaverine production of 219.54 and 201.79 g/L respectively compared to the wild-type WT (181.62 g/L), after 20 h reaction. Finally, molecular dynamics simulations for WT and variants indicated that increased flexibility at the binding sites of the protein enhanced residue-ligand interactions, contributing to high cadaverine synthesis. This work demonstrates potential of harnessing different pull factors through integrated gene engineering of efficient biocatalysts and gaining insight into the mechanisms involved through MD simulations.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Noelle Kewang A Ngon
- National Engineering Laboratory for Cereal Fermentation Technology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
15
|
Sohn YJ, Kim HT, Jo SY, Song HM, Baritugo KA, Pyo J, Choi JI, Joo JC, Park SJ. Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0508-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Rui J, You S, Zheng Y, Wang C, Gao Y, Zhang W, Qi W, Su R, He Z. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2020; 302:122844. [PMID: 32006927 DOI: 10.1016/j.biortech.2020.122844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Cadaverine is the monomer of bio-based nylons polyamide 5.4, 5.6 and 5.10. In this study, a litre-scale integrated strategy was developed for high-efficiency and low-cost production of cadaverine using an engineered Escherichia coli. Firstly, the engineered strain BL21-Pcad-CadA induced by cheap l-lysine-HCl instead of IPTG was constructed. Then the permeabilized cells were served as the biocatalyst for the production of cadaverine, because the enhanced permeability facilitated the mass transfer of the substrate and the release of products. After the replacement of industrial materials and the solution of the scale-up permeabilization process, cadaverine concentration reached 205 g/L with the yield of 92.1% after 20 h in a 2 L bioconversion system, achieving the level of industrial production. Furthermore, the costs of industrial materials for 2 L integrated strategy ($2.78) was only 1/11 of the lab reagents ($30.88). Therefore, the proposed strategy is a promising candidate for the industrial process of cadaverine.
Collapse
Affiliation(s)
- Jinqiu Rui
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Yunxin Zheng
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chengyu Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yingtong Gao
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Zhang
- Ever-Sky Bioscience (Tianjin) Co., Ltd., PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
17
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
18
|
Yang P, Peng X, Wang S, Li D, Li M, Jiao P, Zhuang W, Wu J, Wen Q, Ying H. Crystal structure, thermodynamics, and crystallization of bio-based polyamide 56 salt. CrystEngComm 2020. [DOI: 10.1039/d0ce00198h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyamide 56 is regarded as one of the most promising materials for the textile industry. This report gives the crystallization route of high-quality polyamide 56 monomers, and its crystal structure, transformation behaviors, and solubility.
Collapse
Affiliation(s)
- Pengpeng Yang
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Xiaoqiang Peng
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Sen Wang
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Dong Li
- Qingdao Product Quality Supervision and Testing Research Institute
- Qingdao
- China
| | - Ming Li
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Pengfei Jiao
- School of Life Science and Technology
- Nanyang Normal University
- Nanyang
- China
| | - Wei Zhuang
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Jinglan Wu
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Qingshi Wen
- Industrial Biotechnology Institute of Jiangsu Industrial Technology Research Institute
- Nanjing
- China
| | - Hanjie Ying
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| |
Collapse
|