1
|
Lendvai L, Jakab SK, Singh T. Optimal design of agro-residue filled poly(lactic acid) biocomposites using an integrated CRITIC-CoCoSo multi-criteria decision-making approach. Sci Rep 2025; 15:11586. [PMID: 40185808 PMCID: PMC11971358 DOI: 10.1038/s41598-025-92724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/03/2025] [Indexed: 04/07/2025] Open
Abstract
In recent years, there has been a rise in environmental awareness, leading to increased efforts to develop eco-friendly materials as alternatives to petroleum-based polymers. This study examined the performance optimization of poly(lactic acid) (PLA) biocomposites filled with agricultural byproducts at concentrations ranging from 0 to 20% by weight, highlighting their potential as substitutes for commodity plastics. The agro-residues used as fillers were flax seed meal and rapeseed straw. A hybrid decision-making algorithm was proposed, utilizing the "criteria importance through inter-criteria correlation" (CRITIC) alongside the "combined compromise solution" (CoCoSo), aimed at identifying the optimal alternative among the evaluated samples. The algorithm considered several attributes, including mechanical traits evaluated via tensile, flexural, and impact tests, hardness, water absorption, biodegradation, and production cost. The findings revealed that the strength properties, including tensile, flexural, impact, and water absorption, were most advantageous for neat PLA. In contrast, the highest modulus values were recorded for the biocomposite filled with 20 wt% rapeseed straw. The biocomposites exhibit increased hardness as agro-waste content rose, with the highest hardness observed in the biocomposite filled with 20 wt% flax seed meal. The study on biodegradation indicates that a higher content of agro-waste promotes disintegration, with flax seed meal emerging as the most effective additive in this context. The findings show that adding various agricultural byproducts in varying amounts affects the evaluated properties differently. Hence, the hybrid CRITIC-CoCoSo optimization approach is utilized to choose the optimal biocomposite. The findings show that the biocomposite with 20 wt% rapeseed straw demonstrated optimal physico-mechanical and biodegradation properties, making it a promising eco-friendly alternative for future applications.
Collapse
Affiliation(s)
- László Lendvai
- Department of Materials Science and Engineering, Széchenyi István University, Gyor, 9026, Hungary
| | - Sándor Kálmán Jakab
- Department of Materials Science and Engineering, Széchenyi István University, Gyor, 9026, Hungary
| | - Tej Singh
- Faculty of Informatics, Savaria Institute of Technology, Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
3
|
de Souza MF, Luna CBB, Siqueira DD, Bezerra EDOT, de Cerqueira GR, Araújo EM, Wellen RMR. Toward the Improvement of Maleic Anhydride Functionalization in Polyhydroxybutyrate (PHB): Effect of Styrene Monomer and Sn(Oct) 2 Catalyst. Int J Mol Sci 2023; 24:14409. [PMID: 37833855 PMCID: PMC10572386 DOI: 10.3390/ijms241914409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
In this work, polyhydroxybutyrate (PHB) was maleic anhydride (MA)-grafted in the molten state, using dicumyl peroxide (DCP) as a reaction initiator. Tin(II) 2-ethylhexanoate (Sn(Oct)2) and styrene monomer (St.) were used to maximize the maleic anhydride grafting degree. When PHB was modified with MA/DCP and MA/DCP/Sn(Oct)2, viscosity was reduced, suggesting chain scission in relation to pure PHB. However, when the styrene monomer was added, the viscosity increased due to multiple grafts of MA and styrene into the PHB chain. In addition, the FTIR showed the formation of a new band at 1780 cm-1 and 704 cm-1, suggesting a multiphase copolymer PHB-g-(St-co-MA). The PHB (MA/DCP) system showed a grafting degree of 0.23%; however, the value increased to 0.39% with incorporating Sn(Oct)2. The highest grafting efficiency was for the PHB (MA/DCP/St.) system with a value of 0.91%, while the PHB (MA/DCP/St./Sn(Oct)2) hybrid mixture was reduced to 0.73%. The chemical modification process of PHB with maleic anhydride increased the thermal stability by about 20 °C compared with pure PHB. The incorporation of 0.5 phr of the Sn(Oct)2 catalyst increased the efficiency of the grafting degree in the PHB. However, the St./Sn(Oct)2 hybrid mixture caused a deleterious effect on the maleic anhydride grafting degree.
Collapse
Affiliation(s)
- Matheus Ferreira de Souza
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (M.F.d.S.); (D.D.S.); (E.M.A.)
| | - Carlos Bruno Barreto Luna
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (M.F.d.S.); (D.D.S.); (E.M.A.)
| | - Danilo Diniz Siqueira
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (M.F.d.S.); (D.D.S.); (E.M.A.)
| | | | - Grazielle Rozendo de Cerqueira
- Department of Materials Science, Federal University of Pernambuco, Av. da Arquitetura-Cidade Universitária, Recife 50740-540, PE, Brazil;
| | - Edcleide Maria Araújo
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (M.F.d.S.); (D.D.S.); (E.M.A.)
| | - Renate Maria Ramos Wellen
- Department of Materials Engineering, Federal University of Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
4
|
Ngiwngam K, Chinvorarat S, Rachtanapun P, Auras R, Wittaya T, Tongdeesoontorn W. Effect of Chemical and Steam Explosion Pulping on the Physical and Mechanical Properties of Sugarcane Straw Pulp Trays. Polymers (Basel) 2023; 15:3132. [PMID: 37514521 PMCID: PMC10383716 DOI: 10.3390/polym15143132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Sugarcane straw fiber (SSF) samples were prepared by chemical pulping (CP) and steam explosion (STE). CP (5, 10, 15% NaOH + 0.2% w/w anthraquinone at 121 °C for 1 h) and STE pressure (1.77, 1.96, and 2.16 MPa at 220 °C for 4 min) SSF trays were molded with a hydraulic hot-press machine at 120 °C, 7 min, and 1.72 MPa. The yield (%) of SSF from STE (54-60% dry basis (db.)) was higher than CP (32-48% db.). STE trays had greater tensile strength than CP. However, STE's elongation and compression strength was lower than CP tray samples. The trays made from SSF using STE had less swelling in thickness, longer water wetting time, and a higher water contact angle than those made from CP. The micrographs displayed a smaller size of SSF obtained in STE than the CP. The appearance and area of peaks in ATR-FTIR spectra and XRD diffractograms, respectively, revealed that the STE trays had a larger residual lignin content from the lignin study and a lower crystallinity index than the CP trays. Moreover, the lightness values of the STE trays were lower than those of the CP trays due to lignin retention. The study results indicate that CP is the preferred method for producing SSF packaging material with high flexibility and fiber purity. However, when considering the specific SF of 4.28, the STE treatment showed superior physical and mechanical properties compared to CP. This suggests that STE could be an excellent alternative green pulping technique for producing durable biobased trays. Overall, the findings highlight the potential of STE as a viable option for obtaining trays with desirable characteristics, providing a sustainable and efficient approach to tray production.
Collapse
Affiliation(s)
- Kittaporn Ngiwngam
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Sinchai Chinvorarat
- Department of Mechanical & Aerospace Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rafael Auras
- School of Packaging, Michigan State University, 448 Wilson Rd, East Lansing, MI 48824, USA
| | - Thawien Wittaya
- Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wirongrong Tongdeesoontorn
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| |
Collapse
|
5
|
Costa JR, Pereira MJ, Pedrosa SS, Gullón B, de Carvalho NM, Pintado ME, Madureira AR. Sugarcane Straw as a Source of Arabinoxylans: Optimization and Economic Viability of a Two-Step Alkaline Extraction. Foods 2023; 12:2280. [PMID: 37372491 DOI: 10.3390/foods12122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Sugarcane processing produces a significant amount of byproducts in the form of straw and bagasse, which are rich in cellulose, hemicellulose, and lignin. This work aims to provide a valorization approach to sugarcane straw by optimizing a two-step alkaline extraction of arabinoxylans by a response surface methodology to evaluate a potential industrial-scale production. Sugarcane straws were delignified using an alkaline-sulfite pretreatment, followed by alkaline extraction and precipitation of arabinoxylan, a two-step process optimized using a response surface methodology. A KOH concentration of (2.93-17.1%) and temperature (18.8-61.2 °C) were chosen as independent variables, and the arabinoxylan yield (%) as a response variable. The model application shows that KOH concentration, temperature, and the interaction between both independent variables are significant in extracting arabinoxylans from straw. The best-performing condition was further characterized by FTIR, DSC, and chemical and molecular weight evaluation. The straws arabinoxylans presented high purities levels, ca. 69.93%, and an average molecular weight of 231 kDa. The overall estimated production cost of arabinoxylan from straw was 0.239 €/g arabinoxylan. This work demonstrates a two-step alkaline extraction of the arabinoxylans method, as well as their chemical characterization and economic viability analysis, that can be used as a model for industrial scale-up production.
Collapse
Affiliation(s)
- Joana R Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Maria J Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sílvia S Pedrosa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Gullón
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Nelson M de Carvalho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Raquel Madureira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
6
|
Fayyazbakhsh A, Koutný M, Kalendová A, Šašinková D, Julinová M, Kadlečková M. Selected Simple Natural Antimicrobial Terpenoids as Additives to Control Biodegradation of Polyhydroxy Butyrate. Int J Mol Sci 2022; 23:14079. [PMID: 36430556 PMCID: PMC9692992 DOI: 10.3390/ijms232214079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
In this experimental research, different types of essential oils (EOs) were blended with polyhydroxybutyrate (PHB) to study the influence of these additives on PHB degradation. The blends were developed by incorporating three terpenoids at two concentrations (1 and 3%). The mineralization rate obtained from CO2 released from each sample was the factor that defined biodegradation. Furthermore, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used in this research. The biodegradation percentages of PHB blended with 3% of eucalyptol, limonene, and thymol after 226 days were reached 66.4%, 73.3%, and 76.9%, respectively, while the rate for pure PHB was 100% after 198 days, and SEM images proved these results. Mechanical analysis of the samples showed that eucalyptol had the highest resistance level, even before the burial test. The other additives showed excellent mechanical properties although they had less mechanical strength than pure PHB after extrusion. The samples' mechanical properties improved due to their crystallinity and decreased glass transition temperature (Tg). DSC results showed that blending terpenoids caused a reduction in Tg, which is evident in the DMA results, and a negligible reduction in melting point (Tm).
Collapse
Affiliation(s)
- Ahmad Fayyazbakhsh
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryk Square 5555, 76001 Zlín, Czech Republic
| | - Marek Koutný
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryk Square 5555, 76001 Zlín, Czech Republic
| | - Alena Kalendová
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryk Square 5555, 76001 Zlín, Czech Republic
| | - Dagmar Šašinková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryk Square 5555, 76001 Zlín, Czech Republic
| | - Markéta Julinová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryk Square 5555, 76001 Zlín, Czech Republic
| | - Markéta Kadlečková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tr. T. Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
7
|
Perra M, Bacchetta G, Muntoni A, De Gioannis G, Castangia I, Rajha HN, Manca ML, Manconi M. An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Qi Z, Wang B, Sun C, Yang M, Chen X, Zheng D, Yao W, Chen Y, Cheng R, Zhang Y. Comparison of Properties of Poly(Lactic Acid) Composites Prepared from Different Components of Corn Straw Fiber. Int J Mol Sci 2022; 23:ijms23126746. [PMID: 35743188 PMCID: PMC9224457 DOI: 10.3390/ijms23126746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, under the pressure of resource shortage and white pollution, the development and utilization of biodegradable wood-plastic composites (WPC) has become one of the hot spots for scholars’ research. Here, corn straw fiber (CSF) was chosen to reinforce a poly(lactic acid) (PLA) matrix with a mass ratio of 3:7, and the CSF/PLA composites were obtained by melt mixing. The results showed that the mechanical properties of the corn straw fiber core (CSFC) and corn straw fiber skin (CSFS) loaded PLA composites were stronger than those of the CSFS/PLA composites when the particle size of CSF was low. The tensile strength and bending strength of CSFS/CSFC/PLA are 54.08 MPa and 87.24 MPa, respectively, and the elongation at break is 4.60%. After soaking for 8 hours, the water absorption of CSF/PLA composite reached saturation. When the particle size of CSF is above 80 mesh, the saturated water absorption of the material is kept below 7%, and CSF/PLA composite has good hydrophobicity, which is mainly related to the interfacial compatibility between PLA and CSF. By observing the microstructure of the cross section of the CSF/PLA composite, the research found that the smaller the particle size of CSF, the smoother the cross section of the composite and the more unified the dispersion of CSF in PLA. Therefore, exploring the composites formed by different components of CSF and PLA can not only expand the application range of PLA, but also enhance the application value of CSF in the field of composites.
Collapse
Affiliation(s)
- Zhongyu Qi
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Baiwang Wang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Ce Sun
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Minghui Yang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Xiaojian Chen
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Dingyuan Zheng
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Wenrui Yao
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Yang Chen
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Ruixiang Cheng
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
- Correspondence: (R.C.); (Y.Z.)
| | - Yanhua Zhang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin 150040, China; (Z.Q.); (B.W.); (C.S.); (M.Y.); (X.C.); (D.Z.); (W.Y.); (Y.C.)
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
- Correspondence: (R.C.); (Y.Z.)
| |
Collapse
|
9
|
Obermeier F, Karlinger P, Schemme M, Altstädt V. Thermoplastic Hybrid Composites with Wood Fibers: Bond Strength of Back-Injected Structures. MATERIALS 2022; 15:ma15072473. [PMID: 35407806 PMCID: PMC8999410 DOI: 10.3390/ma15072473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Due to their lightweight potential and good eco-balance, thermoplastic hybrid composites with natural fiber reinforcement have long been used in the automotive industry. A good alternative to natural fibers is wood fibers, which have similar properties but are also a single-material solution using domestic raw materials. However, there has been hardly any research into wood fibers in thermoplastic back-injected hybrid composites. This article compares the bond strength of an injection molded rib from polypropylene (PP) and wood fibers to different non-wovens. The non-wovens consisted of wood fibers (spruce) or alternatively natural fibers (kenaf, hemp), both with a polypropylene matrix. Pull-off and instrumented puncture impact tests show that, given similar parameters, the natural and wood-fiber-hybrid composites exhibit very similar trends in bond strength. Further tests using viscosity measurements, microscopy, and computed tomography confirm the results. Wood-fiber-reinforced thermoplastic hybrid composites can thus compete with the natural fiber composites in terms of their mechanical behavior and therefore present a good alternative in technical semi-structural applications.
Collapse
Affiliation(s)
- Frederik Obermeier
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (P.K.); (M.S.)
- Correspondence: ; Tel.: +49-(0)-8031-805-2266
| | - Peter Karlinger
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (P.K.); (M.S.)
| | - Michael Schemme
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (P.K.); (M.S.)
| | - Volker Altstädt
- Department of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany;
| |
Collapse
|
10
|
Upcycling and Recycling Potential of Selected Lignocellulosic Waste Biomass. MATERIALS 2021; 14:ma14247772. [PMID: 34947366 PMCID: PMC8709335 DOI: 10.3390/ma14247772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 11/21/2022]
Abstract
This research aimed to confirm the ability to reduce carbon dioxide emissions by novel composite production using plantation waste on the example of lignocellulosic particles of black chokeberry (Aronia melanocarpa (Michx.) Elliott) and raspberry (Rubus idaeus L.). Furthermore, to characterize the particles produced by re-milled particleboards made of the above-mentioned alternative raw materials in the light of further recycling. As part of the research, particleboards from wooden black chokeberry and raspberry were produced in laboratory conditions, and select mechanical and physical properties were examined. In addition, the characterization of raw materials (particles) on the different processing stages was determined, and the fraction share and shape of particles after re-milling of the produced panels was provided. The tests confirmed the possibility of producing particleboards from the raw materials used; however, in the case of boards with raspberry lignocellulose particles, their share cannot exceed 50% so as to comply with the European standards regarding bending strength criterion. In addition, the further utilization of chips made of re-milled panels can be limited due to the significantly different shape and fraction share of achieved particles.
Collapse
|
11
|
Extrusion and Injection Molding of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx): Influence of Processing Conditions on Mechanical Properties and Microstructure. Polymers (Basel) 2021; 13:polym13224012. [PMID: 34833311 PMCID: PMC8622142 DOI: 10.3390/polym13224012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Biobased and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. However, improvements in their processing and mechanical properties are necessary. In this work, the influence of melt processing conditions on the mechanical properties and microstructure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is examined using a full factorial design of experiments (DoE) approach. We have found that strict control over processing temperature, mold temperature, screw speed, and cooling time leads to highly increased elongation at break values, mainly under influence of higher mold temperatures at 80 °C. Increased elongation of the moldings is attributed to relaxation and decreased orientation of the polymer chains together with a homogeneous microstructure at slower cooling rates. Based on the statistically substantiated models to determine the optimal processing conditions and their effects on microstructure variation and mechanical properties of PHBHHx samples, we conclude that optimizing the processing of this biopolymer can improve the applicability of the material and extend its scope in the realm of flexible packaging applications.
Collapse
|