1
|
Bhat M, Tharmatt A, Bhargava S, Kumeria T, Mishra A, Mittal A, Chitkara D. Can breakthroughs in dermal and transdermal macromolecule delivery surmount existing barriers and revolutionize future therapeutics? J Transl Med 2025; 23:513. [PMID: 40336019 PMCID: PMC12057005 DOI: 10.1186/s12967-025-06219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/11/2025] [Indexed: 05/09/2025] Open
Abstract
The delivery of macromolecules through dermal and transdermal routes presents both significant challenges and transformative opportunities in therapeutic applications. This review highlights the most recent advancements and innovative strategies aimed at overcoming the barriers associated with macromolecular delivery. Cutting-edge approaches such as the use of adjuvants (e.g., hyaluronic acid-based and chemical penetration enhancers), bioactive peptides with diverse functionalities, and mechanical force techniques-including iontophoresis, microneedles, and electroporation-are thoroughly explored. While various strategies have been implemented to enhance skin delivery, they often present significant challenges, particularly for macromolecules. Addressing these challenges requires integrating novel technologies and understanding the interplay between biological barriers and delivery mechanisms. Furthermore, the role of nanotechnology, through systems like nanoemulsions, polymeric nanoparticles, and transferosomes, is examined for its ability to protect macromolecules and regulate their release. Notably, this review provides unique perspectives on the interplay between these strategies and their potential to revolutionise future therapeutics. By highlighting key trends and advancements in macromolecule delivery, this review underscores the importance of innovative approaches in overcoming existing barriers and enabling efficient drug administration.
Collapse
Affiliation(s)
- Medha Bhat
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | - Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | - Samarth Bhargava
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales-Sydney, New South Wales, Australia
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, 160062, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
2
|
Lin S, Tang L, Xu N. Research progress and strategy of FGF21 for skin wound healing. Front Med (Lausanne) 2025; 12:1510691. [PMID: 40231082 PMCID: PMC11994443 DOI: 10.3389/fmed.2025.1510691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), a pivotal member of the fibroblast growth factor family, exhibits multifaceted biological functions, including the modulation of pro-inflammatory cytokines and metabolic regulation. Recent research has revealed that in impaired skin tissues, FGF21 and its receptors are upregulated and play a significant role in accelerating the wound healing process. However, the clinical application of FGF21 is severely limited by its short in vivo half-life: this factor is often degraded by enzymes before it can exert its therapeutic effects. To address this limitation, the transdermal drug delivery system (TDDS) has emerged as an innovative approach that enables sustained drug release, significantly prolonging the therapeutic duration. Leveraging genetic recombination technology, research teams have ingeniously fused FGF21 with cell-penetrating peptides (CPPs) to construct recombinant FGF21 complexes. These novel conjugates can efficiently penetrate the epidermal barrier and achieve sustained and stable pharmacological activity through TDDS. This review systematically analyzes the potential signaling pathways by which FGF21 accelerates skin wound repair, summarizes the latest advancements in TDDS technology, explores the therapeutic potential of FGF21, and evaluates the efficacy of CPP fusion tags. The manuscript not only proposes an innovative paradigm for the application of FGF21 in skin injury treatment but also provides new insights into its use in transdermal delivery, marking a significant step toward overcoming existing clinical therapeutic challenges. From a clinical medical perspective, this innovative delivery system holds promise for addressing the bioavailability issues of traditional FGF21 therapies, offering new strategies for the clinical treatment of metabolism-related diseases and wound healing. With further research, this technology holds vast potential for clinical applications in hard-to-heal wounds such as diabetic foot ulcers and burns.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lu Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Prajapati SK, Jain A, Bajpai M. Lipid-based nanoformulations in onychomycosis therapy: addressing challenges of current therapies and advancing treatment. RSC Adv 2025; 15:7799-7825. [PMID: 40070389 PMCID: PMC11895809 DOI: 10.1039/d5ra00387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates. Consequently, emerging lipid-based delivery systems have gained interest because of their potential to address these drawbacks. Nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), liposomes, and transferosomes are innovative formulations that offer enhanced drug solubility, sustained release, and targeted delivery to the nail matrix. These lipid-mediated approaches have shown promise in overcoming the hurdles associated with conventional therapies, thereby improving treatment outcomes, patient compliance, and the overall quality of life. A comprehensive review focusing on the potential of lipid-based drug delivery systems in treating onychomycosis is lacking in the existing literature. This review explores various aspects of the clinical presentation of onychomycosis, available treatments, challenges associated with treatment, formulation science related to lipid-based vehicles and their applications, highlighted by the promising aspects of these novel formulations, and provides insights into clinical developments. In addition, the regulatory perspective is critical to such development, and approval is discussed, particularly in managing regulatory compliance complexities to ensure successful implementation. The holistic approach provides a comprehensive basis for determining lipid-based drug delivery systems' state-of-the-art and future scope.
Collapse
Affiliation(s)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani Pilani Campus Pilani India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University Mathura India
| |
Collapse
|
4
|
Nguyen HX. Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination. MEDICINES (BASEL, SWITZERLAND) 2025; 12:4. [PMID: 39982324 PMCID: PMC11843882 DOI: 10.3390/medicines12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Vaccination represents a critical preventive strategy in the current global healthcare system, serving as an indispensable intervention against diverse pathogenic threats. Although conventional immunization relies predominantly on hypodermic needle-based administration, this method carries substantial limitations, including needle-associated fear, bloodborne pathogen transmission risks, occupational injuries among healthcare workers, waste management issues, and dependence on trained medical personnel. Microneedle technology has emerged as an innovative vaccine delivery system, offering convenient, effective, and minimally invasive administration. These microscale needle devices facilitate targeted antigen delivery to epidermal and dermal tissues, where abundant populations of antigen-presenting cells, specifically Langerhans and dermal dendritic cells, provide robust immunological responses. Multiple research groups have extensively investigated microneedle-based vaccination strategies. This transdermal delivery technique offers several advantages, notably circumventing cold-chain requirements and enabling self-administration. Numerous preclinical investigations and clinical trials have demonstrated the safety profile, immunogenicity, and patient acceptance of microneedle-mediated vaccine delivery across diverse immunization applications. This comprehensive review examines the fundamental aspects of microneedle-based immunization, including vaccination principles, transcutaneous immunization strategies, and microneedle-based transdermal delivery-including classifications, advantages, and barriers. Furthermore, this review addresses critical technical considerations, such as treatment efficacy, application methodologies, wear duration, dimensional optimization, manufacturing processes, regulatory frameworks, and sustainability considerations, followed by an analysis of the future perspective of this technology.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| |
Collapse
|
5
|
Ai X, Yang J, Liu Z, Guo T, Feng N. Recent progress of microneedles in transdermal immunotherapy: A review. Int J Pharm 2024; 662:124481. [PMID: 39025342 DOI: 10.1016/j.ijpharm.2024.124481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Since human skin is an immune organ, a large number of immune cells are distributed in the epidermis and the dermis of the skin. Transdermal immunotherapy shows great therapeutic advantages in innate immunotherapy and adaptive immunotherapy. To solve the problem that macromolecules are difficult to penetrate into the skin, the microneedle technology can directly break through the skin barrier using micron-sized needles in a non-invasive and painless way for transdermal drug delivery. Therefore, it is considered to be an effective technology to increase drug transdermal absorption. In this review, the types of preparation, the combinations with different techniques and the mechanisms of microneedles in transdermal immunotherapy were summarized. Compared with traditional immunotherapy like intramuscular injection and subcutaneous injection, the microneedle has many advantages in transdermal immunotherapy, such as reducing patient pain, enhancing vaccine stability, and inducing stronger immune responses. Although there are still some limitations to be solved, the application of microneedle technology in transdermal immunotherapy is undoubtedly a promising means of drug delivery.
Collapse
Affiliation(s)
- Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Bakhshandeh F, Zheng H, Barra NG, Sadeghzadeh S, Ausri I, Sen P, Keyvani F, Rahman F, Quadrilatero J, Liu J, Schertzer JD, Soleymani L, Poudineh M. Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313743. [PMID: 38752744 DOI: 10.1002/adma.202313743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Indexed: 06/19/2024]
Abstract
Continuous monitoring of clinically relevant biomarkers within the interstitial fluid (ISF) using microneedle (MN)-based assays, has the potential to transform healthcare. This study introduces the Wearable Aptalyzer, an integrated system fabricated by combining biocompatible hydrogel MN arrays for ISF extraction with an electrochemical aptamer-based biosensor for in situ monitoring of blood analytes. The use of aptamers enables continuous monitoring of a wide range of analytes, beyond what is possible with enzymatic monitoring. The Wearable Aptalyzer is used for real-time and multiplexed monitoring of glucose and lactate in ISF. Validation experiments using live mice and rat models of type 1 diabetes demonstrate strong correlation between the measurements collected from the Wearable Aptalyzer in ISF and those obtained from gold-standard techniques for blood glucose and lactate, for each analyte alone and in combination. The Wearable Aptalyzer effectively addresses the limitations inherent in enzymatic detection methods as well as solid MN biosensors and the need for reliable and multiplexed bioanalytical monitoring in vivo.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Irfani Ausri
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Payel Sen
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Fasih Rahman
- Department of Kinesiology and Health Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L 3W4, ON, Canada
| |
Collapse
|
7
|
Zhang XR, Jin YX, Chien PN, Tien TTT, Zhou SY, Giang NN, Le LTT, Nam SY, Heo CY. Evaluation test and analysis of a microneedle and iontophoresis based medical device "CELLADEEP Patch" in skin improvement on ex vivo human-derived skin tissue models. Skin Res Technol 2024; 30:eSRT13784. [PMID: 39031931 PMCID: PMC11259541 DOI: 10.1111/srt.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system. The study aimed to evaluate the effectiveness of the "CELLADEEP Patch" in skin improvement. METHODS Ex vivo human-derived skin tissue models were used in this study and they were divided into three different groups, namely, the Untreated Group, the Negative Control Group, and the Test Group respectively. The Untreated Group received no treatment measures, the Negative Control Group was exposed to ultraviolet B radiation (UVB) irradiation, and the Test Group was exposed to UVB irradiation and treated with "CELLADEEP Patch". Skin moisture content, transdermal water loss, and skin elasticity were evaluated by three clinical devices. Additionally, histological staining and related mRNA expression levels were also analyzed. RESULTS The results of skin moisture content, transdermal water loss, and skin elasticity evaluation consistently illustrated that the application of "CELLADEEP Patch" led to remarkable skin improvement. And the analysis of histological staining images also confirmed the effectiveness of the "CELLADEEP Patch", especially for increasing collagen density. Moreover, the upregulation of Collagen type 1 a (COL1A1) and hyaluronan synthase 3 mRNA expression and the decrease of Matrix metalloproteinase 1 (MMP-1) and Interleukin-1 beta (IL-1β) mRNA expression reflected its wrinkle improvement, moisturizing and anti-inflammation function. CONCLUSION "CELLADEPP Patch", the MTS combined with the iontophoresis technique, exhibits its effectiveness in moisturizing, skin elasticity improvement, and anti-inflammatory function when applied to ex vivo human-derived skin tissue models in experiments. The study has contributed to the understanding of the "CELLADEPP Patch" and laid the foundation for subsequent animal experiments and clinical trials.
Collapse
Affiliation(s)
- Xin Rui Zhang
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Yong Xun Jin
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudySeongnamSouth Korea
| | - Trinh Thi Thuy Tien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudySeongnamSouth Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Biomedical ScienceCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudySeongnamSouth Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
8
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
9
|
Abd El-Kaream SA, Hussein NGA, El-Kholey SM, Elhelbawy AMAEI. Microneedle combined with iontophoresis and electroporation for assisted transdermal delivery of goniothalamus macrophyllus for enhancement sonophotodynamic activated cancer therapy. Sci Rep 2024; 14:7962. [PMID: 38575628 PMCID: PMC10994924 DOI: 10.1038/s41598-024-58033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.
Collapse
Affiliation(s)
- Samir Ali Abd El-Kaream
- Applied Medical Chemistry Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Nabila Gaber Ali Hussein
- Applied Medical Chemistry Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sohier Mahmoud El-Kholey
- Medical Biophysics Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
10
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
11
|
Poudineh M. Microneedle Assays for Continuous Health Monitoring: Challenges and Solutions. ACS Sens 2024; 9:535-542. [PMID: 38350235 DOI: 10.1021/acssensors.3c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Continuous health monitoring aims to reduce hospitalization and the need for constant supervision of the patients. For an outpatient monitoring device to be effective, it must meet certain criteria: it should demand minimal patient involvement, be reliable, be connected, remain stable with infrequent replacements, be cost-efficient, be compatible with humans, and ultimately be self-powered. Microneedle (MN) technology, designed for transdermal biosensing, offers a promising solution for meeting a wide range of these demands in the field of continuous health monitoring. A variety of MN platforms have been developed to facilitate this crucial function. Our focus in this Perspective is on the significant challenges linked to MN-based biosensors. These challenges include ensuring skin compatibility, the effective integration of biorecognition elements into the MN systems, and the durability concerns of these sensors in enabling extended periods of continuous monitoring. Tackling these hurdles could pave the way for more effective and reliable MN-based health monitoring solutions in the future.
Collapse
Affiliation(s)
- Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Limenh LW. Advances in the transdermal delivery of antiretroviral drugs. SAGE Open Med 2024; 12:20503121231223600. [PMID: 38249942 PMCID: PMC10798114 DOI: 10.1177/20503121231223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Antiretroviral therapy regimens are successful in stopping the advancement of human immunodeficiency virus infection to acquired immunodeficiency syndrome, and other opportunistic infections. However, they do have significant disadvantages, including long-term treatment, limited oral bioavailability, inaccessibility to organs, non-adherence by patients, and the development of medication resistance. Because of the listed drawbacks of available routes and the availability of curative medicines for human immunodeficiency virus/acquired immunodeficiency syndrome, advanced solutions are required. Antiretroviral therapy transdermal delivery is one of the current strategies that have attracted much attention from many researchers. In this narrative review, various in vitro, in vivo, and ex vivo transdermal antiretroviral therapy delivery strategies were reviewed, such as transdermal patches and films, lipid-based nano-delivery systems, microneedles, chemical penetration enhancers, and iontophoresis, which showed promising results. Although the majority of studies on Antiretroviral transdermal delivery have produced hopeful findings, additional in-depth research on passive and physical enhancement techniques, both existing and new, is necessary to fully understand the potential of this route and to make it accessible to human immunodeficiency virus patients.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
14
|
Wei D, Pu N, Li SY, Wang YG, Tao Y. Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye. Drug Deliv 2023; 30:2165736. [PMID: 36628545 PMCID: PMC9851230 DOI: 10.1080/10717544.2023.2165736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Delivery of drugs to special locations of ocular lesions, while minimizing systemic and local toxic effects, is recognized as a critical challenge in the ophthalmic practice. The special anatomy and physiology barriers within the eyeball entail effective drug delivery systems. Emerging attempts in drug delivery has led to developments in ocular iontophoresis, which acts as a noninvasive technology to enhance drug penetration using a small electric current. This technique offers greater flexibility to deliver desired drug dose in a controlled and tolerable manner. In previous studies, this technique has been testified to deliver antibiotics, corticoid, proteins and other gene drugs into the eye with the potency of treating or alleviating diverse ophthalmological diseases including uveitis, cataract, retinoblastoma, herpes simplex and cytomegalovirus retinitis (CMVR), etc. In this review, we will introduce the recent developments in iontophoresis device. We also summarize the latest progress in coulomb controlled iontophoresis (CCI), hydrogel ionic circuit (HIC) and EyeGate II delivery system (EGDS), as well as overview the potential toxicity of iontophoresis. We will discuss these factors that affect the efficacy of iontophoresis experiments, and focus on the latest progress in its clinical application in the treatment of eye diseases.
Collapse
Affiliation(s)
- Dong Wei
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Ning Pu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Si-Yu Li
- College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Yan-Ge Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,CONTACT Yan-Ge Wang
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,Ye Tao Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou450003, China
| |
Collapse
|
15
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
16
|
Shukla S, Jakowski J, Kadian S, Narayan RJ. Computational approaches to delivery of anticancer drugs with multidimensional nanomaterials. Comput Struct Biotechnol J 2023; 21:4149-4158. [PMID: 37675288 PMCID: PMC10477808 DOI: 10.1016/j.csbj.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Functionalized nanotubes (NTs), nanosheets, nanorods, and porous organometallic scaffolds are potential in vivo carriers for cancer therapeutics. Precise delivery through these agents depends on factors like hydrophobicity, payload capacity, bulk/surface adsorption, orientation of molecules inside the host matrix, bonding, and nonbonding interactions. Herein, we summarize advances in simulation techniques, which are extremely valuable in initial geometry optimization and evaluation of the loading and unloading behavior of encapsulated drug molecules. Computational methods broadly involve the use of quantum and classical mechanics for studying the behavior of molecular properties. Combining theoretical processes with experimental techniques, such as X-ray crystallography, NMR spectroscopy, and bioassays, can provide a more comprehensive understanding of the structure and function of biological molecules. This integrated approach has led to numerous breakthroughs in drug discovery, enzyme design, and the study of complex biological processes. This short review provides an overview of results and challenges described from erstwhile investigations on the molecular interaction of anticancer drugs with nanocarriers of different aspect ratios.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| |
Collapse
|
17
|
Chen X, Xiao H, Shi X, Zhao Q, Xu X, Fan P, Xiao D. Bibliometric analysis and visualization of transdermal drug delivery research in the last decade: global research trends and hotspots. Front Pharmacol 2023; 14:1173251. [PMID: 37397493 PMCID: PMC10313210 DOI: 10.3389/fphar.2023.1173251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Transdermal delivery has become a crucial field in pharmaceutical research. There has been a proliferation of innovative methods for transdermal drug delivery. In recent years, the number of publications regarding transdermal drug delivery has been rising rapidly. To investigate the current research trends and hotspots in transdermal drug delivery, a comprehensive bibliometric analysis was performed. Methods: An extensive literature review was conducted to gather information on transdermal drug delivery that had been published between 2003 and 2022. The articles were obtained from the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI) databases. Subsequently, the collected data underwent analysis and visualization using a variety of software tools. This approach enables a deeper exploration of the hotspots and emerging trends within this particular research domain. Results: The results showed that the number of articles published on transdermal delivery has increased steadily over the years, with a total of 2,555 articles being analyzed. The most frequently cited articles were related to the optimization of drug delivery and the use of nanotechnology in transdermal drug delivery. The most active countries in the field of transdermal delivery research were the China, United States, and India. Furthermore, the hotspots over the past 2 decades were identified (e.g., drug therapy, drug delivery, and pharmaceutical preparations and drug design). The shift in research focus reflects an increasing emphasis on drug delivery and control release, rather than simply absorption and penetration, and suggests a growing interest in engineering approaches to transdermal drug delivery. Conclusion: This study provided a comprehensive overview of transdermal delivery research. The research indicated that transdermal delivery would be a rapidly evolving field with many opportunities for future research and development. Moreover, this bibliometric analysis will help researchers gain insights into transdermal drug delivery research's hotspots and trends accurately and quickly.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Zhao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
18
|
Razzaghi M, Seyfoori A, Pagan E, Askari E, Hassani Najafabadi A, Akbari M. 3D Printed Hydrogel Microneedle Arrays for Interstitial Fluid Biomarker Extraction and Colorimetric Detection. Polymers (Basel) 2023; 15:polym15061389. [PMID: 36987171 PMCID: PMC10054006 DOI: 10.3390/polym15061389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
To treat and manage chronic diseases, it is necessary to continuously monitor relevant biomarkers and modify treatment as the disease state changes. Compared to other bodily fluids, interstitial skin fluid (ISF) is a good choice for identifying biomarkers because it has a molecular composition most similar to blood plasma. Herein, a microneedle array (MNA) is presented to extract ISF painlessly and bloodlessly. The MNA is made of crosslinked poly(ethylene glycol) diacrylate (PEGDA), and an optimal balance of mechanical properties and absorption capability is suggested. Besides, the effect of needles’ cross-section shape on skin penetration is studied. The MNA is integrated with a multiplexed sensor that provides a color change in a biomarker concentration-dependent manner based on the relevant reactions for colorimetric detection of pH and glucose biomarkers. The developed device enables diagnosis by visual inspection or quantitative red, green, and blue (RGB) analysis. The outcomes of this study show that MNA can successfully identify biomarkers in interstitial skin fluid in a matter of minutes. The home-based long-term monitoring and management of metabolic diseases will benefit from such practical and self-administrable biomarker detection.
Collapse
Affiliation(s)
- Mahmood Razzaghi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Esfandyar Askari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Correspondence:
| |
Collapse
|
19
|
Ciftci F. Release kinetics modelling and in vivo-vitro, shelf-life study of resveratrol added composite transdermal scaffolds. Int J Biol Macromol 2023; 235:123769. [PMID: 36812968 DOI: 10.1016/j.ijbiomac.2023.123769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
In this article, the suitability of composite transdermal biomaterial for wound dressing applications is discussed. Bioactive, antioxidant Fucoidan and Chitosan biomaterials were doped into polyvinyl alcohol/β-tricalcium phosphate based polymeric hydrogels loaded with Resveratrol, which has theranostic properties, and biomembrane design with suitable cell regeneration properties was aimed. In accordance with this purpose, tissue profile analysis (TPA) was performed for the bioadhesion properties of composite polymeric biomembranes. Fourier Transform Infrared Spectrometry (FT-IR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM-EDS) analyses were performed for morphological and structural analyses of biomembrane structures. In vitro Franz diffusion mathematical modelling of composite membrane structures, biocompatibility (MTT test) and in vivo rat tests were performed. TPA analysis of resveratrol loaded biomembrane scaffold design; compressibility; 13.4 ± 1.9(g.s), hardness; 16.8 ± 1(g), adhesiveness; -11 ± 2.0(g.s), elasticity; 0.61 ± 0.07, cohesiveness; 0.84 ± 0.04 were found. Proliferation of the membrane scaffold was 189.83 % at 24 h and 209.12 % at 72 h. In the in vivo rat test; at the end of 28th day, it was found that biomembrane_3 provided 98.75 ± 0.12 % wound shrinkage. The shelf-life of RES in the transdermal membrane scaffold, which was determined as Zero order according to Fick's law in in vitro Franz diffusion mathematical modelling, was found to be approximately 35 days by Minitab statistical analysis. The importance of this study is that the innovative and novel transdermal biomaterial supports tissue cell regeneration and cell proliferation in theranostic applications as a wound dressing.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey; Department of Technology Transfer Office, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey.
| |
Collapse
|
20
|
da Silva Santos J, da Costa Alves F, José Dos Santos Júnior E, Soares Sobrinho JL, de La Roca Soares MF. Evolution of pediatric pharmaceutical forms for treatment of Hansen's disease (leprosy). Expert Opin Ther Pat 2023; 33:1-15. [PMID: 36755421 DOI: 10.1080/13543776.2023.2178301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Leprosy is a neglected, infectious, granulomatous and chronic disease caused by the pathological agent Mycobacterium leprae. The course of the disease is more aggressive in patients under 15 years of age, but the current treatment offered worldwide consists of solid forms, by the combination of antibiotics such as rifampicin, clofazimine and dapsone. This represents results in lack of adherence in pediatric patients and drug therapy failure, although numerous formulations and technologies have already been developed. AREA COVERED This study aims to analyze the technological evolution of the pharmaceutical treatment of leprosy, aimed at children. A review of patents around the world was conducted to look for technical and clinical aspects of formulations and devices. EXPERT OPINION Innovative formulations for pediatric patients were classified according to the routes of administration as oral, inhalable, injectable and transdermal. The formulations were organized as alternatives for pediatric therapy, taking into account the physicochemical aspects of drugs and the physiological aspects of pediatric patients. Among the difficulties for the patented formulations to reach the market, of special note is the low stability of the physicochemical characteristics of the drugs. Optimization of formulations would favor the pediatric treatment of leprosy, aiming at therapeutic success.
Collapse
Affiliation(s)
- Jocimar da Silva Santos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Franciely da Costa Alves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Efraim José Dos Santos Júnior
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Mônica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| |
Collapse
|
21
|
Shukla S, Huston RH, Cox BD, Satoskar AR, Narayan RJ. Transdermal delivery via medical device technologies. Expert Opin Drug Deliv 2022; 19:1505-1519. [PMID: 36222232 DOI: 10.1080/17425247.2022.2135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite their effectiveness and indispensability, many drugs are poorly solvated in aqueous solutions. Over recent decades, the need for targeted drug delivery has led to the development of pharmaceutical formulations with enhanced lipid solubility to improve their delivery properties. Therefore, a dependable approach for administering lipid-soluble drugs needs to be developed. AREAS COVERED The advent of 3D printing or additive manufacturing (AM) has revolutionized the development of medical devices, which can effectively enable the delivery of lipophilic drugs to the targeted tissues. This review focuses on the use of microneedles and iontophoresis for transdermal drug delivery. Microneedle arrays, inkjet printing, and fused deposition modeling have emerged as valuable approaches for delivering several classes of drugs. In addition, iontophoresis has been successfully employed for the effective delivery of macromolecular drugs. EXPERT OPINION Microneedle arrays, inkjet printing, and fused deposition are potentially useful for many drug delivery applications; however, the clinical and commercial adoption rates of these technologies are relatively low. Additional efforts is needed to enable the pharmaceutical community to fully realize the benefits of these technologies.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ryan H Huston
- Department of Microbiology, The Ohio State University, 484 W. 12 Ave, Columbus, OH 43210, USA
| | - Blake D Cox
- Division of Anatomy, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| |
Collapse
|
22
|
Zheng H, GhavamiNejad A, GhavamiNejad P, Samarikhalaj M, Giacca A, Poudineh M. Hydrogel Microneedle-Assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification. ACS Sens 2022; 7:2387-2399. [PMID: 35866892 DOI: 10.1021/acssensors.2c01033] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analyzing interstitial fluid (ISF) via microneedle (MN) devices enables patient health monitoring in a minimally invasive manner and in point-of-care settings. However, most MN-based diagnostic approaches require complicated fabrication processes and postprocessing of the extracted ISF or are limited to detection of electrochemically active biomarkers. Here, we show on-needle measurement of target analytes by integrating hydrogel microneedles with aptamer probes as the recognition elements. Fluorescently tagged aptamer probes are chemically attached to the hydrogel matrix using a simple and novel approach, while a cross-linked patch is formed. For reagentless detection, we employ a strand displacement strategy where fluorophore-conjugated aptamers are hybridized with a DNA competitor strand conjugated to a quencher molecule. The assay is utilized for rapid (2 min) measurement of glucose, adenosine triphosphate, l-tyrosinamide, and thrombin ex vivo. Furthermore, the system enables specific and sensitive quantification of rising and falling concentrations of glucose in an animal model of diabetes to track hypoglycemia, euglycemia, and hyperglycemia conditions. Our assay can be applied for rapid measurement of a diverse range of biomarkers, proteins, or small molecules, introducing a generalizable platform for biomolecule quantification, and has the potential to improve the quality of life of patients who are in need of close monitoring of biomarkers of health and disease.
Collapse
Affiliation(s)
- Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Amin GhavamiNejad
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Melisa Samarikhalaj
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Adria Giacca
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Joshi P, Riley PR, Mishra R, Azizi Machekposhti S, Narayan R. Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid. BIOSENSORS 2022; 12:bios12040198. [PMID: 35448258 PMCID: PMC9031381 DOI: 10.3390/bios12040198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 05/08/2023]
Abstract
Opioid drugs are extremely potent synthetic analytes, and their abuse is common around the world. Hence, a rapid and point-of-need device is necessary to assess the presence of this compound in body fluid so that a timely countermeasure can be provided to the exposed individuals. Herein, we present an attractive microneedle sensing platform for the detection of the opioid drug fentanyl in real serum samples using an electrochemical detection method. The device contained an array of pyramidal microneedle structures that were integrated with platinum (Pt) and silver (Ag) wires, each with a microcavity opening. The working sensor was modified by graphene ink and subsequently with 4 (3-Butyl-1-imidazolio)-1-butanesulfonate) ionic liquid. The microneedle sensor showed direct oxidation of fentanyl in liquid samples with a detection limit of 27.8 μM by employing a highly sensitive square-wave voltammetry technique. The resulting microneedle-based sensing platform displayed an interference-free fentanyl detection in diluted serum without conceding its sensitivity, stability, and response time. The obtained results revealed that the microneedle sensor holds considerable promise for point-of-need fentanyl detection and opens additional opportunities for detecting substances of abuse in emergencies.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
| | - Parand R. Riley
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
| | - Rupesh Mishra
- Identify Sensors Biologics, 1203 W. State St., West Lafayette, IN 47907, USA;
| | - Sina Azizi Machekposhti
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
| | - Roger Narayan
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
- Correspondence: ; Tel.: +1-919-696-8488
| |
Collapse
|
24
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Ma R, An X, Shao R, Zhang Q, Sun S. Recent advancement in noninvasive glucose monitoring and closed-loop management system for diabetes. J Mater Chem B 2022; 10:5537-5555. [DOI: 10.1039/d2tb00749e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes can cause many complications, which has become one of the most common diseases that may lead to death. Currently, the number of diabetics continues increasing year by year. Thus,...
Collapse
|
26
|
Dong Z, Chang L. Recent electroporation-based systems for intracellular molecule delivery. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0005649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zaizai Dong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lingqian Chang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
27
|
Yamada M, Dang N, Lin LL, Flewell-Smith R, Espartero LJL, Bramono D, Grégoire S, Belt PJ, Prow TW. Elongated microparticles tuned for targeting hyaluronic acid delivery to specific skin strata. Int J Cosmet Sci 2021; 43:738-747. [PMID: 34757625 DOI: 10.1111/ics.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Microneedle or fractional laser applications are the most common topical delivery enhancement platforms. However, these methods of drug delivery are not skin strata specific. Drug delivery approaches which could target specific stratum of the skin remains a challenge. Elongated microparticles (EMPs) have been used in enhancing drug delivery into the skin. The aim of this study was to evaluate, for the first time, elongated silica microparticles with two different length profiles to enhance delivery of hyaluronic acid into different strata of human skin. METHODS Two types of EMPs - long (milled EMPs) or short (etched EMPs) length ranges were characterized. A prototypical liquid formulation (Fluorescent hyaluronic acid) with and without EMP enhancement were evaluated for hyaluronic acid delivery in ex-vivo human skin. High Performance Liquid Chromatography (HPLC), Typhoon fluorescence scanning system, Laser Scanning Confocal Microscopy (LSCM) and Reflectance Confocal Microscopy (RCM) were used to validate F-HA stability, visualize fluorescein in the skin, image the depth of F-HA delivery in the skin and define EMP penetration in skin strata, respectively. Statistical analysis was conducted using GraphPad Prism 6 software (GraphPad Software Inc, USA). RESULTS Fluorescein-hyaluronic acid was stable and EMP enhanced skin penetration. Reflectance confocal microscopy revealed that "etched EMP" penetrated the skin to the stratum spinosum level. The vast majority (97.8%; p < 0.001) of the etched EMP did not penetrate completely through the viable epidermis and no obvious penetration into the dermis. In contrast, milled EMP showed 41-fold increase in penetration compared to the etched EMP but penetrated beyond the dermoepidermal junction. CONCLUSION EMPs can enhance delivery of hyaluronic acid. Using EMPs with defined length distributions, which can be tuned for a specific stratum of the skin, can achieve targeted hyaluronic acid delivery.
Collapse
Affiliation(s)
- Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Nhung Dang
- Dermatology Research Centre, The University of Queensland, School of Medicine, Brisbane, Australia
| | - Lynlee L Lin
- Dermatology Research Centre, The University of Queensland, School of Medicine, Brisbane, Australia
| | - Ross Flewell-Smith
- Future Industries Institute, University of South Australia, Adelaide, Australia.,Dermatology Research Centre, The University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Diah Bramono
- Open Innovation, L'Oréal Research & Innovation, Singapore
| | - Sébastien Grégoire
- Advanced Research, L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Paul J Belt
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Tarl W Prow
- Future Industries Institute, University of South Australia, Adelaide, Australia.,Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
28
|
van den Brink W, Bloem R, Ananth A, Kanagasabapathi T, Amelink A, Bouwman J, Gelinck G, van Veen S, Boorsma A, Wopereis S. Digital Resilience Biomarkers for Personalized Health Maintenance and Disease Prevention. Front Digit Health 2021; 2:614670. [PMID: 34713076 PMCID: PMC8521930 DOI: 10.3389/fdgth.2020.614670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Health maintenance and disease prevention strategies become increasingly prioritized with increasing health and economic burden of chronic, lifestyle-related diseases. A key element in these strategies is the empowerment of individuals to control their health. Self-measurement plays an essential role in achieving such empowerment. Digital measurements have the advantage of being measured non-invasively, passively, continuously, and in a real-world context. An important question is whether such measurement can sensitively measure subtle disbalances in the progression toward disease, as well as the subtle effects of, for example, nutritional improvement. The concept of resilience biomarkers, defined as the dynamic evaluation of the biological response to an external challenge, has been identified as a viable strategy to measure these subtle effects. In this review, we explore the potential of integrating this concept with digital physiological measurements to come to digital resilience biomarkers. Additionally, we discuss the potential of wearable, non-invasive, and continuous measurement of molecular biomarkers. These types of innovative measurements may, in the future, also serve as a digital resilience biomarker to provide even more insight into the personal biological dynamics of an individual. Altogether, digital resilience biomarkers are envisioned to allow for the measurement of subtle effects of health maintenance and disease prevention strategies in a real-world context and thereby give personalized feedback to improve health.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robbert Bloem
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Adithya Ananth
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Thiru Kanagasabapathi
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Arjen Amelink
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Gerwin Gelinck
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Sjaak van Veen
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Andre Boorsma
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
29
|
Xiao X, Xiao X, Nashalian A, Libanori A, Fang Y, Li X, Chen J. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv Healthc Mater 2021; 10:e2100975. [PMID: 34263555 DOI: 10.1002/adhm.202100975] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Wound healing, one of the most complex processes in the human body, involves the spatial and temporal synchronization of a variety of cell types with distinct roles. Slow or nonhealing skin wounds have potentially life-threatening consequences, ranging from infection to scar, clot, and hemorrhage. Recently, the advent of triboelectric nanogenerators (TENGs) has brought about a plethora of self-powered wound healing opportunities, owing to their pertinent features, including wide range choices of constitutive biocompatible materials, simple fabrication, portable size, high output power, and low cost. Herein, a comprehensive review of TENGs as an emerging biotechnology for wound healing applications is presented and covered from three unique aspects: electrical stimulation, antibacterial activity, and drug delivery. To provide a broader context of TENGs applicable to wound healing applications, state-of-the-art designs are presented and discussed in each section. Although some challenges remain, TENGs are proving to be a promising platform for human-centric therapeutics in the era of Internet of Things. Consequently, TENGs for wound healing are expected to provide a new solution in wound management and play an essential role in the future of point-of-care interventions.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Xiao Xiao
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Ardo Nashalian
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Alberto Libanori
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Yunsheng Fang
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Xiyao Li
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Jun Chen
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| |
Collapse
|
30
|
Iitani K, Ramamurthy SS, Ge X, Rao G. Transdermal sensing: in-situ non-invasive techniques for monitoring of human biochemical status. Curr Opin Biotechnol 2021; 71:198-205. [PMID: 34455345 DOI: 10.1016/j.copbio.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Improving life expectancy necessitates prevention and early diagnosis of any disease state based on active self-monitoring of symptoms and longitudinal biochemical profiling. Non-invasive and continuous measurement of molecular biomarkers that reflect metabolism and health must however be established to realize this plan. Human samples non-invasively obtained via the skin are suitable in this context for in-situ biochemical monitoring. We present a brief classification of transdermal sampling in aqueous and gaseous phases and then introduce a new generation of transdermal monitoring devices for rapid and accurate assessment of important parameters. Finally, we have summarized the diversity of body-wide skin characteristics that have possible effects for transdermal sampling. Because of its passive nature, in-situ biochemical monitoring via transdermal sampling will potentially lead to a greater understanding of important biochemical markers and their temporal variation.
Collapse
Affiliation(s)
- Kenta Iitani
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Sai Sathish Ramamurthy
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA.
| |
Collapse
|
31
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
32
|
Semi-interpenetrating chitosan/ionic liquid polymer networks as electro-responsive biomaterials for potential wound dressings and iontophoretic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111798. [PMID: 33579445 DOI: 10.1016/j.msec.2020.111798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
In this work, electro-responsive chitosan/ionic liquid-based hydrogels were synthetized for the first time, envisaging the development of iontophoretic biomaterials for the controlled release/permeation of charged biomolecules. The main goal was to enhance and tune the physicochemical, mechanical, electro-responsive, and haemostatic properties of chitosan-based biomaterials to obtain multi-stimuli responsive (responsive to electrical current, ionic strength, and pH) and mechanically stable hydrogels. To accomplish this objective, polycationic semi-interpenetrating copolymer networks (semi-IPN) were prepared by combining chitosan (CS) and ionic liquid-based polymers and copolymers, namely poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl)) and poly(2-hydroxymethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). Results show that prepared semi-IPNs presented high mechanical stability and were positively charged over a broad pH range, including basic pH. Semi-IPNs also presented faster permeation and release rates of lidocaine hydrochloride (LH), under external electrical stimulus (0.56 mA/cm2) in aqueous media at 32 °C. The kinetic release constants and the LH diffusion coefficients measured under electrical stimulus were ~1.5 and > 2.7 times higher for those measured for passive release. Finally, both semi-IPNs were non-haemolytic (haemolytic index ≤0.2%) and showed strong haemostatic activity (blood clotting index of ~12 ± 1%). Altogether, these results show that the prepared polycationic semi-IPN hydrogels presented advantageous mechanical, responsive and biological properties that enable them to be potentially employed for the design of new, safer, and advanced stimuli-responsive biomaterials for several biomedical applications such as haemostatic and wound healing dressings and iontophoretic patches.
Collapse
|
33
|
Anurova MN, Demina NB, Bakhrushina EO. Permeability Enhancers in Transdermal Delivery System Technology (Review). Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Tabish TA, Abbas A, Narayan RJ. Graphene nanocomposites for transdermal biosensing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1699. [PMID: 33480118 DOI: 10.1002/wnan.1699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Transdermal biosensors for the real-time and continuous detection and monitoring of target molecules represent an intriguing pathway for enhancing health outcomes in a cost-effective and non-invasive fashion. Many transdermal biosensor devices contain microneedles and other miniaturized components. There remains an unmet clinical need for microneedle transdermal biosensors to obtain a more accurate, rapid, and reliable insight into the real-time monitoring of disease. The ability to monitor biomarkers at an intradermal molecular level in a non-invasive manner remains the next technological gap to solve real-world clinical problems. The emergence of the two-dimensional material graphene with unique material properties and the ability to quantify analytes and physiological status can enable the detection of critical biomarkers indicative of human disease. The development of a user-friendly, affordable, and non-invasive transdermal biosensing device for continuous and personalized monitoring of target molecules could be beneficial for many patients. This focus article considers the use of graphene-based transdermal biosensors for health monitoring, evaluation of these sensors for glucose and hydrogen peroxide detection via in vitro, in vivo, and ex vivo studies, recent technological innovations, and potential challenges. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
| | - Aumber Abbas
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
35
|
Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6925. [PMID: 33291519 PMCID: PMC7731259 DOI: 10.3390/s20236925] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market.
Collapse
Affiliation(s)
- Liu Tang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
36
|
Jankovskaja S, Labrousse A, Prévaud L, Holmqvist B, Brinte A, Engblom J, Rezeli M, Marko-Varga G, Ruzgas T. Visualisation of H 2O 2 penetration through skin indicates importance to develop pathway-specific epidermal sensing. Mikrochim Acta 2020; 187:656. [PMID: 33188446 PMCID: PMC7666278 DOI: 10.1007/s00604-020-04633-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
Elevated amounts of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) are observed in the epidermis in different skin disorders. Thus, epidermal sensing of H2O2 should be useful to monitor the progression of skin pathologies. We have evaluated epidermal sensing of H2O2 in vitro, by visualising H2O2 permeation through the skin. Skin membranes were mounted in Franz cells, and a suspension of Prussian white microparticles was deposited on the stratum corneum face of the skin. Upon H2O2 permeation, Prussian white was oxidised to Prussian blue, resulting in a pattern of blue dots. Comparison of skin surface images with the dot patterns revealed that about 74% of the blue dots were associated with hair shafts. The degree of the Prussian white to Prussian blue conversion strongly correlated with the reciprocal resistance of the skin membranes. Together, the results demonstrate that hair follicles are the major pathways of H2O2 transdermal penetration. The study recommends that the development of H2O2 monitoring on skin should aim for pathway-specific epidermal sensing, allowing micrometre resolution to detect and quantify this ROS biomarker at hair follicles.Graphical abstract.
Collapse
Affiliation(s)
- Skaidre Jankovskaja
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Anaïs Labrousse
- Department of Biological Engineering, Clermont Auvergne University, 63100, Aubiere, France
| | - Léa Prévaud
- Faculty of Sciences, University of Montpellier, 34085, Montpellier, France
| | - Bo Holmqvist
- ImaGene-iT, Medicon Village, 223 81, Lund, Sweden
| | | | - Johan Engblom
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden.
| |
Collapse
|
37
|
Pandey PC, Pandey G, Narayan RJ. Minimally Invasive Platforms in Biosensing. Front Bioeng Biotechnol 2020; 8:894. [PMID: 32984266 PMCID: PMC7487318 DOI: 10.3389/fbioe.2020.00894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
The interaction of sensing components with body fluids is a basic requirement for clinical diagnostics; a variety of novel platforms have recently been developed for invasive and non-invasive sensing. In this manuscript, recent advancements related to minimally invasive platform for biosensing are reviewed. Many approaches have been utilized for generating minimally invasive platforms that require a small volume of body fluid; for example, the use of small-scale needles known as microneedles for minimally invasive detection has been demonstrated. The use of capillary action in microneedle-assisted biosensing may facilitate the detection of analytes in body fluids. This review considers recent innovations in the structure and performance of minimally invasive sensos.
Collapse
Affiliation(s)
- Prem C Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | - Govind Pandey
- Department of Pediatrics, King George Medical University, Lucknow, India
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
38
|
Li D, Hu D, Xu H, Patra HK, Liu X, Zhou Z, Tang J, Slater N, Shen Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials 2020; 264:120410. [PMID: 32979655 DOI: 10.1016/j.biomaterials.2020.120410] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Transdermal drug delivery exhibited encouraging prospects, especially through superficial drug administration routes. However, only a few limited lipophilic drug molecules could cross the skin barrier, those are with low molecular weight and rational Log P value. Microneedles (MNs) can overcome these limitations to deliver numerous drugs into the dermal layer by piercing the outermost skin layer of the body. In the case of superficial cancer treatments, topical drug administration faces severely low transfer efficiency, and systemic treatments are always associated with side effects and premature drug degradation. MN-based systems have achieved excellent technical capabilities and been tested for pre-clinical chemotherapy, photothermal therapy, photodynamic therapy, and immunotherapy. In this review, we will focus on the features, progress, and opportunities of MNs in the anticancer drug delivery system. Then, we will discuss the strategies and advantages in these works and summarize challenges, perspectives, and translational potential for future applications.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hirak K Patra
- Wolfson College, University of Cambridge, Cambridge, CB3 9BB, United Kingdom; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Nigel Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
39
|
Vesicular Emulgel Based System for Transdermal Delivery of Insulin: Factorial Design and in Vivo Evaluation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transdermal delivery of insulin is a great challenge due to its poor permeability through the skin. The aim of the current investigation was to evaluate the prospective of insulin loaded niosome emulgel as a noninvasive delivery system for its transdermal therapy. A 23 full-factorial design was used to optimize the insulin niosome emulgel by assessing the effect of independent variables (concentration of paraffin oil, Tween 80 and sodium carboxymethyl cellulose) on dependent variables (in vitro release, viscosity and in vitro permeation). The physical characteristics of the prepared formulations were carried out by determining viscosity, particle size, entrapment efficiency, drug loading, drug release and kinetics. In vitro permeation studies were carried out using rat skin membrane. Hypoglycemic activity of prepared formulations was assessed in diabetic-induced rats. It was observed that the independent variables influenced the dependent variables. A significant difference (p < 0.05) in viscosity was noticed between the prepared gels, which in turn influenced the insulin release. The order of permeation is: insulin niosome emulgel > insulin niosome gel > insulin emulgel > insulin gel > insulin niosomes > insulin solution. The enhancement in transdermal flux in insulin niosome emulgel was 10-fold higher than the control (insulin solution). In vivo data significantly demonstrated reduction (p < 0.05) of plasma glucose level (at six hours) by insulin niosome emulgel than other formulations tested. The results suggest that the developed insulin niosome emulgel could be an efficient carrier for the transdermal delivery of insulin.
Collapse
|
40
|
Bakshi P, Vora D, Hemmady K, Banga AK. Iontophoretic skin delivery systems: Success and failures. Int J Pharm 2020; 586:119584. [PMID: 32603836 DOI: 10.1016/j.ijpharm.2020.119584] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Iontophoretic transdermal delivery uses a small electric current to push charged molecules into the skin under an electrode of same polarity and offers an attractive option to facilitate the delivery of macromolecules or hydrophilic molecules and to improve patient compliance. This technique has been used in physical therapy clinics for several decades, though the science was not always there to support claims of clinical effectiveness. Recently, this modality of treatment has undergone more systematic and rigorous investigations to withstand the scrutiny of regulatory authorities. In recent years various drugs have gained FDA approval for iontophoretic patches. This technique is gaining recognition due to better compliance rates, non-invasive drug delivery leading to fewer side effects, and sustained release of the drug. Furthermore, programmed delivery and bolus delivery systems have helped with customizing the drug dosage and frequency of dosage based on the patient's need.
Collapse
Affiliation(s)
- P Bakshi
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - D Vora
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - K Hemmady
- Dermatologist, Frimley Park Hospital NHS Foundation Trust, Frimley, Surrey, United Kingdom
| | - A K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|
41
|
Hasan M, Khatun A, Fukuta T, Kogure K. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev 2020; 154-155:227-235. [PMID: 32589904 DOI: 10.1016/j.addr.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Noninvasive transdermal drug delivery (NTDD) offers an exciting new method of administration relative to conventional routes, but is associated with some challenges. Liposomes are capable of encapsulating transdermally-unfavorable drugs. However, the horny layer of skin is a significant barrier that limits efficient transdermal delivery of liposomes. Iontophoresis using weak electric current (WEC) represents a NTDD technology. WEC treatment of liposomes applied to the skin surface improves transdermal penetration of encapsulated drugs by cooperative effects. In this review, we provide an overview of the application of WEC/liposomes for transdermal delivery of macromolecules and low molecular weight drugs. We compare the transdermal delivery and therapeutic efficiency of the combined system with conventional routes of administration and their individual use. We discuss a novel perspective on the mechanism of WEC-mediated transdermal delivery of liposomes, which suggests that WEC activates the intracellular signaling pathway for transdermal permeation and induces unique endocytosis in skin cells.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan; Tokyo Biochemical Research Foundation (TBRF) Fellow, Tokushima, Japan
| | - Anowara Khatun
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan.
| |
Collapse
|
42
|
Goldfine C, Lai JT, Lucey E, Newcomb M, Carreiro S. Wearable and Wireless mHealth Technologies for Substance Use Disorder. CURRENT ADDICTION REPORTS 2020; 7:291-300. [PMID: 33738178 DOI: 10.1007/s40429-020-00318-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Purpose of review The goal of this scoping review is to evaluate the advances in wearable and other wireless mobile health (mHealth) technologies in the treatment of substance use disorders. Recent findings There are a variety of wireless technologies under investigation for the treatment of substance use disorder. Wearable sensors are the most commonly used technology. They can be used to decrease heavy substance use, mitigate factors related to relapse, and monitor for overdose. New technologies pose distinct advantages over traditional therapies by increasing geographic availability and continuously providing feedback and monitoring while remaining relatively non-invasive. Summary Wearable and novel technologies are important to the evolving landscape of substance use treatment. As technologies continue to develop and show efficacy, they should be incorporated into multifactorial treatment plans.
Collapse
Affiliation(s)
- Charlotte Goldfine
- University of Massachusetts Medical School, Department of Emergency Medicine, Division of Medical Toxicology, Worcester, MA
| | - Jeffrey T Lai
- University of Massachusetts Medical School, Department of Emergency Medicine, Division of Medical Toxicology, Worcester, MA
| | - Evan Lucey
- University of Massachusetts Medical School, Department of Emergency Medicine, Division of Medical Toxicology, Worcester, MA
| | - Mark Newcomb
- University of Massachusetts Medical School, Department of Emergency Medicine, Division of Medical Toxicology, Worcester, MA
| | - Stephanie Carreiro
- University of Massachusetts Medical School, Department of Emergency Medicine, Division of Medical Toxicology, Worcester, MA
| |
Collapse
|
43
|
Taylor RM, Maharjan D, Moreu F, Baca JT. Parametric study of 3D printed microneedle (MN) holders for interstitial fluid (ISF) extraction. MICROSYSTEM TECHNOLOGIES : SENSORS, ACTUATORS, SYSTEMS INTEGRATION 2020; 26:2067-2073. [PMID: 32476729 PMCID: PMC7238769 DOI: 10.1007/s00542-020-04758-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 05/07/2023]
Abstract
The need for novel, minimally invasive diagnostic, prognostic, and therapeutic biomedical devices has garnered increased interest in recent years. Microneedle (MN) technology has stood out as a promising new method for drug delivery, as well as extraction of interstitial fluid (ISF). ISF comprises a large portion of the extracellular fluid in living organisms yet remains inadequately characterized for clinical applications. Current MN research has focused on the fabrication of needles with different materials like silicone, carbon, and metals. However, little effort has been put forth into improving MN holders and patches that can be used with low cost MNs, which could effectively change how MNs are attached to the human body. Here, we describe different 3D-printed MN holders, printed using an MJP Pro 2500 3D printer, and compare the ISF extraction efficiencies in CD Hairless rats. We varied design parameters that may affect the skin-holder interface, such as throat thickness, tip curvature, and throat diameter. MN arrays, with insertion depths of 1500 μm, had extraction efficiencies of 0.44 ± 0.35, 0.85 ± 0.64, 0.32 ± 0.21, or 0.44 ± 0.46 µl/min when designed with flat, concave, convex, or bevel profile geometries, respectively. Our results suggest ISF extraction is influenced by MN holder design parameters and that a concave tip design is optimal for extracting ISF from animals. The future direction of this research aims to enable a paradigm in MN design that maximizes its efficiency and engineering performance in terms of volume, pressure, and wearability, thereby automatizing usage and reducing patient intervention to ultimately benefit remote telemedicine.
Collapse
Affiliation(s)
- Robert M. Taylor
- Department of Emergency Medicine, The University of New Mexico, MSC11 6025, Albuquerque, NM 87131 USA
| | - Dilendra Maharjan
- Department of Civil, Construction and Environmental Engineering, Courtesy Appointment, The University of New Mexico, Centennial Engineering Center 3056, MSC01 1070, Albuquerque, NM 87131 USA
| | - Fernando Moreu
- Department of Civil, Construction and Environmental Engineering, Courtesy Appointment, The University of New Mexico, Centennial Engineering Center 3056, MSC01 1070, Albuquerque, NM 87131 USA
- Department of Electrical and Computer Engineering, Courtesy Appointment, The University of New Mexico, Centennial Engineering Center 3056, MSC01 1070, Albuquerque, NM 87131 USA
- Department of Mechanical Engineering, The University of New Mexico, Centennial Engineering Center 3056, MSC01 1070, Albuquerque, NM 87131 USA
| | - Justin T. Baca
- Department of Emergency Medicine, The University of New Mexico, MSC11 6025, Albuquerque, NM 87131 USA
| |
Collapse
|
44
|
Yamada M, Prow TW. Physical drug delivery enhancement for aged skin, UV damaged skin and skin cancer: Translation and commercialization. Adv Drug Deliv Rev 2020; 153:2-17. [PMID: 32339593 DOI: 10.1016/j.addr.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 01/31/2023]
Abstract
This review analyses physical drug delivery enhancement technologies with a focus on improving UV damaged skin, actinic keratoses and non-melanoma skin cancer treatment. In recent years, physical drug delivery enhancement has been shown to enhance cosmeceutical and skin cancer treatment efficacy, but there are pros and cons to each approach which we discuss in detail. Mechanisms of action, clinical efficacy, experimental design, outcomes in academic publications, clinical trial reports and patents are explored to evaluate each technology with a critical, translation focused lens. We conclude that the commercial success of cosmeceutical applications, e.g. microneedles, will drive further innovation in this arena that will impact how actinic keratoses and non-melanoma skin cancers are clinically managed.
Collapse
|
45
|
Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 2020; 145:2070-2105. [DOI: 10.1039/c9an01811e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive review article discusses current and future perspectives of Raman spectroscopy-based analyses of cell therapy processes and products.
Collapse
Affiliation(s)
- Shreyas Rangan
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - H. Georg Schulze
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Martha Z. Vardaki
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Michael W. Blades
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - James M. Piret
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - Robin F. B. Turner
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
46
|
Anderson A, Hegarty C, Casimero C, Davis J. Electrochemically Controlled Dissolution of Nanocarbon-Cellulose Acetate Phthalate Microneedle Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35540-35547. [PMID: 31490645 PMCID: PMC7006997 DOI: 10.1021/acsami.9b09674] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 05/27/2023]
Abstract
Transdermal microneedles have captured the attention of researchers in relation to a variety of applications, and silicone-based molds required to produce these systems are now widely available and can be readily manufactured on the lab bench. The production of nanocomposite microneedle arrays through micromolding techniques is described. The formulation of nanoparticulate carbon along with pH sensitive cellulose acetate phthalate as a polymeric binder is shown to produce conductive microneedles whose swelling/dissolution properties can be controlled electrochemically. Through exploiting hydrogen evolution at the microneedle array, changes in local pH can induce swelling within the needle structure and could lay the foundations for a new approach to the smart device controlled delivery of therapeutic agents. The surface modification of the carbon needles with palladium and cysteine is critically assessed from sensing and drug delivery perspectives.
Collapse
|
47
|
Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Nazia Tabassum
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- The University of Central Punjab Johar Town Lahore 54000 Pakistan
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
| |
Collapse
|
48
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
49
|
Lansdorp B, Ramsay W, Hamidand R, Strenk E. Wearable Enzymatic Alcohol Biosensor. SENSORS 2019; 19:s19102380. [PMID: 31137611 PMCID: PMC6566815 DOI: 10.3390/s19102380] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022]
Abstract
Transdermal alcohol biosensors have the ability to detect the alcohol that emanates from the bloodstream and diffuses through the skin. However, previous biosensors have suffered from long-term fouling of the sensor element and drift in the resulting sensor readings over time. Here, we report a wearable alcohol sensor platform that solves the problem of sensor fouling by enabling drift-free signals in vivo for up to 24 h and an interchangeable cartridge connection that enables consecutive days of measurement. We demonstrate how alcohol oxidase enzyme and Prussian Blue can be combined to prevent baseline drift above 25 nA, enabling sensitive detection of transdermal alcohol. Laboratory characterization of the enzymatic alcohol sensor demonstrates that the sensor is mass-transfer-limited by a diffusion-limiting membrane of lower permeability than human skin and a linear sensor range between 0 mM and 50 mM. Further, we show continuous transdermal alcohol data recorded with a human subject for two consecutive days. The non-invasive sensor presented here is an objective alternative to the self-reports used commonly to quantify alcohol consumption in research studies.
Collapse
Affiliation(s)
- Bob Lansdorp
- Milo Sensors, Inc., California NanoSystems Institute (CNSI) Incubator, University of California Santa Barbara, Santa Barbara, CA 93106-6105, USA.
| | - William Ramsay
- Milo Sensors, Inc., California NanoSystems Institute (CNSI) Incubator, University of California Santa Barbara, Santa Barbara, CA 93106-6105, USA.
| | - Rashad Hamidand
- Milo Sensors, Inc., California NanoSystems Institute (CNSI) Incubator, University of California Santa Barbara, Santa Barbara, CA 93106-6105, USA.
| | - Evan Strenk
- Milo Sensors, Inc., California NanoSystems Institute (CNSI) Incubator, University of California Santa Barbara, Santa Barbara, CA 93106-6105, USA.
| |
Collapse
|