1
|
Sakai M, Tamaki S, Murata I, Parajuli RK, Matsumura A, Kubo N, Tashiro M. Experimental study on Compton camera for boron neutron capture therapy applications. Sci Rep 2023; 13:22883. [PMID: 38129553 PMCID: PMC10739814 DOI: 10.1038/s41598-023-49955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-dose-intensive radiation therapy that has gained popularity due to advancements in accelerator neutron sources. To determine the dose for BNCT, it is necessary to know the difficult-to-determine boron concentration and neutron fluence. To estimate this dose, we propose a method of measuring the prompt γ-rays (PGs) from the boron neutron capture reaction (BNCR) using a Compton camera. We performed a fundamental experiment to verify basic imaging performance and the ability to discern the PGs from 511 keV annihilation γ-rays. A Si/CdTe Compton camera was used to image the BNCR and showed an energy peak of 478 keV PGs, separate from the annihilation γ-ray peak. The Compton camera could visualize the boron target with low neutron intensity and high boron concentration. This study experimentally confirms the ability of Si/CdTe Compton cameras to image BNCRs.
Collapse
Affiliation(s)
- M Sakai
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - S Tamaki
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - I Murata
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - R K Parajuli
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Sydney Imaging Core Research Facility, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - A Matsumura
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - N Kubo
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - M Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
2
|
Llosá G, Rafecas M. Hybrid PET/Compton-camera imaging: an imager for the next generation. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:214. [PMID: 36911362 PMCID: PMC9990967 DOI: 10.1140/epjp/s13360-023-03805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Compton cameras can offer advantages over gamma cameras for some applications, since they are well suited for multitracer imaging and for imaging high-energy radiotracers, such as those employed in radionuclide therapy. While in conventional clinical settings state-of-the-art Compton cameras cannot compete with well-established methods such as PET and SPECT, there are specific scenarios in which they can constitute an advantageous alternative. The combination of PET and Compton imaging can benefit from the improved resolution and sensitivity of current PET technology and, at the same time, overcome PET limitations in the use of multiple radiotracers. Such a system can provide simultaneous assessment of different radiotracers under identical conditions and reduce errors associated with physical factors that can change between acquisitions. Advances are being made both in instrumentation developments combining PET and Compton cameras for multimodal or three-gamma imaging systems, and in image reconstruction, addressing the challenges imposed by the combination of the two modalities or the new techniques. This review article summarizes the advances made in Compton cameras for medical imaging and their combination with PET.
Collapse
Affiliation(s)
- Gabriela Llosá
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Catedrático Beltrán, 2., 46980 Paterna, Valencia, Spain
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
3
|
Parajuli RK, Sakai M, Parajuli R, Tashiro M. Development and Applications of Compton Camera-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7374. [PMID: 36236474 PMCID: PMC9573429 DOI: 10.3390/s22197374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The history of Compton cameras began with the detection of radiation sources originally for applications in astronomy. A Compton camera is a promising γ-ray detector that operates in the wide energy range of a few tens of keV to MeV. The γ-ray detection method of a Compton camera is based on Compton scattering kinematics, which is used to determine the direction and energy of the γ-rays without using a mechanical collimator. Although the Compton camera was originally designed for astrophysical applications, it was later applied in medical imaging as well. Moreover, its application in environmental radiation measurements is also under study. Although a few review papers regarding Compton cameras have been published, they either focus very specifically on the detectors used in such cameras or the particular applications of Compton cameras. Thus, the aim of this paper is to review the features and types of Compton cameras and introduce their applications, associated imaging algorithms, improvement scopes, and their future aspects.
Collapse
Affiliation(s)
- Raj Kumar Parajuli
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | | | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
4
|
Compton imaging for medical applications. Radiol Phys Technol 2022; 15:187-205. [PMID: 35867197 DOI: 10.1007/s12194-022-00666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Compton imaging exploits inelastic scattering, known as Compton scattering, using a Compton camera consisting of a scatterer detector in the front layer and an absorber detector in the back layer. This method was developed for astronomy, and in recent years, research and development for environmental and medical applications has been actively conducted. Compton imaging can discriminate gamma rays over a wide energy range from several hundred keV to several MeV. Therefore, it is expected to be applied to the simultaneous imaging of multiple nuclides in nuclear medicine and prompt gamma ray imaging for range verification in particle therapy. In addition, multiple gamma coincidence imaging is expected to be realized, which allows the source position to be determined from a single coincidence event using nuclides that emit multiple gamma rays simultaneously, such as nuclides that emit a single gamma ray simultaneously with positron decay. This review introduces various efforts toward the practical application of Compton imaging in the medical field, including in vivo studies, and discusses its prospects.
Collapse
|
5
|
Abstract
Carbon ion radiotherapy is a sophisticated radiation treatment modality because of its superiority in achieving precise dosage distribution and high biological effectiveness. However, there exist beam range uncertainties that affect treatment efficiency. This problem can be resolved if the clinical beam could be monitored precisely in real-time, such as by imaging the prompt gamma emission from the target. In this study, we performed real-time detection and imaging of 718 keV prompt gamma emissions using a Si/CdTe Compton camera. We conducted experiments on graphite phantoms using clinical carbon ion beams of 290 MeV/u energy. Compton images were reconstructed using simple back-projection methods from the energy events of 718 keV prompt gamma emissions. The peak intensity position in reconstructed 718 keV prompt gamma images was few millimeters below the Bragg peak position. Moreover, the dual- and triple-energy window images for all positions of phantoms were not affected by scattered gammas, and their peak intensity positions were approximately similar to those observed in the reconstructed 718 keV prompt gamma images. In conclusion, the findings of the current study demonstrate the feasibility of using our Compton camera for real-time beam monitoring of carbon ion beams under clinical beam intensity.
Collapse
|
6
|
Uenomachi M, Takahashi M, Shimazoe K, Takahashi H, Kamada K, Orita T, Ogane K, Tsuji AB. Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci Rep 2021; 11:17933. [PMID: 34504184 PMCID: PMC8429650 DOI: 10.1038/s41598-021-97302-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
Positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT) are well-established nuclear-medicine imaging methods used in modern medical diagnoses. Combining PET with 18F-fluorodeoxyglucose (FDG) and SPECT with an 111In-labelled ligand provides clinicians with information about the aggressiveness and specific types of tumors. However, it is difficult to integrate a SPECT system with a PET system because SPECT requires a collimator. Herein, we describe a novel method that provides simultaneous imaging with PET and SPECT nuclides by combining PET imaging and Compton imaging. The latter is an imaging method that utilizes Compton scattering to visualize gamma rays over a wide range of energies without requiring a collimator. Using Compton imaging with SPECT nuclides, instead of the conventional SPECT imaging method, enables PET imaging and Compton imaging to be performed with one system. In this research, we have demonstrated simultaneous in vivo imaging of a tumor-bearing mouse injected with 18F-FDG and an 111In-antibody by using a prototype Compton-PET hybrid camera. We have succeeded in visualizing accumulations of 18F-FDG and 111In-antibody by performing PET imaging and Compton imaging simultaneously. As simultaneous imaging utilizes the same coordinate axes, it is expected to improve the accuracy of diagnoses.
Collapse
Affiliation(s)
- Mizuki Uenomachi
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Miwako Takahashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Inage, Chiba, Chiba, Japan
| | - Kenji Shimazoe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan. .,JST, PRESTO, Saitama, 332-0012, Japan.
| | - Hiroyuki Takahashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kei Kamada
- Tohoku University, 2-1-1, Katahira, Sendai, Miyagi, Japan
| | - Tadashi Orita
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenichiro Ogane
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Nuclear Medicine, International University of Health and Welfare, 1-4-3, Minato-ku, Tokyo, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Inage, Chiba, Chiba, Japan
| |
Collapse
|