1
|
Frank F, Baumgartner B, Verstuyft M, Teigell Beneitez N, Missinne J, Van Thourhout D, Roelkens G, Lendl B. Integrated Optics Waveguides and Mesoporous Oxides for the Monitoring of Volatile Organic Compound Traces in the Mid-Infrared. APPLIED SPECTROSCOPY 2025; 79:842-851. [PMID: 39692077 PMCID: PMC12053257 DOI: 10.1177/00037028241300554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer. The waveguide chip was coated with a mesoporous silica coating, thereby increasing the signal by adsorptive enhancement of VOCs while at the same time limiting water vapor interferences. Different least square fitting methods were explored to deconvolute the resulting spectra, showing subparts-per-million by volume (sub-ppmv) limits of detection and enrichment factors of up to 22 000 while keeping the footprint of the setup small (29 × 23 × 11 cm³). Finally, a use-case simulation for the continuous detection of VOCs in a process analytical technology environment confirmed the high potential of the technique for the monitoring of contaminants. By successfully demonstrating the use of photonic waveguides for the monitoring of VOCs, this work offers a promising avenue for the further development of fully integrated sensors on a chip.
Collapse
Affiliation(s)
- Felix Frank
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Bettina Baumgartner
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Jeroen Missinne
- Center for Microsystems Technology, Ghent University-imec, Gent, Belgium
| | | | | | - Bernhard Lendl
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| |
Collapse
|
2
|
Wojtas J. Towards Optoelectronic Technology: From Basic Research to Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2116. [PMID: 40218627 PMCID: PMC11991057 DOI: 10.3390/s25072116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
This editorial is an introduction to the monograph constituting a Special Issue of the Sensors journal, which consists of 11 articles of different natures, mainly concerning applications in the latest photonics achievements in ultraviolet, and above all, infrared range of the electromagnetic spectrum. These articles have been grouped into two areas: basic research and application research. Both types of scientific activities have been characterized, emphasizing their complexity and differences, including defining their level of technological advancement. Moreover, regarding application research, the main issues considered fundamental for the research presented there have been identified and described.
Collapse
Affiliation(s)
- Jacek Wojtas
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
| |
Collapse
|
3
|
Estany-Macià A, Fort-Grandas I, Joshi N, Svendsen WE, Dimaki M, Romano-Rodríguez A, Moreno-Sereno M. ZIF-8-Based Surface Plasmon Resonance and Fabry-Pérot Sensors for Volatile Organic Compounds. SENSORS (BASEL, SWITZERLAND) 2024; 24:4381. [PMID: 39001159 PMCID: PMC11244607 DOI: 10.3390/s24134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
This work explores the use of ZIF-8, a metal-organic framework (MOF) material, for its use in the optical detection of volatile organic compounds (VOCs) in Fabry-Pérot and surface plasmon resonance (SPR)-based sensors. The experiments have been carried out with ethanol (EtOH) and show response times as low as 30 s under VOC-saturated atmospheres, and the estimated limit of detection is below 4000 ppm for both sensor types. The selectivity towards other VOCs is relatively poor, although the dynamics of adsorption/desorption differ for each VOC and could be used for selectivity purposes. Furthermore, the hydrophobicity of ZIF-8 has been confirmed and the fabricated sensors are insensitive to this compound, which is a very attractive result for its practical use in gas sensing devices.
Collapse
Affiliation(s)
- Anna Estany-Macià
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ignasi Fort-Grandas
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nirav Joshi
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Winnie E Svendsen
- Group NABIS, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Maria Dimaki
- Group NABIS, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Albert Romano-Rodríguez
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mauricio Moreno-Sereno
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Bratu AM, Bojan M, Popa C, Petrus M. Infrared to terahertz identification of chemical substances used for the production of IEDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124055. [PMID: 38422931 DOI: 10.1016/j.saa.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
In our modern times, improvised explosive devices (IEDs) have become more sophisticated than ever, capable of causing destruction and loss of life. The creative use of homemade substances for IEDs manufactures has led to efforts in developing sensitive detection methods that can anticipate, identify and protect against improvised attacks. Laser-based spectroscopic techniques provide rapid and accurate detection of chemicals in improvised explosives, but no single method can detect all components of all explosives. In this study, two spectroscopic methods are used for the sensitive identification of 8 explosive chemical substances in the form of powders and vapors. Absorption spectra of benzene, toluene, acetone and ethylene glycol were examined with CO2 laser photoacoustic spectroscopy. The photoacoustic signals of the samples were recorded in the CO2 laser emission range from 9.2 to 10.8 µm and a different spectral behavior was observed for each analyzed substance. Time-domain spectroscopy with THz radiation was used to analyze ammonium nitrate, potassium chlorate, dinitrobenzene, hexamethylenetetramine transmission spectra in the 0.1-3 THz range, and it was observed that they have characteristic THz fingerprint spectra. CO2 laser photoacoustic spectroscopy and THz time domain spectroscopy have met the criterion of proven effectiveness in identifying explosive components. The combination of these spectroscopic methods is innovative, giving a promising new approach for detection of a large number of IED components.
Collapse
Affiliation(s)
- A M Bratu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania.
| | - M Bojan
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania
| | - C Popa
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania
| | - M Petrus
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania
| |
Collapse
|