1
|
Dixon LK. Advances in African swine fever virus molecular biology and host interactions contributing to new tools for control. J Virol 2025:e0093224. [PMID: 40340396 DOI: 10.1128/jvi.00932-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
African swine fever virus (ASFV) causes a frequently fatal hemorrhagic disease in domestic pigs and wild boar. The spread from Africa to Georgia in 2007 initiated a pandemic affecting many European and most Asian countries. This has had a very high socio-economic impact and threatens global food security. The virus is a large, complex, cytoplasmic DNA virus, the only member of the Asfarviridae family and codes for 170-190 proteins. Many of these have unknown functions and do not resemble other viruses or host proteins. This complexity has hindered the development of vaccines and other tools for control. The intensity of research has increased since the spread of ASFV in Europe and Asia, leading to rapid advances in knowledge. This review summarizes recent research, including the determination by cryogenic electron microscopy of the virus capsid structure and virion proteome. Novel information on the virus replication cycle, including mechanisms of virus entry into cells and the identification of host endosomal proteins important for entry, is summarized. Multiple, novel virus immune evasion proteins and their targets in the type I interferon response and inflammation pathways have been identified. The potential for the application of this knowledge to developing novel control tools, including modified live vaccines and other interventions targeting critical virus processes or host interactions, is discussed.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
2
|
Dolata KM, Karger A. Insights into the Role of VPS39 and Its Interaction with CP204L and A137R in ASFV Infection. Viruses 2024; 16:1478. [PMID: 39339953 PMCID: PMC11437485 DOI: 10.3390/v16091478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal disease in swine, for which no antiviral drugs or vaccines are currently available. Studying viral-host protein-protein interactions advances our understanding of the molecular mechanisms underlying viral replication and pathogenesis and can facilitate the discovery of antiviral therapeutics. In this study, we employed affinity tagging and purification mass spectrometry to characterize the interactome of VPS39, an important cellular factor during the early phase of ASFV replication. The interaction network of VPS39 revealed associations with mitochondrial proteins involved in membrane contact sites formation and cellular respiration. We show that the ASFV proteins CP204L and A137R target VPS39 by interacting with its clathrin heavy-chain functional domain. Furthermore, we elaborate on the potential mechanisms by which VPS39 may contribute to ASFV replication and prioritize interactions for further investigation into mitochondrial protein function in the context of ASFV infection.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Loktionov AV, Kobzeva KA, Karpenko AR, Sergeeva VA, Orlov YL, Bushueva OY. GWAS-significant loci and severe COVID-19: analysis of associations, link with thromboinflammation syndrome, gene-gene, and gene-environmental interactions. Front Genet 2024; 15:1434681. [PMID: 39175753 PMCID: PMC11338913 DOI: 10.3389/fgene.2024.1434681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Objective The aim of this study was to replicate associations of GWAS-significant loci with severe COVID-19 in the population of Central Russia, to investigate associations of the SNPs with thromboinflammation parameters, to analyze gene-gene and gene-environmental interactions. Materials and Methods DNA samples from 798 unrelated Caucasian subjects from Central Russia (199 hospitalized COVID-19 patients and 599 controls with a mild or asymptomatic course of COVID-19) were genotyped using probe-based polymerase chain reaction for 10 GWAS-significant SNPs: rs143334143 CCHCR1, rs111837807 CCHCR1, rs17078346 SLC6A20-LLZTFL1, rs17713054 SLC6A20-LLZTFL1, rs7949972 ELF5, rs61882275 ELF5, rs12585036 ATP11A, rs67579710 THBS3, THBS3-AS1, rs12610495 DPP9, rs9636867 IFNAR2. Results SNP rs17713054 SLC6A20-LZTFL1 was associated with increased risk of severe COVID-19 in the entire group (risk allele A, OR = 1.78, 95% CI = 1.22-2.6, p = 0.003), obese individuals (OR = 2.31, 95% CI = 1.52-3.5, p = 0.0002, (p bonf = 0.0004)), patients with low fruit and vegetable intake (OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)), low physical activity (OR = 1.93, 95% CI = 1.26-2.94, p = 0.0035, (p bonf = 0.007)), and nonsmokers (OR = 1.65, 95% CI = 1.11-2.46, p = 0.02). This SNP correlated with increased BMI (p = 0.006) and worsened thrombodynamic parameters (maximum optical density of the formed clot, D (p = 0.02), delayed appearance of spontaneous clots, Tsp (p = 0.02), clot size 30 min after coagulation activation, CS (p = 0.036)). SNP rs17078346 SLC6A20-LZTFL1 was linked with increased BMI (p = 0.01) and severe COVID-19 in obese individuals (risk allele C, OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)). SNP rs12610495 DPP9 was associated with increased BMI (p = 0.01), severe COVID-19 in obese patients (risk allele G, OR = 1.48, 95% CI = 1.09-2.01, p = 0.01, (p bonf = 0.02)), and worsened thrombodynamic parameters (time to the start of clot growth, Tlag (p = 0.01)). For rs7949972 ELF5, a protective effect against severe COVID-19 was observed in non-obese patients (effect allele T, OR = 0.67, 95% CI = 0.47-0.95, p = 0.02, (p bonf = 0.04)), improving thrombodynamic parameters (CS (p = 0.02), stationary spatial clot growth rates, Vst (p = 0.02)). Finally, rs12585036 ATP11A exhibited a protective effect against severe COVID-19 in males (protective allele A, OR = 0.51, 95% CI = 0.32-0.83, p = 0.004). SNPs rs67579710 THBS3, THBS3-AS1, rs17713054 SLC6A20-LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2-were involved in two or more of the most significant G×G interactions (p perm ≤ 0.01). The pairwise combination rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-LZTFL1 was a priority in determining susceptibility to severe COVID-19 (it was included in four of the top five most significant SNP-SNP interaction models). Conclusion Overall, this study represents a comprehensive molecular-genetic and bioinformatics analysis of the involvement of GWAS-significant loci in the molecular mechanisms of severe COVID-19, gene-gene and gene-environmental interactions, and provides evidence of their relationship with thromboinflammation parameters in patients hospitalized in intensive care units.
Collapse
Affiliation(s)
- Alexey Valerevich Loktionov
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Ksenia Andreevna Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Andrey Romanovich Karpenko
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Vera Alexeevna Sergeeva
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
| | - Yuriy Lvovich Orlov
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yurievna Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
4
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Armstrong SD, Alonso C, Garcia-Dorival I. Comparative Proteomics and Interactome Analysis of the SARS-CoV-2 Nucleocapsid Protein in Human and Bat Cell Lines. Viruses 2024; 16:1117. [PMID: 39066279 PMCID: PMC11281661 DOI: 10.3390/v16071117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 and responsible for the global coronavirus pandemic which started in 2019. Despite exhaustive efforts to trace its origins, including potential links with pangolins and bats, the precise origins of the virus remain unclear. Bats have been recognized as natural hosts for various coronaviruses, including the Middle East respiratory coronavirus (MERS-CoV) and the SARS-CoV. This study presents a comparative analysis of the SARS-CoV-2 nucleocapsid protein (N) interactome in human and bat cell lines. We identified approximately 168 cellular proteins as interacting partners of SARS-CoV-2 N in human cells and 196 cellular proteins as interacting partners with this protein in bat cells. The results highlight pathways and events that are both common and unique to either bat or human cells. Understanding these interactions is crucial to comprehend the reasons behind the remarkable resilience of bats to viral infections. This study provides a foundation for a deeper understanding of host-virus interactions in different reservoirs.
Collapse
Affiliation(s)
- Stuart D. Armstrong
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool L3 5RF, UK;
| | - Covadonga Alonso
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de la Coruña km 7.5, 28040 Madrid, Spain;
| | - Isabel Garcia-Dorival
- Department Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de la Coruña km 7.5, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Chen Y, Ni J, Wang C, Zhai X, Luo T, Li YP, Wei Y, Liu Y. The proteomic analysis uncovers the cellular responses to the African swine fever virus membrane proteins p54, p17, and pB117L. Microbes Infect 2024; 26:105348. [PMID: 38697277 DOI: 10.1016/j.micinf.2024.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
African swine fever virus (ASFV) infection causes African swine fever (ASF), a highly contagious and fatal disease that poses severe threat to swine production. To gain insights into the host responses to ASFV, we generated recombinant adenovirus Ad5 expressing viral membrane proteins p54, p17, and pB117L individually and infected an alveolar cell line, 3D4/21, with these recombinant viruses. Then, the cell lysates were analyzed using label-free quantification proteomic analysis method. A total of 2158 differentially expressed proteins (DEPs) were identified, of which 817, 466, and 875 proteins were from Ad5-p54-, Ad5-p17-, Ad5-pB117L-infected 3D4/21 cells, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed distinct yet interconnecting patterns of protein interaction networks. Specifically, the Ad5-p54 virus infection enriched the DEPs primarily involved in the metabolic pathways, endocytosis, adherens junction, and SNARE interactions in vesicular transport. The Ad5-p17 virus infection enriched the DEPs in endocytosis, ubiquitin-mediated proteolysis, N-Glycan biosynthesis, and apoptosis, while the Ad5-pB117L virus infection enriched the DEPs in metabolic pathways, endocytosis, oxidative phosphorylation, and focal adhesion. In summary, these results provide a comprehensive proteinomics analysis of the cellular responses to three ASFV membrane proteins, thus facilitating our understanding of ASFV pathogenesis.
Collapse
Affiliation(s)
- Yuhong Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; China Animal Disease Control Center (CADC), Beijing 102618, China
| | - Jianqiang Ni
- China Animal Disease Control Center (CADC), Beijing 102618, China
| | - Chuanbin Wang
- China Animal Disease Control Center (CADC), Beijing 102618, China
| | - Xinyan Zhai
- China Animal Disease Control Center (CADC), Beijing 102618, China
| | - Tingrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, Guangxi, China.
| | - Yuliang Liu
- China Animal Disease Control Center (CADC), Beijing 102618, China.
| |
Collapse
|
7
|
Urquiza J, Cuesta-Geijo MÁ, García-Dorival I, Fernández Ó, del Puerto A, Díaz JF, Alonso C. Identification of a Potential Entry-Fusion Complex Based on Sequence Homology of African Swine Fever and Vaccinia Virus. Viruses 2024; 16:349. [PMID: 38543715 PMCID: PMC10975062 DOI: 10.3390/v16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 05/23/2024] Open
Abstract
African swine fever virus (ASFV) belongs to the family of Asfarviridae, part of the group of nucleocytoplasmic large DNA viruses (NCLDV). Little is known about the internalization of ASFV in the host cell and the fusion membrane events that take place at early stages of the infection. Poxviruses, also members of the NCLDV and represented by vaccinia virus (VACV), are large, enveloped, double-stranded DNA viruses. Poxviruses were considered unique in having an elaborate entry-fusion complex (EFC) composed of 11 highly conserved proteins integrated into the membrane of mature virions. Recent advances in methodological techniques have again revealed several connections between VACV EFC proteins. In this study, we explored the possibility of an analogous ASFV EFC by identifying ten candidate proteins exhibiting structural similarities with VACV EFC proteins. This could reveal key functions of these ASFV proteins, drawing attention to shared features between the two virus families, suggesting the potential existence of an ASFV entry-fusion complex.
Collapse
Affiliation(s)
- Jesús Urquiza
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Miguel Ángel Cuesta-Geijo
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Isabel García-Dorival
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - Óscar Fernández
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (Ó.F.); (J.F.D.)
| | - Ana del Puerto
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| | - José Fernando Díaz
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (Ó.F.); (J.F.D.)
| | - Covadonga Alonso
- Departamento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.Á.C.-G.); (I.G.-D.); (A.d.P.)
| |
Collapse
|
8
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
9
|
Dolata KM, Pei G, Netherton CL, Karger A. Functional Landscape of African Swine Fever Virus-Host and Virus-Virus Protein Interactions. Viruses 2023; 15:1634. [PMID: 37631977 PMCID: PMC10459248 DOI: 10.3390/v15081634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Viral replication fully relies on the host cell machinery, and physical interactions between viral and host proteins mediate key steps of the viral life cycle. Therefore, identifying virus-host protein-protein interactions (PPIs) provides insights into the molecular mechanisms governing virus infection and is crucial for designing novel antiviral strategies. In the case of the African swine fever virus (ASFV), a large DNA virus that causes a deadly panzootic disease in pigs, the limited understanding of host and viral targets hinders the development of effective vaccines and treatments. This review summarizes the current knowledge of virus-host and virus-virus PPIs by collecting and analyzing studies of individual viral proteins. We have compiled a dataset of experimentally determined host and virus protein targets, the molecular mechanisms involved, and the biological functions of the identified virus-host and virus-virus protein interactions during infection. Ultimately, this work provides a comprehensive and systematic overview of ASFV interactome, identifies knowledge gaps, and proposes future research directions.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|