1
|
Faur AC, Lazar DC, Ghenciu LA. Artificial intelligence as a noninvasive tool for pancreatic cancer prediction and diagnosis. World J Gastroenterol 2023; 29:1811-1823. [PMID: 37032728 PMCID: PMC10080704 DOI: 10.3748/wjg.v29.i12.1811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Pancreatic cancer (PC) has a low incidence rate but a high mortality, with patients often in the advanced stage of the disease at the time of the first diagnosis. If detected, early neoplastic lesions are ideal for surgery, offering the best prognosis. Preneoplastic lesions of the pancreas include pancreatic intraepithelial neoplasia and mucinous cystic neoplasms, with intraductal papillary mucinous neoplasms being the most commonly diagnosed. Our study focused on predicting PC by identifying early signs using noninvasive techniques and artificial intelligence (AI). A systematic English literature search was conducted on the PubMed electronic database and other sources. We obtained a total of 97 studies on the subject of pancreatic neoplasms. The final number of articles included in our study was 44, 34 of which focused on the use of AI algorithms in the early diagnosis and prediction of pancreatic lesions. AI algorithms can facilitate diagnosis by analyzing massive amounts of data in a short period of time. Correlations can be made through AI algorithms by expanding image and electronic medical records databases, which can later be used as part of a screening program for the general population. AI-based screening models should involve a combination of biomarkers and medical and imaging data from different sources. This requires large numbers of resources, collaboration between medical practitioners, and investment in medical infrastructures.
Collapse
Affiliation(s)
- Alexandra Corina Faur
- Department of Anatomy and Embriology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara 300041, Timiș, Romania
| | - Daniela Cornelia Lazar
- Department V of Internal Medicine I, Discipline of Internal Medicine IV, University of Medicine and Pharmacy “Victor Babes” Timișoara, Timișoara 300041, Timiș, Romania
| | - Laura Andreea Ghenciu
- Department III, Discipline of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Timișoara 300041, Timiș, Romania
| |
Collapse
|
2
|
Goyal H, Sherazi SAA, Mann R, Gandhi Z, Perisetti A, Aziz M, Chandan S, Kopel J, Tharian B, Sharma N, Thosani N. Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers (Basel) 2021; 13:5494. [PMID: 34771658 PMCID: PMC8582733 DOI: 10.3390/cancers13215494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers are among the leading causes of death worldwide, with over 2.8 million deaths annually. Over the last few decades, advancements in artificial intelligence technologies have led to their application in medicine. The use of artificial intelligence in endoscopic procedures is a significant breakthrough in modern medicine. Currently, the diagnosis of various gastrointestinal cancer relies on the manual interpretation of radiographic images by radiologists and various endoscopic images by endoscopists. This can lead to diagnostic variabilities as it requires concentration and clinical experience in the field. Artificial intelligence using machine or deep learning algorithms can provide automatic and accurate image analysis and thus assist in diagnosis. In the field of gastroenterology, the application of artificial intelligence can be vast from diagnosis, predicting tumor histology, polyp characterization, metastatic potential, prognosis, and treatment response. It can also provide accurate prediction models to determine the need for intervention with computer-aided diagnosis. The number of research studies on artificial intelligence in gastrointestinal cancer has been increasing rapidly over the last decade due to immense interest in the field. This review aims to review the impact, limitations, and future potentials of artificial intelligence in screening, diagnosis, tumor staging, treatment modalities, and prediction models for the prognosis of various gastrointestinal cancers.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18505, USA
| | - Syed A. A. Sherazi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, 1950 W Polk St, Chicago, IL 60612, USA;
| | - Rupinder Mann
- Department of Medicine, Saint Agnes Medical Center, 1303 E. Herndon Ave, Fresno, CA 93720, USA;
| | - Zainab Gandhi
- Department of Medicine, Geisinger Wyoming Valley Medical Center, 1000 E Mountain Dr, Wilkes-Barre, PA 18711, USA;
| | - Abhilash Perisetti
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Muhammad Aziz
- Department of Gastroenterology and Hepatology, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH 43614, USA;
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, CHI Health Creighton University Medical Center, 7500 Mercy Rd, Omaha, NE 68124, USA;
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA;
| | - Benjamin Tharian
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA;
| | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, 11050 Parkview Circle, Fort Wayne, IN 46845, USA; (A.P.); (N.S.)
| | - Nirav Thosani
- Division of Gastroenterology, Hepatology & Nutrition, McGovern Medical School, UTHealth, 6410 Fannin, St #1014, Houston, TX 77030, USA;
| |
Collapse
|