1
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses. PNAS NEXUS 2024; 3:pgae082. [PMID: 38725532 PMCID: PMC11079674 DOI: 10.1093/pnasnexus/pgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 05/12/2024]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Spatially specific, closed-loop infrared thalamocortical deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560859. [PMID: 37904955 PMCID: PMC10614743 DOI: 10.1101/2023.10.04.560859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically-mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
3
|
Díaz I, Colmenárez-Raga AC, Pérez-González D, Carmona VG, Plaza Lopez I, Merchán MA. Effects of Multisession Anodal Electrical Stimulation of the Auditory Cortex on Temporary Noise-Induced Hearing Loss in the Rat. Front Neurosci 2021; 15:642047. [PMID: 34393701 PMCID: PMC8358804 DOI: 10.3389/fnins.2021.642047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The protective effect of the efferent system against acoustic trauma (AT) has been shown by several experimental approaches, including damage to one ear, sectioning of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects have been related to changes in the regulation of the cholinergic efferent system and in cochlear amplification, which ultimately reverse upon protective hearing suppression. In addition to well-known circuits of the brainstem, the descending corticofugal pathway also regulates efferent neurons of the olivary complex. In this study, we applied our recently developed experimental paradigm of multiple sessions of electrical stimulation (ES) to activate the efferent system in combination with noise overstimulation. ABR thresholds increased 1 and 2 days after AT (8-16 kHz bandpass noise at 107 dB for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural anodal stimulation, no changes in thresholds were observed following AT. Although an inflammatory response was also observed 1 day after AT in both groups, the counts of reactive macrophages in both experimental conditions suggest decreased inflammation in the epidural stimulation group. Quantitative immunocytochemistry for choline acetyltransferase (ChAT) showed a significant decrease in the size and optical density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting depletion of the terminals followed by a long-term compensatory response. Such a synthesis recovery was significantly higher upon cortical stimulation. No significant correlation was found between ChAT optical density and size of the buttons in sham controls (SC) and ES/AT + 1day animals; however, significant negative correlations were shown in all other experimental conditions. Therefore, our comparative analysis suggests that cochleotopic cholinergic neurotransmission is also better preserved after multisession epidural stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
An H, Auksztulewicz R, Kang H, Schnupp JWH. Cortical mapping of mismatch responses to independent acoustic features. Hear Res 2020; 399:107894. [PMID: 31987647 DOI: 10.1016/j.heares.2020.107894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/30/2022]
Abstract
Predictive coding is an influential theory of neural processing underlying perceptual inference. However, it is unknown to what extent prediction violations of different sensory features are mediated in different regions in auditory cortex, with different dynamics, and by different mechanisms. This study investigates the neural responses to synthesized acoustic syllables, which could be expected or unexpected, along several features. By using electrocorticography (ECoG) in rat auditory cortex (subjects: adult female Wistar rats with normal hearing), we aimed at mapping regional differences in mismatch responses to different stimulus features. Continuous streams of morphed syllables formed roving oddball sequences in which each stimulus was repeated several times (thereby forming a standard) and subsequently replaced with a deviant stimulus which differed from the standard along one of several acoustic features: duration, pitch, interaural level differences (ILD), or consonant identity. Each of these features could assume one of several different levels, and the resulting change from standard to deviant could be larger or smaller. The deviant stimuli were then repeated to form new standards. We analyzed responses to the first repetition of a new stimulus (deviant) and its last repetition in a stimulus train (standard). For the ECoG recording, we implanted urethane-anaesthetized rats with 8 × 8 surface electrode arrays covering a 3 × 3 mm cortical patch encompassing primary and higher-order auditory cortex. We identified the response topographies and latencies of population activity evoked by acoustic stimuli in the rat auditory regions, and mapped their sensitivity to expectation violations along different acoustic features. For all features, the responses to deviant stimuli increased in amplitude relative to responses to standard stimuli. Deviance magnitude did not further modulate these mismatch responses. Mismatch responses to different feature violations showed a heterogeneous distribution across cortical areas, with no evidence for systematic topographic gradients for any of the tested features. However, within rats, the spatial distribution of mismatch responses varied more between features than the spatial distribution of tone-evoked responses. This result supports the notion that prediction error signaling along different stimulus features is subserved by different cortical populations, albeit with substantial heterogeneity across individuals.
Collapse
Affiliation(s)
- HyunJung An
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Ryszard Auksztulewicz
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong; Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - HiJee Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Jan W H Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Colmenárez-Raga AC, Díaz I, Pernia M, Pérez-González D, Delgado-García JM, Carro J, Plaza I, Merchán MA. Reversible Functional Changes Evoked by Anodal Epidural Direct Current Electrical Stimulation of the Rat Auditory Cortex. Front Neurosci 2019; 13:356. [PMID: 31031588 PMCID: PMC6473088 DOI: 10.3389/fnins.2019.00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Rat auditory cortex was subjected to 0.1 mA anodal direct current in seven 10-min sessions on alternate days. Based on the well-known auditory cortex control of olivocochlear regulation through corticofugal projections, auditory brainstem responses (ABRs) were recorded as an indirect test of the effectiveness and reversibility of the multisession protocol of epidural stimulation. Increases of 20-30 dB ABR auditory thresholds shown after epidural stimulation reverted back to control levels 10 min after a single session. However, increases in thresholds revert 4 days after multisession stimulation. Less changes in wave amplitudes and threshold shifts were shown in ABR recorded contralaterally to the electrically stimulated side of the brain. To assess tissue effects of epidural electric stimulation on the brain cortex, well characterized functional anatomical markers of glial cells (GFAP/astrocytes and Iba1/microglial cells) and neurons (c-Fos) were analyzed in alternate serial sections by quantitative immunocytochemistry. Restricted astroglial and microglial reactivity was observed within the cytoarchitectural limits of the auditory cortex. However, interstitial GFAP overstaining was also observed in the ventricular surface and around blood vessels, thus supporting a potential global electrolytic stimulation of the brain. These results correlate with extensive changes in the distribution of c-Fos immunoreactive neurons among layers along sensory cortices after multisession stimulation. Quantitative immunocytochemical analysis supported this idea by showing a significant increase in the number of positive neurons in supragranular layers and a decrease in layer 6 with no quantitative changes detected in layer 5. Our data indicate that epidural stimulation of the auditory cortex induces a reversible decrease in hearing sensitivity due to local, restricted epidural stimulation. A global plastic response of the sensory cortices, also reported here, may be related to electrolytic effects of electric currents.
Collapse
Affiliation(s)
| | - Iván Díaz
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Marianny Pernia
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - David Pérez-González
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | | | - Juan Carro
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|